CHAPTER 7

Hierarchical Preconditioning and Partial Orthogonalization
for the p-Version Finite Element Method!
Jan Mandel?

Abstract. We present a new preconditioning for the p-version finite element method, based on
domain decomposition principles with each element treated as a subdomain. We give a simple theory
which makes it possible to predict the condition number from the solution of eigenvalue problems
formulated on one element at a time, and we use such computations to select a practically attractive
preconditioning for hierarchical serendipity elements of order pin three-dimensional elasticity. The
preconditioner consists of parallelizable element-by-element computations and the solution of an
auxiliary problem for lower order elements.
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1. Introduction. In this paper, we study a new preconditioning method for
large symmetric positive definite linear system arising from the p-version finite
element method for three-dimensional elasticity.

The p-version finite element method achieves an increase of precision by
increasing the degree of elements rather than decreasing their size as the h-
version [1, 5, 6, 35]. The p-version also provides for easier modeling of complicated
geometries and facilitates sophisticated post-processing [35]. Moreover, decreasing
the element size as well as increasing the degree p gives exponential convergence as
long as the singularities of the problem lie on interelement boundaries, which is the
case in practice. Direct methods are fully satisfactory for the solution of the resulting
system of linear equations in two dimensions; in three dimensions, however, they
suffer from much larger fill-in and iterative methods are the only choice for problems
with a large number of elements.
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Because the elements of the p-version are fairly large, we treat them as
subdomains and use a domain decomposition technique related to and extending
the approach of Bramble, Pasciak, and Schatz [9]. For other related domain
decomposition methods, see Dryja and Widlund [18, 38]. The method of this
paper is closely related to a class of preconditioning for the p-version which was
introduced and studied in previous papers [29, 28], and it is a direct extension
of the preconditioner for the two-dimensional case developed in [2]. For further
developments in the two-dimensional case see [3, 4, 30].

The present method is in fact a hybrid direct-iterative method. One iteration
of the preconditioned conjugate gradient method [20, 24] requires the solution of a
preconditioning problem, which in our case decomposes into a number of independent
local subproblems associated with edges and faces of the finite element structure,
and of a global auxiliary problem which is identical to the system obtained by
elements of a lower order for the same structure. Because the p-version finite element
we use is hierarchical, the matrix of this auxiliary global problem is immediately
available as a submatrix of the global stiffness matrix. It also turns out that
certain transformations of the stiffness matrix are needed to obtain low condition
numbers. These transformations and the decomposition of the matrices of the
systems mentioned above constitute a pre-processing phase. The solution of the
auxiliary systems is then done by back substitutions in every iteration. The global
auxiliary system has much less variables than the original problems, but its structure
is same as that of the original problem, so one can use an existing direct solver for
its solution.

Thanks to the existence of the global auxiliary problem, the condition number
can be proved to be independent of the number of elements. We give a bound for the
condition number which can be computed numerically from the data of one element
at a time, and show how such a bound leads to the development of an efficient
method. An implementation of the method is in progress.

The use a global auxiliary problem with fewer variables makes the present
method related to multigrid methods [10, 22, 25, 32]. The present method
also belongs to the class of methods based on a splitting the solution space and
constructing an iterative method by solving independent problems on the subspaces.
Some such methods are the additive Schwarz method [7, 16, 26], the robust multigrid
method [23], iterative refinement methods [17, 31], and the domain reduction
method [13, 14, 15]. For a general treatment of this class of methods, see [8]. For
another method for the p-version finite elements using hierarchical type iterations,
see [11, 19]. Conditioning of mass matrices, rather than stiffness matrices as here,
was investigated by Wathen [36, 37].

The p-version is closely related to spectral methods and spectral element meth-
ods, which also use high order polynomial approximations. Domain decomposition
techniques for systems arising from spectral methods were studied by Gottlieb and
Hirsh [21] and Quarteroni and Sacci-Landriani [33]. Multigrid for spectral element

methods was developed and analyzed by Rgnquist and Patera [34] and Maday and
Mufioz [27]. ‘
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TaBLE 2.1
Number of degrees of freedom of elements K], and K, for three-dimensional elasticity

Element | p=1| p=2 | p=3 | p=4 | p=5| p=6 | p=T7 | p=8
K) 24 | 60 96 | 150 | 222 | 315 | 432 | 576
K, 24 | 81 | 192 | 375 | 648 | 1029 | 1536 | 2187

In Section 2, we describe the finite element basis functions used. In Section 3,
we give a naive hierarchical preconditioning and estimate the resulting condition
numbers using an elementary theory and numerical computations. The basic idea of
our theoretical analysis is to show that condition numbers can be estimated using
quantities related to one element at a time, and then evaluate those quantities
numerically. Sections 4 gives a more sophisticated theory, which leads to an improved
preconditioner in Section 5. In Section 6, we estimate the operations counts for the
preconditioner. In Section 7, we report on further extensions of the method and on
the results of computations for several test problems.

2. Preliminaries. We consider the conforming finite element method with the
serendipity element of order p [39] with hierarchical basis functions similar to those
in the program PROBE [35]. We denote this element by K, and briefly describe its
basis functions for the reference element K = (—1,+1)®. First, there are nodal basis
functions, which are the standard trilinear functions of the form

(2 1)y +1)(z+1).
If p > 2, then there are p — 1 basis functions of the form
(z — 1)(y — 1)L.(2), n=2...,p,

for every edge (with obvious changes of —1 to +1 and permutation of variables),
where L, is the integral of the Legendre polynomial P, ; of order n — 1,

In(z) = [ Pas©)de.
If p > 4, we have basis functions of the form
(z — 1)1 — y*)(1 — 25)P(y) Po(2), m,n>0, m+n<p-—4,

for every face (again with obvious changes of -1 to +1 and permutation of variables).
Finally, if p > 6, we have the interior functions

(1-2*)(1 = y*)(1 = 2*)P(2)Pu(y) Pu(2),  Lm,n >0, l+m+n<p-—6.

Because we are interested in three-dimensional elasticity, there are three basis
functions for each function described above, one for every displacement component
in Cartesian coordinates.

We will also work with the tensor product element K. », Which is obtained similarly
as above except that we have the basis functions of the form

(:B“1)(1"y2)(1—Zz)Pm(y)Pn(z)7 m,"z 07 m)nSp—47
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for the faces, and
(1 —23)(1 — y*)(1 = 22)P2) Puly) Po(2), ILm,n>0, lm,n<p-—8,

for the interior. ,

Note that only the trilinear functions are associated with nodes, namely the
vertices of K. The remaining degrees of freedom are nodeless. We did not need to
specify scaling of the basis functions, because the algorithms in the present paper
will be independent of it. The number of degrees of freedom in the elements K, and
K, are in Table 2.1.

Functions from the (local or global) finite element space are denoted by u,v, and
the corresponding vectors of degrees of freedom (in a given basis) are @, 9, and so on.

For two matrices A and B, A < B means that 4 and B are symmetric and
B — A is positive semidefinite.

3. A Simple Hierarchical Preconditioning. We are interested in the nu-
merical solution of the problem

(3.1) Az = b,

where A is a symmetric positive definite matrix obtained by the usual finite element
assembly of local stiffness matrices Ay,

A= NgAxNy.
K
The matrices N = (ng ;) represent the mappings of local to global degrees of
freedom: ng ;; = 1 if j-th local degree of freedom in element K is corresponds to ¢-th
global degree of freedom, ny ;; == 0 otherwise. The general idea of our preconditioner
is to replace the local stiffness matrices Ax by matrices Ok such that

(3.2) my O < Ax < myCr, 0 <m; <my < oo.

In every step of the preconditioned conjugate gradient method, we need to solve the
linear system

(33) Cz = T, C = Z IVI(’CKN[;;?

K
which should be much less expensive than solving the system (3.1). We have the
following simple bound on the resulting condition number.

THEOREM 3.1. If (3.2) holds with the same constants my and my for all
elements K, then

(3.4) m;C < A< m,C.

In particular, the condition number of the problem (3.1) preconditioned by C can be
bounded by my/m, independently of the number of elements.

Proof. Add (3.2) over all K using the mappings of local degrees of freedom given
by N](. D ‘
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The bounds m, and m, in each element can be computed numerically as
the smallest and the largest eigenvalue, respectively, of the generalized eigenvalue
problem

(8.5) Az = ACxkz.
The problem (3.5) is degenerate; however, (3.2) holds if and only if
ker Ag = kerCy,

and the common nullspace can be factored out from (3.5). Calculating the extreme
eigenvalues numerically for representative elements makes it possible to obtain
rigorous and practical a-priori bounds on the condition number of the preconditioned
problem.

To choose the matrices Cx, we consider a decomposition of the local finite
element space Vi on the element K into a direct sum of ngx + 1 subspaces,

(3'6) VK = -‘/K,U @ st @ ‘/l(’,nK-
Every function » € Vi is then decomposed uniquely as
(3'7) U= Up+ - +unl(a u; € I/K,i-

We now define Cx by

(3.8) @' Crt =4l Aoy + -+ + 4l

,nKAK’U,,K .

For efficiency, we will choose the subspaces Vi, as the subspaces spanned by certain
groups of basis functions on the element K. These groups will be induced by a
decomposition of the set of global basis functions into disjoint subsets. In a suitable
numbering of the degrees of freedom, the local preconditioning matrices Cx and
the global assembled preconditioning matrix C are the corresponding block diagonal
parts of Ag and A, respectively.

The choices of the decomposition (3.6) which give a condition number indepen-
dent on the number of elements are limited.

THEOREM 3.2. ([28]) Let Cx be constructed as in (3.6) to (3.8). Then the
inequality (8.2) holds with some m; > 0 and my, < +oo if and only if ker Ag s
contained in one of the subspaces Vi ;.

For linear elasticity, the nullspace ker 4 is the space of small rigid body motions,
or a subspace of it in the presence of boundary conditions on the element K, and it
is contained in the space of all linear functions on K. We thus choose the space Vi 4
to contain all linear functions on K. Because Vi is the space of the element K,’), it is
natural to choose Vi as the space of the element K/, ¢ < p. We further choose the
spaces Vi, © > 2, as the spans of all remaining basis functions corresponding to the
edges, faces, and the interior of K, respectively. Then the preconditioning matrix ¢
is the block diagonal part of A (after a renumbering of global degrees of freedom),
determined as follows: Because of the hierarchical character of the elements, the first
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TABLE 3.1
Condition numbers for element K, preconditioned by K. Three-dimensional elasticity, Poisson
ratio o = 0.3.

p=2|p=3| p=4 | p=5 | p=6 p=T7 p=8
71.9 1 83.9 | 327.2 | 385.1 | 1228.5 | 1394.0 | 3218.3
12.8 1 124.3 | 197.6 | 1017.6 | 1291.5 | 2989.3
116.1 | 147.8 | 1025.9 | 1120.9 | 3071 .4
97.8 1 410.2 | 840.6 | 2258.6
410.6 | 479.7 | 2425.7
383.0 | 568.8
570.2
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diagonal block is the stiffness matrix of the same problem discretized by the elements
K,. Then there is one diagonal block for every edge in the finite element structure,
one block for every face in the structure, and one for the interior of every element.
Solution of the linear system associated with those blocks can be done locally on the
element level, with some communication between neighboring elements.

The condition numbers my/m, for the element Kz’, preconditioned by K; as
described above weére computed numerically and the results are summarized in
Table 3.1. We can see that the condition numbers grow fast with increasing p.
To obtain low condition numbers, one has to increase g as well, which results in a
large auxiliary system to be solved in each iteration. But for 6 < p < 8, one does
not get condition numbers under 380 for any q.

4. Boundedness of the Local Decomposition in Energy. We need a
further theoretical insight in order to obtain a better version of the method. Denote
by ax(u,v) the local energy inner product on element K; that is, if vectors of degrees
of freedom 4, ¥ correspond to functions u,v € Vi, respectively, then

(4.1) ar(u,v) = 4" Apd.
Denote the local energy of u € Vi by
[ul% = ax(u,u).

The poor conditioning we have observed in Section 3 is caused by the lack of
orthogonality in the local energy inner product between the subspaces Vi ;. The
following simple theorem shows that to bound the condition number, it is enough to
bound the decomposition (3.6) in local energy. Various versions of this theorem were
givenin [2, 29, 28], and it is also closely related to a lemma by Lions [26, Lemma I.1],
see also [8, 38].

THEOREM 4.1. For any u € Vi, let u; denote its component u; € Vi, as
in (8.7). Let b be the least possible number such that

ng
(4.2) Sluly <blul%, Vue Vk,

1=0
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TaBLe 4.1
Condition numbers for element K|, preconditioned by K, N K. Three-dimensional elasticity,
Poisson ratio o = 0.3.

p=2|p=3| p=4 | p=b | p=6 p="7 p=38
71.9 | 83.9 | 327.2 | 385.1 | 1228.5 | 1394.0 | 3218.3
12.8 1 21.0 | 162.1 | 255.1 | 825.6| 1198.3
‘ 9.9 13.8| 169.7| 230.8 | 1109.0
9.2 11.8 | 132.51 210.0
9.2 11.0 | "129.7
9.1 10.4
9.1

f
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and my be the largest possible and m; the least possible such that (3.2) holds. Then

(4.3) b< 2 < (ng +1)b.
™My

Proof. Let u € Vi and @ be the corresponding vector of degrees of freedom.
From the definition of Cx and (4.1),

Ny y
(4.4) @ Cxa ="y |ulk, @l At = |ul%.
120

From the Cauchy-Schwarz inequality and the inequality zy < §(2* + y?),

ng Ni ng Ny
@t Axci = Julfe = 3 3 ax(uiug) < 303 fuilicluslc
=0 j=0 1=0 j=0
1 PK MK ) ) K 2
<3 S5 (luily + luil%) = (nk + 1)§7 uilk
i=0 j=0 1=0

= (72,]( -+ 1)712CK71,

so my < nk + 1. On the other hand, from (3.2), (4.2), and (4.4), we have using the
optimality of m, and b that

Ty == l/b.

This proves the right-hand-side inequality in (4.3). For the other inequality, it suffices
to note that m, > 1 from the definition of Cx. O

Note that the number ng is bounded by the geometry of the element. For the
brick element, nx < 23.

Theorem 4.1 provides a guidance for the choice of the subspaces Vx. We now
remove one source of bad conditioning related to the choice of the subspace Vi .
Consider a function % with minimum energy from all functions in Vi which have a
fixed nonzero value at a vertex and are zero on all sides opposite to the vertex. Such
function u decays fast with the distance from the vertex, and, in three dimensions,
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TABLE 4.2
Number of degrees of freedom per element in K, N K, for three-dimensional elasticity.

p=2 p=3|p=4 | p=5 | p=6| p=T7 | p=8

24 24 24 24 24 24| 24
60 78 78 81 81 81
114 | 150 171 | 180 189
186 | 243 | 288 | 324
279 | 360 | 432
396 | 504
540

It
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functions with less decay have much larger energy. (In the scalar case, such a function
can be thought of as an approximation of the unbounded potential of a point source.)
So, if Vg does not contain sufficiently fast decaying functions, the component ug
will have a large energy and by Theorem 4.1, the condition number will be also large.
This gives us a hint how to decrease the condition number at a moderate expense:
we add to the basis of Vi, few selected basis functions so that it contains faster
decaying functions around vertices. Then the energy of the component u, can be
expected to be much smaller than before. Because K/ is the serendipity element, it
does not contain all polynomial functions of the form

(45) mlymzna 0<l,mn<gq,

which form the tensor product element K,. Recalling the definition of K, we can see
that it is exactly the missing basis functions which make a fast decay of a polynomial
function possible along the diagonals and diagonal planes of the brick element, and
all functions (4.5) are contained in K, for p > 3g. We thus add the functions from
K, which are also in Vi to the basis of the space Vg o. The preconditioner is then
constructed exactly as in Section 3. In Table 4.1, we give the resulting condition
numbers. We can see that the condition numbers have indeed decreased; however,
for ¢ in a practical range, say, ¢ = 2 or 3, the condition numbers are still too large.

Table 4.2 contains the number v of degrees of freedom per element in the first
group, i.e., the dimension of Vi . Note that the time for the LLT decomposition
of the global auxiliary system grows about quadratically with v (for the same finite
element structure), because both the bandwidth and the total number of degrees of
freedom of the global auxiliary system grow about linearly with v.

5. Partial Orthogonalization. In this section, we explore another way of
decreasing the condition number, and arrive at a final form of our preconditioner.
For computational reasons, we wish to preserve the general structure of the
preconditioner from the preceding sections. Instead, we change the spaces Vi,
i = 1,...,nk by changing the definition of their basis functions. To stay within
the framework of the conforming finite element method, we change the global basis
functions and update the global stiffness matrix accordingly. The following concept
of orthogonalizing one group of basis functions to another was introduced in {29]; we
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modify it here for our purposes.

Let {¢:}icc and {@;}jcir be two disjoint groups of global basis functions,
G'N H = 0. By orthogonalizing the group {¢; }icc to {¢;};en we mean replacing the
basis functions ¢; by

¢:u;u; - (ﬁi = Z 5”4(/)]-, 'L & G,

jeH

where the coefficients s;; are chosen from the orthogonality condition
(B}, ¢;) =0, Vi€ H,

and a(u,v) is the energy inner product corresponding to the global stiffness matrix

A,
a(u,v) = @' Adb.

If G = 0 or H =0 then construction is void and nothing happens.

Let the global degrees of freedom be numbered so that the degrees of freedom
corresponding to the group G come first, those corresponding to the group H second,
and then the rest. In this numbering, we can write the global stiffness matrix in the

block form

Al 1 Al 2 A'l 3
A= AZ] A»Q‘Z A23
ASI AE’Z ASB

and the above orthogonalization means replacing A by

Anmn — X‘TA.X,
where
I 06 0
X=|-510], S = A7) Aa,
0o 0 I

so that (recall that Ay = Af; because A is symmetric),

Ay — A]‘ZA‘;; Ay 0 Az — A12A2_§1A23
(5.1) A" = 0 Ao Ass
Asy — Az As) Ay Ay Ass

If the global stiffness matrix is not stored explicitly, but rather as a collection of
local stiffness matrices, then we may temporarily assemble only the submatrices Ag
and A,, above and update the local stiffness matrices accordingly so that the new
global stiffness matrix satisfies again (5.1). CI., Section 6 below.

We can now proceed with the construction of our final preconditioner. After
selecting the basis functions spanning the subspaces Vip, we perform a partial
orthogonalization between groups of the remaining basis functions as follows.
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TABLE 5.1
Condition numbers for element K, preconditioned by K, and partial orthogonalization. Three-
dimenstonal elasticity, Poisson ratio o = 0.3.

p=2|p=3 p=4 | p=5 | p=6 | p=7 | p=8
71.9 | 83.9 | 110.2 | 119.8 | 159.7 | 217.2 | 256.0
12.5 | 115.8 | 135.2 | 543.4 | 552.6 | 944.6
116.0 | 142.2 | 690.7 | 649.8  1166.8
97.6 | 301.5 | 525.1 | 736.6
381.2 | 416.9 | 966.8
337.2 | 345.5
315.1
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(i) For each edge, the edge functions are orthogonalized to all basis functions
of all adjacent sides and interiors, and to the basis functions of Vx  on that
edge. :

(i) For each face, the face functions (if any) are orthogonalized to all basis
functions of the two adjacent interiors, and to the basis functions of Vi on
that face.

The preconditioner is then constructed in the same way as in Section 3, that is,
the decomposition (3.6) is defined by the groups of transformed basis functions for
the edges, faces, and interiors.

The new basis functions preserve the “character” of the original ones: The new
edge functions are identically zero on all elements except those which contain the
edge, and the new side functions are identically zero on all elements except those
which contain the side.

This partial orthogonalization process has been motivated by Theorem 4.1. It
can be interpreted as the construction of the decomposition (3.6), (3.7) in stages
corresponding to the edges and the faces. The the components at each stage are
uniquely determined by the requirement that their energy is the least possible subject
to the topology constraints restricting the possible support of each component.

Performing the partial orthogonalization on the data of a single element, we get
a rigorous bound on the condition number for a structure constructed by repeating
~identical copies of the element. We expect that this bound will be an indication of
the performance of the method in the general case.

Numerically computed condition numbers for a cube with the subspace Vi
defined by the serendipity element K| are in Table 5.1. Table 5.2 contains condition
numbers for the case when Vi is spanned by the functions of the tensor product
element K, which are also in Vx. We can see that in the latter case, ¢ = 2 gives
reasonably small condition numbers, which do not grow excessively for p < 8.
The condition numbers can increase with g, which may be related to the fact
that the component u, is chosen by truncating the expansion of u in the original
basis functions rather than taking the function in Vi with the same value as
u at the vertices and the least possible energy. Such a choice of uy produces a
different method, which does not fall within the present framework of hierarchical
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TABLE 5.2
Condition numbers for element K, preconditioned by K, N K, and partial orthogonalization.
Three-dimensional elasticity, Poisson ratio o = 0.3,

p=2 | p=3| p=4 | p=5 | p=6 | p=7 | p=8
719 83.9 ] 110.2 | 119.8 | 159.7 | 217.2 | 256.0
125 178 353 | 399 | 45.8| 56.7
95| 124 202 | 26.0| 108.8
9.2y 10.7| 17.7| 225
9.1, 10.1| 15.1
9.1 9.7
9.1
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TABLE 5.3
Condition numbers for element K|, preconditioned by K, N K, and partial orthogonakization.
Three-dimensional elasticity, Poisson ratio o = 0.45.

q=1|156.7 | 224.2° 289.3 | 300.0 | 437.4 | 505.2 | 746.0
q=2 153 | 51.0 | 67.9| 86.0| 94.1| 166.7
q=3 9.8 31.0 429 66.7|229.5
q=4 95| 214 381 49.7
q=5 93| 177 310
q=6 93] 148
q=1 9.3

preconditioning, and it will be studied elsewhere.

We can see from Table 5.1 that for ¢ = 1, the condition numbers increase about
as p°. In the two-dimensional case, however, the condition number for a completely
analogous method with ¢ = 1 can be proved to grow only as log?p for tensor
product elements, and the same growth is observed experimentally for serendipity
elements [2]. One reason for this difference is that the discrete Sobolev inequality in
two dimensions (cf., [2])

(5.2) lu

L(k) < const (14 10gp)1/21|u|]}11(1<), Yu€ Vg,

is no longer true in the three-dimensional case. The inequality (5.2) implies that the
energy of the component u, for any fixed ¢ grows at most as logp.

Finally, we have tested the sensitivity of the method to increasing the Poisson
ratio. As can be expected, the condition numbers deteriorate for the Poisson ratio
close to 1/2, see Tables 5.3 and 5.4.

6. Operation Counts for Partial Orthogonalization. In this section,
we estimate the computational cost of the transformation (5.1) and give more
algorithmic details for the case when the stiffness matrix is kept decomposed in
local stiffness matrices. We keep the notation of Section 5. Further, denote by m¢
and my the cardinality of G and H, respectively. For an element K, let mg ¢ and



152 Mandel

TaABLE 5.4
Condition numbers for element K, preconditioned by K, (1 K, and partial orthogonalization.
Three-dimensional elasticily, Poisson ratio o = 0.49.

p=2 | p=3 | p=4 | p=5 | p=6 | p=T7 | p=8
825.8 | 1266.1 | 1170.2 | 1691.1 | 2133.1 | 2995.3 | 3657.3
78.6 | 276.2 | 295.4 | 734.0 | 433.3] 722.1
16.1 | 69.8| 156.4| 214.7| 919.9
9.6 482 139.8| 146.7
731 404 | 1127
770 320
8.2
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my, i be the number of those functions from G and H which are also basis functions
for K, respectively.

Instead of (5.1), each local stiffness matrix is transformed by

| I 00
(6.1) v = XT A X, Xk=1| -Sx I 0|,
0 0 I

where Sk is the corresponding m y Xm ; submatrix of § = A, Ay, after a suitable
renumbering of rows and columns.

The computational cost of the transformation (5.1) can be roughly estimated as
follows. We give operation counts in flops from LINPACK [12], which measure the
number of floating point multiplications.

(1) Computing 4;) A, by Choleski decomposition of Az, and back substitutions

for every column of A,;,

((1/6)m'}, + m;,m(;> flops.
(ii) For every element K, transformation of Ax by (6.1),
NKME GMK H flops

(using symmetry of Ag).
The total cost of all transformations (6.1) in item (ii) above for one element K
18

Z NEgMp MKy ~ const n;‘ flops.

G.H
Various bookkeeping operations and assemblies of the submatrices Azy and Ay
contribute an additional computational cost of order n% per element.

7. Computational Results and Extensions. Based on the calculation of
condition numbers in preceding sections, we have selected for a practical test the
preconditioning by the element K, N K] with partial orthogonalization as described
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TasLe 7.1
Computational results for conjugate gradients with preconditioning by K, K partial
orthogonalization, and heuristic modifications for distorted elements. Test problems: I. 9 cubes
in a 3 by 3 square, Poisson ratio o = 0.3. II. Crankshaft segment from Fig. 7.1, 107 elements,
Poisson ratio o = 0.3,

CPU time in seconds on VAX 8700 |
Problem | p | Variables | Iterations Iterative | Prepro- | Generating
for e = 107" | solver total | cessing matrices
i 4 798 14 23 12 71
I 5 1242 23 57 32 151
I 6 1839 24 148 97 423
I 7 2616 24 412 319 1033
I 8 3600 22 1112 955 2418
I 6 15090 32 2591 1501 8880
I 7 22389 39 6836 4415 20220

in Section 5. Our first test problem consists of 9 identical cubes arranged in a 3 by 3
square, with Dirichlet boundary conditions imposed on the face of one corner cube.
The results are summarized in Table 7.1. We report

e the degree p of the elements;

e the total number of degrees of freedom in the finite element model;

e the number of iterations determined by the stopping criterion

[2n = @n-illoe < ellznflec and  [[Azn = blloc < €[b]n,

with € = 1077,

e the total time for the iterative solver, which consists the preprocessing,
iterations, and back transformation of the solution to the original degrees of
freedom;

e the time for the preprocessing phase, consisting of the transformation (6.1)
of the local stiffness matrices, various bookkeeping operations, and the
assembly and LU decomposition of the preconditioning matrix C;

e the time for generating the local stiffness matrices by PROBE.

In practice, however, one needs to solve problems with elements which are curved
and often with high aspect ratios. Such problems can be handled successfully by a
modification of the present method. The preconditioning matrix C defined in (3.3) is
block diagonal, with one full diagonal block for each edge and each face in the finite
element model, and one large and sparse block corresponding to the spaces Vi .
Poor conditioning of the preconditioned problem in the case of distorted elements
can be traced to the fact that such block diagonal matrix C' omits some rather big
off-diagonal blocks from the transformed global stiffness matrix. For example, for
an element K with aspect ratio 100:100:1, the matrix Cx should include the off-
diagonal block that corresponds to the two square faces. A method modified so
that such off-diagonal blocks are included in C' is more robust with respect to high
aspect ratios; see [30] for theoretical bounds on the resulting condition numbers in
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the two-dimensional case, and [29] for numerically computed condition numbers in
a related method for three dimensions. We use a heuristic procedure to modify the
preconditioning matrix C' by including suitable off-diagonal blocks. The number of
such extra blocks is kept as low as possible with the result that the matrix C is
still sparse and its LU decomposition does not present any practical problems. The
modified method has been tested on a finite element model of a crankshaft segment
with 107 elements, see Fig. 7.1. The results of the computations are included in
Table 7.1.

We do not report in Table 7.1 the timing of a direct solver, because the direct
solver available to us could not be run for the crankshaft problem at all due to
machine limitations. We only note that for the first problem (9 cubes), the time
for the direct solver was observed to be lower than the time for the iterative solver,
which is to be expected for small problems.
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