CHAPTER 14

Interface Preconditionings for Domain-Decomposed
Convection-Diffusion Operators*

Tony E Chant
David E. Keyest

Abstract. We test the performance of five different interface preconditionings for
domain-decomposed convection-diffusion problems, including a novel one known as the
spectral probe, in a three-dimensional parameter space consisting of mesh parameter,
Reynolds number, and domain aspect ratio. The preconditioners are representative of the
range of practically computable possibilities that have appeared in the literature for the
treatment of non-overlapping subdomains. We demonstrate through a large number of
numerical examples that no single preconditioner can be considered uniformly superior
or uniformly inferior to the rest, but that knowledge of the particulars of the shape and
strength of the convection is important in selecting among them in a given problem.

1. Introduction. The solution of linearized convection-diffusion equations of the

form
Vg~V eV = f, (1.1)

where ¢ is a conserved quantity (energy, mass fraction, momentum component, etc.)
transported under the influence of velocity field & and diffusivity e is required throughout
computational physics. Discretization by finite differences or finite elements results in a
large sparse system of algebraic equations whose solution can be demanding in computa-
tional resources and is one of the many driving forces for parallel computation. Because
the strength of coupling between a pair of discrete unknowns governed by an equation
like (1.1) decays with physical separation (more or less isotropically depending upon &),
it is natural to partition the problem spatially when looking for concurrency in the so-
lution algorithm. Parallelism is, in fact, only one of several compelling reasons for the

*The work of the first author was supported in part by NSF DMS87-14612 and ARO
DAALOD3-88- K-0085. Part of this work was performed while on a visit to RIACS supported
by Cooperative Agreement NC/C2-387 between NASA and the University Space Research
Association. The work of the second author was supported in part by the National Science
Foundation under contract number EET- 8707109, Part of this work was performed on a
visit to RIACS supported by Cooperative Agreement NCC2-387 between NASA and the
University Space Research Association.

TDepartment of Mathematics, UCLA, Los Angeles, CA 90024.

iDeparément of Mechanical Engineering, Yale Univeristy, New Haven, CT 06520.

245




246 Chan and Keyes

recent surge of research on domain decomposition algorithms exemplified by this volume
and its serial predecessors [9, 15]. Others include the convenience of composite array
data structures for describing complex shapes, a desire to employ solution techniques and
quality software restricted to problems with various local uniformity requirements (which
are subproblems with regard to (1.1)), and sheer problem size, which can ultimately push
numerical ill-conditioning and serial memory traffic beyond acceptable limits.

Preconditionings for interfacial degrees of freedom have been the focus of much atten-
tion during the development of domain decomposition methods in the years since [14], and
deservedly so, since interfaces are created by a predominant form of non-overlapping de-
composition related to nested dissection of the underlying finite difference or finite element
matrix operator. We refer generically to such forms of domain decomposition as Schur
iteration, since elimination of the subdomain interiors leaves a Schur complement system
for the separator unknowns. Additional interest in interface preconditioning comes from
the fact that the classical Schwarz iteration, the prototype for overlapping decompositions,
has been placed into correspondence with a stationary iteration having as unknowns the
interfacial degrees of freedom of a non-overlapping decomposition [6, 10]. This correspon-
dence between Schwarz and Schur methods enriches the study of domain decomposition
algorithms in general, because properties which are more easily analyzed in one framework
may be extended to the other. ,

The present contribution focuses on the performance of a variety of easily computed
Schur complement preconditioners in a rather special context: a single interface dividing a
rectangle into two subrectangles in which the capability of performing exact solves is pre-
sumed. We consider a scalar convection-diffusion operator under five different continuity-
satisfying flow fields chosen to exhibit the relative advantages and disadvantages of the
preconditioners, and we include the purely diffusive case as a baseline. The pristine nature
of the problem class allows focusing on the quality of the interfacial preconditioning alone
in three different limits: large discrete problem size, large Reynolds (or Peclet) number,
and large aspect ratio. (The Reynolds number is the dimensionless ratio &l /€ where € is
a characteristic velocity, [ a characteristic length, and € a characteristic diffusivity. Large
values characterize strongly nonsymmetric, convectively-dominated systems.) Any or all
of these limits could be important in a production engineering code whose parallelization
might be sought through domain decomposition. We show that no single interface precon-
ditioner is best in all limits, and therefore seek to qualitatively rank their sensitivities to
these limits and identify realms of superiority. Our aim for ourselves and for the reader is .
to build intuition for moving about in this three-dimensional parameter space. Of course,
a production code may contain many additional complications, and these may interact
in nonuniform ways with our candidate preconditioners. In a companion report we are
extending the study of the same preconditioners to a larger parameter space including
multiple interfaces and various inexact subdomain solves.

Five different flow fields are studied because the performance of all of the precondi-
tioners are sensitive to the shape of the flow field at sufficiently high Reynolds number,
and unjustified optimism or pessimism can result from too narrow a study. Two of our
five preconditioners (the one proposed by Dryja [14] and the interface probe technique)
have been amply studied previously in the symmetric positive definite context of pure
diffusion. There have been very few studies of any of them in the convection-diffusion
context, and since this case is also relatively untouched by theoretical approaches, apart
from spatially invariant velocity distributions, numerical studies are continuing to yield
interesting information. One of our five preconditioners (the spectral probe technique)
makes its debut herein, in just one of its possibly useful variants.

We comment briefly on a few other issues which bear on our choice of scope. It is
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possible to set up an alternative framework for non-overlapping decompositions in which
interfacial coupling is simply discarded, or partially accounted for in ways that do not
require special treatment of a separator set; see, e.g., [1] and [22]. In so doing one obtains
the advantages of greatly simplified coding and less inter-domain data traffic per iteration.
Problems dominated by local interactions can be handled quite acceptably by decoupling;
see e.g., [19]. However, in problems which are diffusively dominated (more fundamentally,
problems whose Green’s functions have support which is not substantially confined within
artificial subdomain boundaries), such approaches have limited applicability to large num-
bers of gridpoints and /or subdomains.

The special case of a single interface obviates discussion of preconditioning the set
of vertices where multiple interfaces intersect. Vertex preconditioning is very important
but also more readily prescribable, in the sense that a coarse grid problem for the vertices
having the same structure as the undecomposed original problem can be derived directly
from the differential operator. The interface system, on the other hand, corresponds to
a pseudo-differential operator, the numerical analysis of which is relatively less well de-
veloped in the presence of convective terms. In a preconditioner consisting of component
blocks corresponding to subdomains, vertices, and interfacial edges (and also, possibly,
interfacial planes, depending upon physical dimensionality), any one block can limit the
overall performance. Section 4.7 of [18] contains some two-dimensional examples in which
subdomain or interface blocks are alternatively the performance limiting modules of the
overall preconditioner. We claim that control experiments such as those herein are neces-
sary, but certainly not sufficient, for guiding the construction of complete preconditioners,
and we hope that our results will stimulate new theory.

Finally, as to the relevance of our scope, we note that practical problems often involve
several simultaneous convection-diffusion operators linked through coefficients or source
terms. Continued study of the scalar case is, however well motivated by techniques such
as the alternating block factorization [4] which successfully employ scalar preconditioners
inside of a change of dependent variables which partially decouples the original system.

The algorithmic framework of our experiments is described in section 2, followed by
introduction of the five interface preconditioners and a brief discussion of their properties
in section 3. Section 4 contains performance measurements in the form of iteration counts
along three axes of problem parameter space. Finally, we draw some conclusions and
recommendations.

2. Schur Domain Decomposition Methods. We take as our starting point
the matrix equation Az = b arising from a finite difference discretization of of (1.1). The
domain decomposition method we employ is an iterative substructuring method consisting
of three elements: (1) the operator A whose inverse action we would like to compute with
an accuracy commensurate with the discretization, (2) an approximation B to A, whose
inverse action is computationally convenient to compute, and (3) an acceleration scheme
for the preconditioned system which requires only the ability to form the actions of A and
B~! on a vector. In all cases reported herein, A is derived from a second-order central
differencing of the diffusion term and a first-order upwinded differencing of the convection
term. We use right-preconditioned GMRES [24] as our iterative acceleration scheme, that
is, we solve AB~1y = b by the applying the standard GMRES algorithm to (AB~!) then
recover & through the post-convergence solution of Bz = .

GMRES is guaranteed to converge in a finite number of steps for nonsingular AB~*
even in the presence of nonsymmetry or indefiniteness, assuming exact arithmetic. The
maximum number of steps required is the number of distinct eigenvalues of the precon-
ditioned operator. This convergence result depends upon dynamically storing a complete
basis for the Krylov space built from powers of AB~! acting on the initial residual vector.
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For large problems, this much memory can easily become excessive, and GMRES is often
truncated or restarted [24] in cases where it does not converge within a predetermined
number of steps. However, we allow full GMRES iteration in our experiments, up to
some maximum number of steps (set at 30 herein) which is sufficient in all but two cases.
Since GMRES otherwise terminates in fewer than 30 steps, we effectively suppress from
consideration the restart or truncation parameter. This parameter can be important in a
production setting.

The “substructuring” enters through the manipulation of A and B into forms which
possess large block zeros, for the sake of concurrency or for some of the other reasons noted
in the introduction. For elliptic operators such as (1.1), A is irreducible; hence there are
no block triangular permutations. However, if the domain is cut by the removal of a
swath of gridpoints as wide as the semi-bandwidth of the stencil, two large subproblems
are created whose only coupling is through the small removed set. For five-point stencils
on logically tensor product grids, we may choose a single row or column of unknowns. (A
two-point-wide generalization has been studied for the thirteen-point biharmonic stencil
in [8].) Ordering the separators last, we obtain

Ay 0 Ags T by
Az = 0 Agy  Ass b)) = bs = b. , (2.1)
Az; Aszz Ass z3 b

Here, Ay and Agy are five-point operators with bandwidth no larger than that of the
naturally ordered original system, but As3, which renders the coupling between the points
on the interface itself, is tridiagonal. The other blocks contain the coupling of the separator
unknowns to the subdomains, and vice versa. From the point of view of the continuous
operator they represent derivatives in directions normal to the interface.

Block Gaussian elimination of the unknowns @, and z3 would yield the Schur com-
plement system

C.’Eg =d (22)
for @3, where
C = A33 - A31A'1—11A13 - A32A'2‘21 A23 (23)
and
d = b3 - A31Ai"11b1 - A32AE21 bg. (24)

If @5 can be found, the subdomain problems are decoupled. However, direct computation
of the generally dense C in order to solve (2.2) requires as many pairs of exact subdomain
solves as there are degrees of freedom in z3, which is generally prohibitive. It is also
unnecessary inasmuch as iterative techniques have been devised which require many fewer
iterations than the dimension of z3, and which furthermore require only approximate
subdomain solves in each iteration. As mentioned already, we shall ignore the option of
inexact subdomain solves in the sequel but we do make use of a general purpose code
which retains the interior degrees of freedom.
We consider two families of preconditioners B, the structurally symmetric

Aypn O 0 I 0 A7}Ass
By = 0 Ags 0 0o I A22 A23
Ag; Ass M 0 0 I

A11 0 A13
= 0 Agy » Asgs s
Ayt Asg M+ Agi AT Az + AgpAG; Ags
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where M approximates the Schur complement €' (2.3) of Ay; and Aoz in A, and the simpler
block triangular

Apn 0 Agg
By = 0 Ay Ay
0 0 M

The factorized form of By above shows that the cost of applying the inverse of By is
one solve with M and two solves each with Aq; and Ag. There is an inherent sequentiality
to the subdomain solves, however, since the system involving M in the left factor requires
data from the first set of subdomain solves. The inverse of By can be applied to a vector
at the cost of solving one system each with M, Ay, and A,y. The system for M is solved
first, followed by independent solves in the subdomains which use the interface values as
boundary conditions.

We assume throughout that the A4;; are invertible. (This is certainly a reasonable
requirement for a discrete convective-diffusive operator and is guaranteed herein for all
Reynolds numbers by bi-directional upwind differencing.) Under this assumption, C' is
also invertible [13].

For reference in section 4, it is interesting to note the forms of the preconditioned
operators AB L and ABy 1. In order to make the formulae more readable, we combine
the independent subdomain solves into a block matrix Ag, and denote the separator block
by Ar, to re-express the above matrices as

A={ 4e Aar) p _ [ Ag Agqr B, = [ Ao Aar
Arq Ar )’ ! Arq M+A[‘9A51AQF ’7 2 0 M ]’

whence . ; X L
Bl - At + Agt Aar MY ApgAg'  —AG AgrM -t
1 __M—lAFnA51 M1

and ) )
Bl = Ags ~AQg AgrM—1
2 0 M—l .

From these expressions it can easily be verified that

~1 _ I 0 o I 0
ABy" = ((I“CM—I)AFQA{)l CM'"1> and AB;" = (AFQAﬁl C’M“1>' (2.5)

It is evident that if C is exactly represented by M, then ABT ! reduces to the identity,
and an iteration involving AB;! will converge in one step requiring two sets of subdo-
main solves. Meanwhile, an iteration involving AB;* will converge in two steps (from an
arbitrary initial guess), but each step requires only one set of subdomain solves. (These
iteration counts do not include the final solve with either By or B, which is required to un-
wind the right-preconditioning.) More generally, if M is sufficiently close to €' in the sense
that the lower-left block of the structurally symmetric system is small, ||(I-CM~1)|| < 1,
we expect that an iteration based on B, will require an extra iteration relative to an it-
eration based on By. Conversely, if M is a poor preconditioner for C, so that the lower
left block becomes large, the use of the structurally symmetric system could require more
iterations than the use of the block triangular system. Both behaviors are illustrated in
section 4.

Note from (2.5) that AB;! and AB; ! haveidentical spectra, as Arnoldi estimates for
the eigenvalues obtained as a by-product of the GMRES iterations also show. However,
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Krylov sequences based on the respective operators will in general differ, and there is little
that can be said about which method will lead to faster convergence for general ¢ if M
and C are not sufficiently close.

For some of the preconditioner components M we consider, the overall preconditioning
process is numerical unstable, as will be seen in section 4. Even though the iterations
involving AB~1 may converge, the final result after unwinding the preconditioning may
have few or even no significant figures. For this reason, we always check the actual residual
[|f — Az|| at the end of each calculation.

3. Schur Interface Preconditioners. We now delineate five alternatives for the
matrix M.

3.1. Interface Probe Preconditioner. Interface probe preconditioning is a family
of methods for approximating the true Schur complement C defined in (2.3) by low band-
width matrices. We use the nomenclature IP(k) to denote the approximation sequence
M = Ap — Ep, k= 0,1,2,..., where Ej is a matrix of semi-bandwidth k which produces
the same action as AFQAal Aqr on a set of 2k + 1 test vectors. Selection of test vectors of
appropriate sparsity patterns enables the coefficients of Ej to be read directly off of the
product involving AFQAalAQF, hence the term “probe”. We report only on the row-sum
conserving IP(0) herein. We have not found IP(1) to be significantly more effective relative
to its extra cost of formation for most nonsymmetric scalar five-point stencil problems.
IP(0) was invented independently by Chan and Eisenstat in 1985, immediately generalized
to IP(k) in [12], and adopted for variable coefficient symmetric problems in [20] (where it
was called the “modified Schur complement” method) and for nonsymmetric problems in
[21, 22]. Symmetric versions of IP(0) and IP(1) have also been employed in [2, 3]. The
interface probe technique has the advantage of being purely algebraic in character, and
hence capable of being defined for arbitrary operators. It is aesthetically pleasing that
the tunable parameter k may be taken from the crude approximation of 0 all the way to
the full bandwidth exact solution. (It has also been generalized in a straightforward way
to multicomponent systems [22], which cannot yet be said of the other preconditioners
tested.) However, IP(k) for low k is not expected to be particularly useful for arbitrary
matrices: The low k limit is motivated by the observation that the elements of C de-
cay rapidly away from the diagonal for elliptic problems. In sufficiently simple elliptic
problems (e.g., those possessing constant coefficients) other preconditioners taking better
advantage of this structure are also possible, leaving IP(k) large but not unlimited regions
of problem parameter space in which to exercise. Interface probing has the advantage of
being automatically adaptive to spatial variation in the coefficients but the disadvantage
of not possessing the property of spectral equivalence, a consequence of which is that it
degrades as the mesh is refined. Experimentally [20], the condition number of the pre-
conditioned Schur complement system for the Laplacian goes like h~1/2_ and this bound
is conjectured to be the best attainable for any tridiagonal matrix based on experiments
with an optimization code in [17].

3.2. Spectral Preconditioner. The spectral preconditioner is an exact eigendecom-
position of a single interface, rectangular domain, constant coefficient convection-diffusion
operator worked out by Chan and Hou [11] as a generalization of {7]. We consider only the
Dirichlet case herein, but generalizations to Neumann boundary conditions are straight-
forward. Let an interface of n interior nodes (i.e., A~! = n + 1) separate two subdomains
of the same discrete length, and discrete widths my and my, respectively, over all of which
is satisfied the difference equation

azi-1,j + beij + cwip1j + dwi o +ezijor = figs (3.1)
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where i denotes the free index along the interface. We may write M = DWAW 1 D1,
where W is the discrete sine transform of length n with matrix representation

Wi = V2hsinijrh,

D is the diagonal matrix with elements

[D]i - (%) (-1)/2 ,

and A is a diagonal matrix with elements

1 1 +7.m1+1 1 +7m2+1
A =5 <1 T e ) Vb VR - o))~ ade
1 ]

where, in turn,

= Z_cli—é [b +Vac(2 — o;) + \/[b +vae(2 - 07)]? ~ 4de] 2

. — 4 gin? ____2_75____ .
a; S1n (2(n+1)>

The derivation of these formulae (see [11] for full details) begins with the observation
that the columns of the matrix (DW) are the eigenvectors of the tridiagonal matrix
formed by the coefficients along the interface, viz., tridiag(a,b,¢). Sample such modes
are plotted in Figure 1 for two different values of the ratio |a/¢| corresponding to zero
and constant non-zero tangential components of the convection. The non-vanishing first-
derivative convection term has the effect of multiplying the sinusoids by an exponential.

The philosophy of using the spectral preconditioner for arbitrary interfacial systems
is that of solving an approximate (constant coefficient) problem exactly, rather than an
exact (general coefficient) problem approximately. One of its advantages is that it can
be defined without requiring the ability to solve problems in adjacent subdomains, as
required by the interface probe technique. All that is needed is some averaging rule to
obtain the coefficients a through e from the data of the associated regions. All our tests
herein employ a simple average of the coefficients along the interface alone. We note that
application of M1 is inexpensive: two one-dimensional FFTs sandwiched between three
diagonal matrix multiplications.

and

3.3, Spectral Probe Preconditioner. The spectral probe preconditioner, intro-
duced here for the first time, is conceptually a hybrid of the interface probe and the spectral
preconditioners. It was motivated primarily by variable coefficient diffusion problems, but
we present only tests with ¢ constant and & variable here. Spectral probing assumes a
form for the eigenvectors of C like that derived for the constant coefficient operator of the
previous (again based on spatially averaged coeflicients), but then populates the diago-
nal matrix A by probing the true Schur complement, so that some spatial adaptivity is
accommodated within a spectrally equivalent framework.

We set M = DWAW-1D~! where W and D are defined as above (or where D is
alternatively simply set to the identity matrix, corresponding to ¢ = ¢, for reasons which
will become clear in section 4). A is then determined by probing with the interface vector
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Figure 1: Modes of the Dirichlet problem (3.1) for n = 15.
(a) lafel = 1, j = 1; (b) lafe] = 1.21, j = 1; (¢) lafe = 1,
J =8 (d) lafel = 121, j = 8 (¢) Jafe] = 1, j = 15 (1)
lafel = 1.21, § = 15. (The left-hand column of modes are for
the case of no tangential convection.)

of all 1’s. This is the same as the standard test vector for IP(0). To be explicit, we read
off the elements of A from the equation

W-ID"'CDW %1 = A« 1.

The action of C is computed by means of a pair of subdomain solves using DW * 1 as
the interface boundary condition. Note that the spectral probe preconditioner reduces to
the spectral preconditioner in the constant coefficient Dirichlet case, because then C is
exactly diagonalized by the given similarity transform.

3.4. Dryja’s Preconditioner. As a base-line reference, and because it appears
throughout the literature, we include tests with the method often referred to as “Dryja’s
preconditioner” after its appearance in the seminal reference [14}, even though the con-
tinuous analog of the preconditioner was previously known in functional analysis. In the
notation of the previous subsections, Dryja’s preconditioner, a multiple of the square root
of the Laplacian along the interface, is easily written down:

M =WAW™!,

where A is now the diagonal matrix with elements [A]; = 2,/5;. This preconditioner can

be derived from a trace theorem for the Laplacian and is expected to be good as h — 0.
Note that this is not simply the spectral preconditioner in the Laplacian limit for

the coeflicients a through e. The Dryja preconditioner achieves a constant bound on the
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number of iterations as the mesh is refined, but the constant is generally higher than
that achievable with the coefficient and aspect ratio adaptability of the previous two tech-
niques. The literature also records two important preconditioners intermediate between
the Dryja and spectral techniques, namely [16] and [5]. The latter, the Neumann-Dirichlet
preconditioner, contains some of the adaptive capabilities of the spectral preconditioner
since it relies on subdomain solves in its construction and hence contains much coefficient
information. It is similar to probing techniques in this regard. In fact, the Neumann-
Dirichlet preconditioner is exact in problems possessing symmetry across the separator
set. All four of the techniques of [5, 7, 14, 16] were tested in [20], but for brevity we test
only the extremes here.

3.5. Tangential Preconditioner. Finally, we consider a simple preconditioner pos-
sessing partial adaptivity, a lower-dimensional restriction of the operator to the interface
created by setting all of the normal derivative terms in the operator to zero and retaining
just the remainder in M. For (1.1) these are just the tangential derivative terms. The
obvious motivation for this technique is that it is simple and is expected to work well
in the limit of strong convection along the interface. In addition, its very satisfactory
behavior in the multidomain experiments in [18] suggested it as a second baseline method.
For reasouns not yet theoretically explained, it performs very well in conjunction with the
block triangular form of the the overall preconditioner described in section 2. One of its
main disadvantages is the requirement of partial knowledge of the differential operator,
rather than simply the elements of the discrete operator A. To be specific, it is necessary
to store separately the contributions to A arising from the normal derivative terms, and
all other terms. (This wording of this prescription is sufficient to resolve the ambiguity if

time-dependent, Helmholtz, or non-linear source terms are present in some generalization
of (1.1).)

4. Numerical Experiments. All of the experiments to follow except for those of
Table 12 are posed on the unit square (I = 1 in the definition of the Reynolds number, Re)
with homogeneous Dirichlet boundary conditions. The five different continuity-satisfying
flow fields tested are shown in Figure 2, along with the diffusive baseline. When Reynolds
numbers are reported below for the variable coefficient cases, they are always based on
the maximum velocity in the region. (See [23] for details on the jet and cell flows and
other experiments on this particular problem set.) The interface divides the rectangle into
equal upper and lower portions, as marked on the figure in the dashed line.

There is a constant source term of unit strength in the interior. Although it is special,
a zero initial guess for the solution vector is employed throughout, since this will usually be
the natural choice when (1.1) arises for a Newton increment, as part of an outer nonlinear
iteration. The performance of the preconditioners is measured by the number of iterations
required to reduce the initial residual 10°, regardless of the mesh resolution. The tables
are grouped by subsections into three sets of experiments.

4.1. Sensitivity to Mesh Refinement. Tables 1 through 6 examine a constant
Re situation as the (uniform) mesh is refined by three successive powers of 2. Of course,
the discrete diffusion term, the Laplacian, becomes more and more dominant with each
refinement of the grid, since it scales as h™? as compared with the A~! scaling of the
convection term. In the first table, the Laplacian is studied in isolation (Re = 0). In the
next five convective cases, Re = 16. For the coarsest mesh (A~ = 8), the contributions
to the diagonal of the discrete operator from the two terms are equal at this Reynolds
number (the cell Reynolds number, ch/e¢, is 2). It is well known that the discrete Laplacian
operator has a condition number which grows like A~2, and that the condition number of
the unpreconditioned Schur complement operator for the interface C' grows like A=1. We
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Figure 2: Streamfunction contour plots of the two-dimen-
sional flow fields represented by ¢ in the numerical experi-
ments. (a) Pure Diffusion; (b) Normal Convection; (c) Tan-
gential Convection; (d) Skew Convection; (e) Jet Convection
(the domain is the right half of a symmetric flow field); )
Cell Convection.

verify that the three Fourier-based preconditioners are spectrally equivalent to C, and note
where their respective constants place them comparatively. Our interest i1 this series of
grid refinements does not extend to issues of discretization accuracy or optimal gridding,.

Structurally Symmetric Block Triangular
ht 1P S SP D T IP S SpP D T
8 4 1 1 5 5 5 2 2 4 4
16 6 1 1 5 7 7 2 2 5 4
32 9 1 1 5 9 9 2 2 5 4
64 11 1 1 4 11 12 2 2 5 4

Table 1: Iteration counts for the pure diffusion problem as a
function of mesh parameter for two different preconditioner
structures and five different interface blocks.

The S (spectral), SP (spectral probe), and D (Dryja) columns of Table 1 reveal their
exactness or spectral equivalence, respectively. Because iteration count is a threshold
measurement, most of the data is subject to 1 perturbation upon modest adjustment of
the convergence tolerances, but the § and SP residuals at convergence are zero to machine
precision. The deterioration of IP like some negative power of h is evident on both the By
and By sides of the table. The tangential preconditioner is the only one with markedly
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Structurally Symmetric Block Triangular
h—1 1P S Sp D T 1P S Sp D T
8 3 1 1 4 5 4 2 2 4 5
16 5 1 1 5 7 6 2 2 5 5
32 6 1 1 5 9 7 2 2 5 5
64 7 1 1 5 12 8 2 2 5 5

Table 2: Iteration counts for the normal convection problem
at a constant Reynolds number of 16 as a function of mesh
parameter for two different preconditioner structures and five
different interface blocks.

different performance depending upon the structure of B. Here, as below, it is excellent
in conjunction with the block triangular form By which is little studied in the literature.

Table 2, for a normal convection problem, is similar to Table 1 except that IP improves
slightly as each of the terms Az Al‘l1 Aqz and A32A;21 As3 being approximated by a diagonal
matrix becomes less important relative to Azz because one of the coupling matrices is small.
For instance, if the convection is from subdomain 1 into subdomam 2, A1z and Agg are
weak.

Structurally Symmetric - Block Triangular
h-1 IP S SP D T P S Sp D T
8 5 1 7 8 6 5 2 8 7 4
16 6 1 10 10 9 7 2 11 10 5
32 8 1 11 11 11 9 2 12 11 5
64 11 1 12 11 15 12 2 13 11 5

Table 3: Iteration counts for the tangential convection prob-
lem at a constant Reynolds number of 16 as a function of
mesh parameter for two different preconditioner structures
and five different interface blocks.

The importance of the D matrix in the spectral preconditioner is evident in Table 3 in
which a tangential convection problem is considered. The version of SP employed in this
study approximates the D in its definition as the identity; using the true D here would
reproduce the spectral results in this constant coefficient case, just as in the previous two
tables in which D = I anyway. Though SP and D are spectrally equivalent, they require
an order of magnitude more iterations than S, and are surpassed by IP in the smaller
problem range on the structurally symmetric side, and by the tangential preconditioner
on the block triangular side.

Table 4 contains the last of the constant coefficient test examples, featuring a skew
convection (inclined at 45 degrees relative to the interface). Results are not too different
from the purely tangential case.

The jet case recorded in Table 5 tends to level the preconditioner landscape because
the constant coefficient approximation of S is no longer exact. S remains the best technique
as h~! increases, but its margin of superiority over other spectrally equivalent techniques
(with D as a non-adaptive extreme) is small.

The cell case of Table 6 is the greatest equalizer among the test cases, because the
interface cuts a zone of recirculation, i.e., there is normal flow across it in both directions,
and none of the methods holds an edge of superiority. Performance under the block
tridiagonal preconditioner is remarkably uniform for the last four methods.
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Structurally Symmetric Block Triangular
h-t 1P S SP D T P ) sp D T
8 4 1 7 8 7 5 2 8 8 6
16 5 1 9 10 9 6 2 10 9 6
32 7 1 10 10 12 8 2 11 10 6
64 9 1 10 10 15 10 2 11 11 7
Table 4: Iteration counts for the skew convection problem
at a constant Reynolds number of 16 as a function of mesh
parameter for two different preconditioner structures and five
different interface blocks.
Structurally Symmetric Block Triangular
hi P S SP D T 1P S SP D T
8 5 4 5 6 6 5 5 6 6 5
16 6 4 6 6 8 7 5 7 7 6
32 9 4 6 6 11 10 5 7 7 7
64 11 4 6 6 14 12 5 7 7 8
Table 5: Iteration counts for the jet convection problem
at a constant Reynolds number of 16 as a function of mesh
parameter for two different preconditioner structures and five
different interface blocks.
Structurally Symmetric “Block Triangular
h—1 1P 5 | SP D T IP S Sp D T
8 4 5 4 5 5 5 5 5 5 5
16 6 5 5 6 7 7 6 6 6 6
32 9 5 5 5 9 10 6 6 6 6
64 11 5 5 5 11 12 6 6 6 6

Table 6: Iteration counts for the cell convection problem
at a constant Reynolds number of 16 as a function of mesh
parameter for two different preconditioner structures and five
different interface blocks.

4.2. Sensitivity to Reynolds Number. Tables 7 through 11 examine the influence
of increasing Reynolds number. Values of Re of 0, 4, 16, 64, 256, and 1024 are considered
at h=' = 64. Thus, the third row of each table in this subsection is the same as the last
row of the table of corresponding flow type in the first set, and the first row of each table is
the same as the last row of the pure diffusion case in Table 1. Between rows four and five,
as the nonsymmetry of the operator increases, the convection terms begin to contribute
more heavily than the diffusion terms to the diagonal elements of A.

Table 7 shows that in the presence of constant normal convection, techniques 5 and SP
remain exact at any Re, while IP catches up at high Re, and D and T successively worsen.
(For D, this is the drawback of finite & in a method derived for b — 0.) Qualitatively, the
trends are the same for either preconditioner structure, although the tangential method
continues to be much better in the block triangular formulation.

The Achilles’ heel of the spectral technique appears when there is strong convection
tangential to the interface, as seen in Table 8. In this limit in which |a/c| differs sufliciently
from unity the latter terms in D, which have this ratio raised to as much as (n—1)* power,
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Structurally Symmetric Block Triangular
Re Ip S 5P D T ip S SP D T
0 11 1 1 4 11 12 2 2 5 4
4 10 1 1 4 11 11 2 2 5 4
16 7 1 1 5 12 8 2 2 5 5
64 5 1 1 7 14 6 2 2 7 6
256 3 1 1 11 17 4 2 2 10 9
1024 2 1 1 15 22 3 2 2 12 16

Table 7: Iteration counts for the normal convection prob-
lem at a constant mesh parameter of 1/64 as a function of
Reynolds number for two different preconditioner structures
and five different interface blocks.

Structurally Symmetric Block Triangular
Re 1P S SP D T IP 5 5P D T
0 11 1 1 4 11 12 2 2 5 4
4 12 1 7 7 14 13 2 8 8 5
16 11 1 12 11 15 12 2 13 11 5
64 8 1 20 15 14 9 2 21 15 3
256 7 - > 20 12 8 - > 19 1
1024 5 - > 26 8 6 - > 24 1

Table 8: Iteration counts for the tangential convection prob-
lem at a constant mesh parameter of 1/64 as a function of
Reynolds number for two different preconditioner structures
and five different interface blocks. The hyphen denotes loss
of precision, and the “>” more than 30 iterations.

can approach the machine epsilon (or its reciprocal, depending upon the direction of the
convection). We note that for n = 64, (a/¢)™ /2 ~ e ~ 10716 when (a/c) =~
10(~32/63) ~ 0.31. Under upwind differencing, it only takes a cell Reynolds number of 2
to produce a ratio of 3 in the upwind and downwind coefficients @ and ¢. Thus, this is
the borderline of stability for the spectral method with respect to tangential convection.
In the tables, the Re = 64 row corresponds to a cell Reynolds number of unity, and the
Re = 256 row to a cell Reynolds number of 4; thus, they straddle the transition. GMRES
iterations based on the spectral interface preconditioner do terminate for the hyphenated
entries, but the true residuals based on the resulting z vectors shows complete loss of
precision.

The spectral probe technique does not lose precision, because of the assumption that
D = I; however, a diagonal approximation for W—1CW is poor, and it simply takes too
long to converge. The Dryja preconditioner, which makes no attempt to adapt to the
strong directionality of the problem also deteriorates with Re, although, interestingly, its
performance is compressed at both ends as a4 module in the block triangular preconditioner.
Atlow Re where M and C are close, the By iteration count is lower by one; but at high Re,
where isotropic M is very different from unidirectional C, the By iteration count is better.
The interface probe technique meanwhile improves with Re as it captures more of the
increasingly diagonally dominant problem within its own sparsity structure. Finally, the
tangential technique is excellent for a tangentially dominated operator. The cross-diffusion
which it neglects becomes of negligible importance as the problem effectively decouples into
independent problems for Ay1, As9, and Asz in which the upstream boundary condition
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Structurally Symmetric Block Triangular
Re 1P S SP D T 1P S Sp D T
0 11 1 1 4 11 12 2 2 5 4
4 11 1 7 7 14 12 2 8 8 6
16 9 1 10 10 15 10 2 11 11 7
64 7 1 13 14 A7 7 2 14 14 8
256 4 - 13 18 19 5 - 14 16 9
1024 3 - 13 20 19 4 - 15 17 10

Table 9: Iteration counts for the skew convection problem at
a constant mesh parameter of 1/64 as a function of Reynolds
number for two different preconditioner structures and five
different interface blocks. The hyphen denotes loss of preci-
sion.

is all important.

Most of the observations of the high Re tangential flow also apply to the skew flow
in Table 9, however, the latter differentiates between IP, which repeats its tendency to
improve as Re grows, and T, which no longer matches the physics of the problem, and is
worse than IP, although it is still superior to the Fourier-based methods as a module of
the block triangular preconditioner.

We also note that the spectral probe technique captures a significant part of the
physics in this case, adapting to the co-dominant normal convection and tending to a
constant iteration count without breaking down. It thus rescues the spectral technique
and indicates how the robustness of the spectral preconditioner can be maintained with a
compromise in efficiency. In a general purpose code, the elements of the D matrix could
differ from unity but be bounded artificially, allowing partial tangential adaptivity with
full normal adaptivity.

Structurally Symmetric Block Triangular
Re ip S Sp D T 1P S SP D T
0 11 1 1 4 11 12 2 2 5 4
4 11 3 4 5 14 12 4 5 6 6
16 11 4 6 6 14 12 5 7 7 8
64 10 6 9 9 14 11 7 10 10 9
256 9 7 11 14 13 10 8 12 14 10
1024 9 - 20 19 14 10 - 21 18 11

Table 10: Iteration counts for the jet convection problem at
a constant mesh parameter of 1/64 as a function of Reynolds
number for two different preconditioner structures and five
different interface blocks. The hyphen denotes loss of preci-
sion.

As in the spectral equivalence tests in Table 5, the jet case recorded in Table 10
tends to diminish the extremes of preconditioner behavior relative to the uniform skew
convection case. The IP and SP results worsen while the D and T methods nearly hold
their own relative to Table 9. The pure spectral method survives at a higher overall
Reynolds number because the tangential velocities at the interface are lower than the
maximum core velocity of the jet, to which Re is scaled.

Again, the cell case of Table 11 is an equalizer for most of the methods; however, the
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Structurally Symmetric Block Triangular
Re | IP S SP D | T IP S SP D T
0 11 1 1 4 11 12 2 2 5 4
4 11 3 3 4 11 12 4 4 5 5
16 11 5 5 5 11 12 6 6 6 6
64 13 -8 7 8 13 14 9 8 9 8
256 18 14 11 14 16 19 15 12 14 15
1024 25 23 16 23 26 26 23 17 23 24

Table 11: Iteration counts for the cell convection problem at
a constant mesh parameter of 1/64 as a function of Reynolds
number for two different preconditioner structures and five
different interface blocks.

performance of the spectral probe technique is singularly good. The average tangential
velocity along the interface is zero because of the symmetry of Figure 2(f), so D = I
for both S and SP. However, S also employs an zero average for the normal velocity,
whereas SP adapts to strong inflow and outflow along opposite halves of the interface.
The performance of IP, which improves with Re in all previous tables, deteriorates in
this table because no pair of coupling matrices is weak (see comments on Table 2) under
recirculation. The performance of the tangential preconditioner becomes similar under
the structurally symmetric and block tridiagonal schemes at high Re. The recirculating
cell flow is in some sense a worst case for a single interface. If the domain of Figure 2(f)
is further decomposed by a vertical interface, putting a vertex in the center, all four
interfaces would be free of two-signed velocity components, and easier to precondition.
(The cross-point preconditioning then becomes an important subject.)

4.3. Sensitivity to Aspect Ratio. Table 12 examines the diffusion case under
aspect ratios ranging from 1:»115 (a squat rectangle with subdomains just two cells wide) to
1:2 (a tall rectangle composed of two square subdomains). Note that the discrete length
of the interface, n, remains constant at 63 in all examples, while widths m; and mq vary
from 1 to 63.

Structurally Symmetric Block Triangular
(Iz,0,) | TP S SP D T | IP S SP D T
(1,45 4 1 1 8 14 4 2 2 8 13
(1,1) 5 1 1 6 | 13 6 2 2 6 | 10
(1,% 7 1 1 5 | 12 8 2 2 5 7
(1,3 9 1 1 5 | 11 | 10 2 2 5 5
(1,1) 11 1 1 4 | 11 | 12 2 2 5 4
(1,2) 9 1 1 4 8 | 10 2 2 5 2

Table 12: Iteration counts for the pure diffusion problem
at a constant mesh parameter of 1/64 as a function of as-
pect ratio for two different preconditioner structures and five
different interface blocks.

We confirm that S and SP are completely adaptive to aspect ratio in this constant
coeflicient problem, which is not true of any other method, including Dryja’s. The tan-
gential preconditioner is understandably good when the narrow (more strongly boundary
influenced) direction is the tangential one, and poorer when this aspect ratio is reversed.
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The non-monotonic character of IP is interesting, showing that it adapts well to either
extreme and is poorest in the balanced intermediate case.

5. Conclusions. We conclude by pulling together some overall assessments of the
preconditioners tested in the previous section. The interface probe technique is the most
general purpose and robust of the methods. It is always definable but occasionally the
worst method, adapting well to high Re and extreme aspect ratio, but decidedly subop-
timal at high A~!. It does very well in predominantly unidirectional strongly convective
flows. As a “probe” method, it has the disadvantage of being somewhat complex to code.
Its generalizations to multiple interfaces, multiple components, and inexact subdomain
solves are not pursued herein (see [22], however).

The spectral method is mathematically the method of choice asymptotically in A1,
where physically well resolved problems should end up. However, high cell Reynolds
numbers can cause it to go unstable, and flow fields whose actual values along the interface
differ greatly from their average values are poorly represented. A stabilizing technique was
proposed which could preserve the robustness of the spectral method at high cell Reynolds
numbers, namely selection of an exponent base for D closer to unity than the true |a/c|.

The spectral probe method is as good as the spectral method when W alone is a good
approximation to the eigenvectors of C (i.e., low tangential convection). A D-modulated
version of spectral probe can be just as effective (and just as vulnerable) as the pure
spectral method in a constant coefficient problem. SP can adapt even better than S to
normal convection variation. As a “probe” method, it shares the coding disadvantages
and subtleties of IP.

The Dryja preconditioner is never exclusively. the best method, but is as good as
either S or SP in a non-constant coefficient problem in the well resolved limit. However,
the extra cost of S is insignificant compared to D, and SP costs only extra subdomain solves
in the pre-processing, so these techniques (suitably stabilized for tangential convection)
will almost always be preferable in applications.

All of the above techniques are relatively insensitive to the choice of the overall pre-
conditioner structure. The tangential interface preconditioner is an exception, for reasons
yet to be explained theoretically. It is much better under the block triangular form of the
overall preconditioner, and is very competitive with the other techniques under physically
predictable circumstances, namely tangentially dominant convection or narrow aspect ra-
tio. It is also the simplest to code.

We note that when exact subdomain solves are performed, the block triangular form
of the preconditioner, By, with its one-directional flow of information from the separa-
tors to the interiors, is almost always preferable to the structurally symmetric form By
in terms of execution time, since a full set of subdomain solves is saved at each iteration
and the iteration counts are usually comparable. This point requires additional caveats
in the presence of inexact subdomain solves, since the extra solves in each iteration may
substantially reduce the number of iterations (the dimension of the Krylov space) in such
cases. The structurally symmetric form is also obviously useful when A is itself symmet-
ric, since it then admits preconditioned conjugate gradients rather than GMRES as the
iterative solver.

Clearly, a user who understands his problem physically and is willing to customize can
do well by choosing among a variety of interface preconditioner modules, perhaps using
different ones on differently resolved grids within the same overall solution procedure.
Hopes of finding a single optimal method from among those considered must clearly be
dismissed, but the field is still young and ripe. It is clear that general adaptivity will
require some amount of “probing” via subdomain solves; taken to the limit, one obtains
C directly. Such probing has an associated cost comparable to an iteration step, and
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must be done strategically. Future developments which iteratively improve the interface
preconditioning based on accumulated subdomain solve data would be welcome, and so
would more hybrids along the lines of the spectral probe which incorporate both analytical
and numerical data.
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