CHAPTER 4

Local Refinement Via Domain Decomposition Techniques
for Mixed Finite Element Methods with Rectangular
Raviart-Thomas Elements*
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Abstract. We consider the solution of second-order elliptic equations by Raviart-
Thomas mixed finite element methods on locally refined rectangular grids. The local
refinement uses “slave” nodes in a manner that assures continuity of normal fluxes
at interfaces between refined and unrefined elements. Under these circumstances,
the composite elements satisfy the Babuska-Brezzi condition and an error estimate
follows. Relative to unrefined grids, this estimate loses half an order of convergence
in a strip containing the interfaces, as dictated by approximation theory. The in-
definite composite system of algebraic equations is solved by preconditioning the
definite Schur complement with a spectrally equivalent matrix and applying the
conjugate-gradient method. Numerical computations are presented that verify the
expected global orders of convergence and suggest superconvergence phenomena
analogous to known results for unrefined grids.

1. Introduction. Mixed finite element methods have been used in a wide
variety of applications when high accuracy is desired for both a function and its
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gradient. These methods are applied to both elliptic and parabolic partial differen-
tial equations, alone and coupled with other equations. Often the applications are
of sufficiently large scale that important local phenomena are not well resolved on a
global coarse grid and local grid refinement techniques are needed. Because of the
large size of these problems, efficient solution of the algebraic equations resulting
from the local refinement procedures is essential. In this paper, domain decomposi-
tion ideas are used to develop accurate and efficient techniques for combining local
grid refinement and mixed finite element methods.

We consider mixed finite element methods for second-order elliptic equations
with Dirichlet boundary conditions. Neumann boundary conditions do not change
the results in any significant way. In its mixed form, the problem is to find (u, p) =
(u1,uz,p), such that

(a) u+aVp = 0, in Q,

(1.1)
(b) divu = f, in ,

with the boundary condition

p= g, on Jf, (1.2)

where 0f) indicates the boundary of 2, and @ = a(z) is a positive continuous
function on T' = Q U 0Q2. Here u and p can be considered to be fluid velocity and
pressure, respectively, in a problem describing fluid flow in porous media. (1.1a) is
a representation of Darcy’s law and (1.1b) is a conservation law.

For the sake of simplicity, we take the domain to be the square (0,1) x (0,1).
The results that we derive in this paper can be easily extended to more general
domains and to 3-D elliptic and parabolic problems. We restrict our analysis to
the Raviart-Thomas approximating spaces for a rectangular non-uniform partition
of the domain induced by local grid refinement. We consider rectangular elements
for ease of extension to large, three-dimensional problems.

We introduce the concept of “slave” nodes in the mixed method, construct the
corresponding spaces, and give the finite element approximation to the weak saddle-
point formulation of the boundary value problem. We show that the constructed
finite element spaces on the composite grid satisfy the Babuska-Brezzi condition
[1,2,3]. In the particular case of rectangular elements with local refinement, this
condition appears to be a simple consequence of the construction of the spaces if
“slave” nodes are used on the refinement interface.

We also derive an error estimate for the finite element solution. The lowest-order
Raviart-Thomas spaces, combined with numerical integration by a trapezoidal rule
for the mass matrices, produce the 5-point finite difference approximation for the
pressure equation (see [4]). For regular stars, near the fine- and coarse-grid interface,
this approximation produces only an O(h%) error estimate; thus, one goal here was
to check whether the mixed finite element approximation will produce a better
error estimate. Unfortunately we are able to prove only O(Ah"*%%) convergence of
the finite element solution to the true solution in an H(div;{})-norm for the velocity
and L, norm for the pressure, i.e., we have a loss of K% compared to the optimal
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error estimate for grids without refinement. This reduction of the convergence rate
is due to the introduction of “slave” nodes along the interface for coarse/fine-grid
domains.

In Section 2, we present notations and definitions which are necessary to de-
scribe our methods. We also construct our composite-grid spaces. In Section 3, we
show that the composite-element spaces satisfy the Babuska-Brezzi condition and
obtain error estimates. We discuss quadratures and approximations which simplify
the connections between elements and the corresponding matrices. Optimal pre-
conditioned iterative techniques are described in Section 4. Finally, computational
results for local refinement of rectangular elements are presented.

2. Preliminaries. Denote by (u,v) = [ uv dz the standard L*(Q)-inner

product. If u and v are vector-valued functions, then by uv we denote the standard
inner product.

Let V = H(div;Q) be the set of vector functions v = (vy,v2), v; € L*(Q),
i=1,2, such that V.-v = divv € W, with W = L?*(Q). We also use the notation
Wir(Q) for the Sobolev space of functions defined on £ and having their generalized
derivatives up to order m summable in L?(2). The norms on W;*(Q) are defined
in the standard way.

For the elements of the spaces V and W, we use the following norm notation
(@) i = ullf@e = ullde+Idivullfe, uewV,

() lwllw = [lwllog.

(2.1)

For u,v € V and p,w € W, define the bilinear forms

(a)  A(w,v) = (o lug,v1)+ (a ug,ve)
(2.2)
(b) B(u,w) = (divu,w)

Then, the problem (1.1) is equivalent to solving the saddle-point problem given by

A(u,V)-——B(V,p) = (g,v-n), VEV,
(23)
B(u7w) = (faw)7 w e W,

where (-,-) denotes the inner product in L?(9Q) and n is the outward normal vector

to £1.

Remark 2.1. In many important practical problems, the system (2.3) (for the
pressure and the velocity) is coupled with the equations for the concentrations of
various components (see, for example, Douglas, Ewing, and Wheeler [5], Ewing,
Russell, and Wheeler [6]). In this case, it is natural to combine the mixed method
for the pressure with the standard finite element method for the concentrations
[5,7], or with methods tailored to transport-dominated equations [6].
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Our goal is to construct and study the mixed finite element approximations
to the problem (2.3) on rectangular grids with local refinement. We describe an
approach using the concept of “slave nodes”. This carries over the ideas of the
two-grid approach widely used with standard finite element and finite difference
methods (see Bramble, Ewing, Pasciak, and Schatz [8], McCormick [9], Bank and
Dupont [10}, Ewing, Lazarov, and Vassilevski [11], etc.) to the mixed finite element
method.

First, we introduce some notation. We make use of the following set of polyno-
mials of two variables (z,y)

Q(r,m) = {g(m,y) 9oy =3 iawfyf}

1=0 j=0

(polynomials of degree at most r in the variable = and degree at most m in the
variable y).

In the interval [~1, 1], we introduce the Gauss and Lobatto points. Let L,y (z),
z € [~1,1] be the Legendre polynomial of degree r + 1; then the Gauss points §;,
t=1,...,7+1 are zeros of L,4i(z),i.e., L41(3) = 0,i = 1,...,r+1; the Lobatto
points §;, i = 0,1,...,7 + 1 are zeros of L; ,(z) and +I; i.e., by = -1, ér+1 =1,
L) =0,i=1,...,r.

Let é = [~1,1]? be the reference element. In é, we introduce the following sets
of points:

GO = {(ghgj):i?j:la”"r‘{"l}a

Gro= {(lg):i=0,1,...,r+1, j=1,...,r+1},

A

Gy = {(@,4)i=1,...,r+1, i=01,...,r+1}.

We use these sets to define nodal bases for the Raviart-Thomas finite element
spaces. First, we introduce the coarse-grid partition denoted by 7}, of the rectangle
2 = (0,1) x (0,1); the subscript indicates that we have a family of partitions
depending on the mesh parameter h.

Let A; and A, be partitions of I = [0,1], with local mesh sizes h.;, &/

c‘j,

¢t = 1, Ny, g = 1,---, Ny, respectively. Let h, = r%?x(lzc,;,/zg’j). Thus, O

has been partitioned into coarse finite elements é = €x = [Tr—1,2k] X [ye—1,¥e],
k=1,...,Ny; £ =1,...,N,. We set meas(€x) = her-1h,,., and suppose that
there exist constants ¢o and ¢, independent of %, such that

coh? < meas & < ah? k=1,...,N,, £= Lo, Ny, (2.4)
showing that the partition T} is in general nonuniform but regular (see, Ciarlet [7]).

Set
M7 (A;) = {g e Ci(I): gl[ JEPm), k=1,.. .,Nx} (2.5)
Lh1T



102 Ewing et al.

where P(m) is the set of all polynomials of degree at most m. We define MI"(A,)
similarly. If j = —1, this means that g(z) might be discontinuous at the points
T1,...,ZN,-1. Then we establish the following notation, associated with the coarse-
grid partition Tj:

(2) Vit o= MA@ ML, (A,)

(b) Vi? = ML(A:) @ Mg*H(A,)

; 3 ) (2.6)
() Vi = Wxip?

(d) Wi = ML, (Ar) @ MZ(Ay).

Note that, for any v € V7, we have div v € W]. The spaces V] and W] are
usually referred to as Raviart-Thomas spaces of order r [12]. Now, we introduce
nodal bases for these spaces.

For each element & € T}, there exists an affine mapping F' : é — &. The map
F introduces the sets G; = Gi(€) = F(Gy), 1 = 0,1,2 on each & € Th Then the
degrees of freedom in each element associated with the spaces W7, Vi, and V;* are
the values of the functions at Go, G1, and G, respectively. Then the interpolants
of given continuous functions w, vq, vy are defined by the following: on each é € Ty,

Twe Q(r,r) and Tw(z,y) = w(z,y), for (z,y) € GO,A
Ivi € Qr+1,r) and Tvi(z,y) =w(z,y), for (z,y) € G, (2.7

jv? € Q(T,T + 1) and jv;(:c,y) = Uz(l’,y), for (Qf,y) € GZ'
Obviously Jw € W{, Iv; € f/,:’i, t=1,2.

Remark 2.2. The bases of W[, V"', and V% introduced by the nodal values of
the functions at the sets Go, Gy, and Gg, respectively, on each & € T}, represent
only one possible choice of bases in these spaces. Actually, they do not necessarily
appear in a particular implementation of the mixed method. However, they play
an essential role in our construction of the compeosite-grid approximation.

Now we construct the corresponding finite element spaces over the partition with
local refinement. Let 4, a subdomain of Q, be a union of a certain number of coarse
finite elements. We partition the elements in 2, introducing a finer mesh as shown
in Figure 1. In order to simplify our notation, we suppose that the refinement in
each coarse element is uniform and the maximal fine grid step size is hy. This
partition is regular and consistent, i.e., any two adjacent elements in ©; have the
same partition along their common side (see Figure 1).

Therefore we have partitioned the domain ) into coarse and fine elements. We
call this partition a composite partition (or composite grid) and denote it by Tj.

Now, we construct the composite-grid finite element spaces W7, V;°!, and V"%
Since the construction of the space W] does not require any continuity of the
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functions across the finite element boundaries, an obvious definition of W is
Wy = {w(:c,v,) : w(a:,y)’e € Q(r,r) for any e € Th}.

Then the Gauss nodes Go(e) in each element e € T} will introduce a nodal basis
for the space W} that is convenient for computations.

Since the velocity u should have certain continuity properties across the element
interfaces, the construction of the space V7 is much more complicated. Here we
use the concept of “slave” nodes widely used in the standard finite element method
on grids with local refinement (see, e.g., [8,13]), where a natural and compact
construction is given by Dryja and Widlund [13]. We use their approach in order
to construct the finite element space V7 for the mixed method.

£,

§,

Figure 1. Grid with local refinement.

Let I'z(I'y) denote the vertical (horizontal) part of the boundary between
and Qy = Q\Q; (the parts of the boundary 9 are excluded). Now, define the
space V;"'(Q) as the set of functions vanishing in 2, which are continuous in the
variable z for each fixed y and are polynomials in Q(r + 1,7) on each element.
Similarly, V;"*(€%) is the set of functions vanishing in €2, which are continuous in
the variable y for each fixed z and are polynomials in Q(r,r + 1) on each element.
The continuity requirement for the elements of V;"'(€) and V;"*() will produce
functions which will be zero on I'; and Iy, respectively.

Then the spaces V"', i = 1,2 on the composite partitioning 7}, can be defined
as follows: o ,
Vit=V""+ Vi (), 1=1,2.
Note that this is not a direct sum of finite element spaces. Then Vi = V"' x V,?
is the composite-grid finite element space for the velocity.

In order to better understand this construction, we introduce nodal bases for
V7', 4 =1,2. If we introduce the nodes Gi(e), ¢ = 1,2 in each fine-grid element,
then the corresponding Lagrangian polynomials on each element will form a basis
for V;"'(Q) over e. Figure 2 illustrates this basis at the fine-grid elements which
are adjaccnt to the boundary of fine/coarse-grid regions.

3
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B1*< e, 4 < e, X
nB, €, B, e, % ke, ® &, B, @
Ba" e, ¥ K e, 3

Figure 2. RT elements of order r = 0.

For the lowest-order RT finite elements (r = 0), the unknown values of the first
component of the velocity vy in the coarse-grid finite element €y are v1(Bo) and
v1(B;). From the fine-grid elements, we have as unknowns the values of vy at the
points B;, B,, and Bs. The continuity requirement will be satisfied if By and Bs
are “slave” nodes, i.e., vi(By) = vi(B3) = vi(Bz), which is in agreement with the
construction of the space Vhr’l. The second component of the velocity vector, vs, is
treated in a similar way.

3. Finite Element Method. The finite element solution of the problem (2.3)
is defined in the following way: find U € V} and P € W} such that

A(U,v)— B(v,P) = {(g,v-n)

(3.1)
B(U,w) = (f,w)

are satisfied for any v € V] and any w € W}.

The stability of problem (3.1) and the uniqueness of its solution is established
under the well-known Babuska-Brezzi condition [1,2], which reads as follows: first,
if B(v,w) = 0 for all w € W, then div v = 0 (i.e., given 1V}, V} cannot be too
large). Second, there exists a constant £ > 0, independent of 2, such that

B(v,w)

inf sup —tti >4 3.2
weWi vevy [|wllwllvilv 02

(i.e., given W[, VI cannot be too small). Since div V} C W}, it is evident that
our spaces satisfy the first condition. '

Falk and Osborn [3] showed that the condition (3.2) is satisfied if, for any w €
W7, there exists v € V}, such that

div v =w in Q and ||v]|v < C{lwllv, (3.3)
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with a constant independent of 4.

It is well known that the finite element spaces of Raviart-Thomas satisfy the
condition (3.2). In our case, these spaces were augmented by adding some new
functions in the refined region ;. We show that the finite element spaces V), and
Wy, defined on the composite partitioning of the domain £, satisfy condition (3.3)

Lemma 3.1. The spaces V}, and W}, defined on the composite partitioning of the
domain {2, satisfy the Babuska-Brezzi condition.

Proof. We show that the condition (3.3) is satisfied, for example, for the refined
region in the top right corner of Figure 1. Let

1 z
vi(z,y) =z [ w(s,y)ds, wvy(z,y)= ! yw(x,s)ds.
2Jo 2Jo

By vi(z,y) € V;"'; since w is a piecewise polynomial in Q(r,7), then after integra-
tion in z, it will be continuous as a function of z and will be a piecewise polynomial
in Q(r +1,r). Similarly, vs(z,y) € V;* and, therefore, v = (v1,v3) € V1. Clearly
div v = w. .

Now, we show that ||v||v < ¢||wl||o,n. By the Cauchy inequality, we have

VG = llnlle + o2l g + [ldiv V]2 g
1 x 2 y \2 2
= [ wwds|| | [tz s)as|| iz
4 0 0,0 0 0,2 ’
5
< ZHw”(?),Sh

where we use

]/x(d2</1/1$ 245 ¢ dz d
‘Ows,y)so’n__ A O/Ow(s,y) s z dz dy
T rl px
< ///w(s,y)2ds dy z dx
o Jo Jo
1 1
< [ lhelBa e do = Sl

A similar argument will treat the refinement in the lower left corner of Figure 1. A
slightly more general treatment is required for the general case. Thus the proof of
Lemma 3.1 in the case of Figure 1 is completed.

As a corollary of Lemma 3.1, by the main result of Brezzi’s paper [2], we get the
stability of the discrete problem and the estimate for the error of the method.

Theorem 3.1. Problem (3.1) has a unique solution, (U, P) € V§ x W}, and there
is a constant C, dependent only on 3, such that

o= Ol + 1= Plloa < 0 inf ha = vilv + jaf o= wlha}. (30

weWy

3
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We use this theorem in order to obtain an error estimate of our finite element
method on the composite-grid partitioning 7%. Since V C Vj and Wh C Wy, then
by the standard approximation theory [3], we have the following obvious estimate

mf llu=vllv + inf, lp—wlloa < inf [lu-v|lv+ lnf Np—wilog
vey
/ h

< CRZY (Jullrsz.0 + lIpllr+10) -

This estimate is too pessimistic since it does not take into account the grid
refinement in the subdomain ; (where we have augmented our finite element
‘space). Our goal is to produce an error estimate in mesh-dependent norms, which
takes the refinement procedure into account.

The second term in the right-hand side of (3.4) can be estimated in the following
way (for r > 0)

56, I = wloa < llp = pllog < C (W pllrsr + 157 Iplls10,), (39)

where Ip is the interpolant of p using (r + 1)? Gauss points in each finite element,
defined by (2.7). The estimate (3.5) is valid also for r = 0 but instead of the
interpolant Ip, we have to use the Lo-projection of p.

The first term in the right-hand side in (3.4) is more difficult to estimate since
the norm of the space V involves Lo-norms of v and div v. If we again use the
interpolant Iu, then

inf [lu—=vIi < Jlu~Tulf§ g +[|div (u = T)|[g o (3-6)
vevy ’ ' ,

The first term in the right-hand side of (3.6) gives a similar error as the term with
p, estimated by (3.5). Then, we have the desired optimal error estimate

llu — Tulloa < C (A Julls1,0, + 7 ullrs10,) - (3.7)

The main difficulties are connected with the estimation of the error of the second
term in the right-hand side of (3.6). Using the same technique, based on the
Bramble-Hilbert lemma argument, we can prove the following estimate

ldiv (= Tu)llyq < C (B Jullrsz0, + 5 lullsz0, + B0 ullras) , (3.8)

where 6 is a strip of finite width around the interface between {2; and Q. .

Then, substituting the estimates (3.5)-(3.8) into (3.4), we get the following error
estimate for the mixed method with local refinement.

Theorem 3.2. Let the solution to the problem (1.1) and (1.2) satisfy the following
regularity conditions: w; € Wi*%(Q), i = 1,2 and p € W31 (Q). Then the finite
element solution (U, P) of the problem (3.1) satisfies the following error estimate

lu—Ullv +1lp = Plloa < C (k7 |Ipllrs1,0, + 25 Ipllr41,0,

A ullsz, + BP0, + RO llas)
(3.9)
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where the constant C' does not depend on h.

The appearance of the %5 convergence rate for r = 0 is due to the construction
of the finite element space on the composite grid using the concept of “slave”
nodes. In order to obtain an optimal order for the composite-grid finite element
solution, one should look for a finite element partitioning of the subdomain, where
the coarse grid gradually is refined into a fine one using triangular or trapezoidal
finite elements.

In practice, the bilinear form A(U,v) in (3.1) is often evaluated using some
quadrature rule. If the coefficient a(z,y) is sufficiently smooth and the quadrature
has high-order accuracy (e.g., on each element it is exact for polynomials in Q(2r+
3,2r+1) while integrating (™ 'uy,v1) and exact for polynomials in Q(2r+1, 2r +3)
while integrating the term (™ 'u,,v2)), then we can easily obtain the basic result of
Theorem 3.2. Therefore, the convergence rate for sufficiently accurate quadratures
will in principle be the same as in the case of exact evaluation of the form A(U,v).

There is one very important class of quadratures for evaluating the form A(U, v)
which produces the so-called “lumped mass” approximation. This means that the
matrix corresponding to this bilinear form is diagonal. Therefore, the velocity
vector U can be eliminated from the algebraic problem and we can get a discrete
problem only in terms of P.

Remark 3.1. It is possible to confine the lumped mass procedure to only some
of the finite elements, for example, to those adjacent to the coarse/fine interface.

Remark 3.2. Using the lumped mass approximation, we obtain the following
algebraic problem
My 0 Ny || U 0
0 My, Ny ||Ua|=]0 (3.10)
NTONT o || P b

where the matrices M; are diagonal. Then the elimination of the velocity is straight-
forward and we can get an algebraic equation only for the pressure P

(NI BTNy + NENIING) P = by (3.11)

which is a direct approximation of the elliptic equation. In the case of lowest-order
Raviart-Thomas finite elements, i.e., r = 0, this is a standard 5-point approxima-
tion on a cell-centered grid with local refinement (see, e.g., Ewing, Lazarov, and

Vassilevski [11]).

4. Iterative Methods for Solving the Composite Grid System. In order
to simplify our notations, we introduce standard notations for the systems with
consistent mass approximation and with lumped mass approximation.

AY =b and AY =b, whereY:[g}. (4.1)
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Together with systems (4.1), we consider the coarse-grid approximation to prob-
lem (2.3) defined in the following way: find U € V7 and P € W such that

A(U,v)—B(v,P) = (¢,v-n), VVEV,:",
) (4.2)

B(U,w) = (f,w), Ywe W

The system of linear equations corresponding to (4.2), for the unknown vector

Y = @J,f)) of approximate values of the solution (u,p) at the coarse-grid points
from T}, is denoted by

AY = b, Y:[Q]. (4.3)

Our goal is to construct a preconditioner B based on the BEPS [3] precondition-
ing technique for solving the composite-grid system (4.1).

First, we denote by w; all fine-grid points associated with the values of the
pressure P in the refined region ;. We denote the remaining points, corresponding
to the values of P in the unrefined portion of the composite-grid partitioning, by
ws. Then, we have the following partitioning of the vector P

Py }wl ‘
= . 4.4
=0 (4
: . U ’ U , ; +
Using the representation Y = P ] and Y = [ P ], the matrices A, A, and A
can be written in the factorized form
_ M N| | M 0 I M™'N N
A=yt o |T|NT —c||0 1 |0 C=NMTN

s M N M 0 I M-N Tt

A= |y ol=lar _allo 1 |0 E=NTMTW, (4.5)
W R N0 [T MR A4 areac

A=\ §r o |T|87 —¢||o 1 |0 C=NMTN

Obviously, C, é’, and C are the corresponding Schur complements, and the
system C'P = brepresents an approximation to the elliptic equation for the pressure
P. Note that since M is a diagonal matrix, then the matrix C is explicitly defined.
The other two matrices are defined only 1mphcltly The coupling of the unknowns
of the vector Uy(Us) is only ‘along the lines y = const (¢ = const). Therefore,
the inversion of the matrix M can be performed efficiently with arithmetic worl\
proportional to the number of unknowns in {; and U, (we have to solve (2r + 3)-
diagonal systems).

The inversion of the composite-grid matrix is much more complicated, since the
unknowns in the refined regions are coupled with the unknowns in the coarse-grid
region as shown in Figure 3.
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X X X X X X
X X ®
X b < X b 4 X b 4
X X X X X X
p 4 X @
X X X X X X
Figure 3.

All unknowns U; are coupled via the values at the nodes marked by “®”. Nev-
ertheless, we can also design an efficient algorithm for solving the system MU = d,
and therefore, computing M ~1d.

Remark 4.1. Matrices A, A, and A are invertible and symmetric, but not definite.
Their Schur complements, C, C, and C, respectively, are symmetric and positive
definite. Actually we may consxder that AY = —(C P in the subspace of Y satisfying
MU + NP = 0. Therefore, in the subspace of vectors satisfying the condition
MU + NP = 0, we can use the preconditioned conjugate-gradient method. In
other words, we have to find a preconditioner B for the matrix C.

The preconditioner B for matrix C' will be based on the general idea of the BEPS-
preconditioning technique proposed by Bramble, Ewing, Pasciak, and
Schatz [8]. We use its algebraic formulation described in [11]. The partitioning
of the vector P by (4.4) implies 2 x 2 block partitioning of the matrices C and C:

Cu Clz }wl C lCu 012

¢= Co Cp | o Ca C22

(4.6)

Since C is explicitly known, then the corresponding blocks C’,], t,J = 1,2 are known
explicitly, too.

Since the nodes w, are part of the coarse-grid points &, we can partition the
vector P in the form ,
Q11 QIZ }w\wz ) (4.7)
Cn Ca | }w2

P =

%z\w , and therefore C = ]
2

Then the preconditioner B for the matrix C can be chosen in the following form
C n 0 l I ¢ Cha

B =

,  On=Cn—CnCi'Ch. (4.8)
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Now, we show that this choice of B leads to an algorithm which uses the solution
of an approximation of the elliptic equation on a standard uniform partitioning
(coarse for the whole domain € or fine in the subdomain ;).

We define B~! by the following algorithm'(and later we show that this really
produces B of (4.8)). From the system BP = b:

(i) Solve the system
011P1(f) = by;

(ii) Compute the residual

by
by

0
by — Cy PY

p)
0

P o=

b

_(5}

(iii) Restrict the residual r onto the coarse grid @, i.e.,

Fo= 0 }JJ\L‘J?
- by — 021 Pl(f) }wz
and solve CP =7,
(iv) Since 5
po| b )0\
P |} =wy?

find the harmonic extension by solving the system
011P1(h) = “6'12132;

(v) Then,

popp= | BP+PM ]
P,

Using the same arguments as in [11], we can show that steps (iii) and (iv),
which solve the coarse-grid problem and restrict the solution to the coarse-grid
points in {3, are equivalent to solving a problem with &;;. Therefore, the action
of the preconditioner B is fully described. As we mentioned above, one step of the
iteration with B includes solving two problems in the fine-grid region (with lumped
mass approximation) and one problem on the coarse grid & in the whole domain
1. Efficient solution of these problems will be discussed elsewhere.

Using the techniques of [11], an intricate analysis shows that the preconditioner
B is optimal; i.e., it is'spectrally equivalent to the matrix C' and, therefore, to the
matrix A in the subspace MU + NP = 0, with constant independent of the mesh
size. Full details will appear later.

5. Computational Results. We have performed extensive computations on
the lowest-order Raviart-Thomas spaces in order to determine convergence rates
under various refinement schemes. In this section we will describe our results and
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make several observations about their relation to theoretical error estimates ob-
talned elsewhere.

The lowest-order Raviart-Thomas spaces have discontinuous constants as pres-
sure approximations. The z-component of the approximate velocity is a continuous
linear function in « tensored with a constant in the y direction; the corresponding
y-component, Uy, has the roles of the z and y variables reversed in the description

of U,.

For grids without local refinement, the error estimate in the same norms as
those in the estimate (3.9) is O(h) for the lowest-order Raviart-Thomas spaces.
Along special lines through the cell centers and parallel to the coordinate axes,
superconvergence results for the velocity components in ZP(Q), 1 < p < oo, of
O(h?) were obtained in [14]; [14] also contained a corresponding result for L>(8)
of O(h*Inh~"). Computational results illustrating these asymptotic convergence
results were presented in [15]. The computational results given below were produced
by codes which are very similar to those described in detail in [15]. Therefore, details
will not be given here.

For testing purposes, we considered the problem (1.1) with Q = [0,1] x [0,1]
and with f given by point sources and sinks, f = §(0,0) —~ §(1,1). If o = 1, we
have analytic series solutions for both p and u. In this case one can compare the
computed approximation to the analytic solution for various mesh sizes and local
grid refinements to obtain estimates of the asymptotic convergence rates for our
computational methods. Due to the Dirac delta sources, p has a singularity of
order Inr and u has a singularity of order 1/r, where r is the distance away from
the point source or sink. Since 1/r is not in L%(2), in order to obtain non-trivial
convergence rates for the velocity approximation, we delete small squares with sides
of length 0.125 around the sources and compute the convergence in the rest of the
domain to obtain “interior” estimates.

Computational results are presented in Tables 1 and 2 in the form of convergence
rates of the form
error = I(h® (5.1)

for various levels of refinement (1 is no refinement; otherwise the given number is
he/hy). In Table 1, convergence rates in the L? norms are computed using quadra-
ture points along the lines of superconvergence described in [14]. As expected, since
1/r is not square-integrable in the unit square, there is essentially no convergence
for the velocity in the full region. Although there are currently no theoretical re-
sults yielding superconvergence in a regime of local refinement as described in this
paper, we see from Table 1 that along the lines of superconvergence for the elements
without refinement, we get approximately O(h%?) convergence for the L? norm of
the velocity errors in the interior regions. This type of superconvergence will be
discussed in more detail in a forthcoming paper. We also see superconvergence for
the pressure errors at the cell centers of the form O(h?), approximately. Unlike
many superconvergence results, the results from [14] are truly local, cell-by-cell re-
sults which do not require uniform gridding. We feel these local properties are also
being reflected in the local grid refinement computations.
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TABLE 1
Convergence Estimates Using 1 x 2 Gauss Points
Ip— Pl < Kb flu—Ul| < Khg
Refinement Full Region Corners Removed
he/hy lp — Pl | llu = Ull || llp— Pl | [lu—Ul|
1 « 1.01 0.00 1.89 1.96
K 0.01 0.01 0.01 0.52
2 o 1.00 0.02 1.93 1.60
K 0.02 0.01 0.02 0.15
3 o 1.00 0.02 1.93 1.58
K 0.02 0.01 0.01 0.13
4 o 1.00 0.02 1.93 1.58
K 0.01 0.01 0.01 0.13
3] o 1.01 0.03 1.91 1.57
K 0.01 0.01 0.01 0.12
6 o 1.01 0.03 1.90 1.56
K 0.01 0.01 0.01 0.12
TABLE 2
Convergence Estimates Using 2 x 2 Gauss Points
lle = Ul < K |
Refinement || Full Region || Corners Removed
2 o 0.01 0.98
K 0.06 0.15
3 a 0.01 0.94
K 0.06 0.12
4 a 0.01 0.92
K 0.06 0.11
5 o 0.01 0.89
K 0.06 0.10
6 a 0.01 0.89
K 0.06 0.10
7 o 0.01 0.90
K 0.06 0.10

In order to reinforce the nature and location of the superconvergence compu-
tations we also computed the L? norm of the velocity errors using 2 x 2 Gauss-
quadrature rules where superconvergence is not present in the uniform-grid cases.
As expected, the convergence rates dropped in the interior region to approxi-
mately O(k). This is still higher than the O(h'/?) results obtained in Theorem
3.2, but there are important differences. The estimate in Theorem 3.2 is for the
H(div; Q) norm for the velocity errors, while the computations are formally for the
L? norm. However, in the interior region for this problem, div u and div U are
both equal to zero and the H(div;{) norm reduces to the L? norm in this case.
The approximation-theory result is O(h) in the L? norm, so we hope to be able to
improve the O(h'/?) result to O(h) in this case. This will also be the subject of a
later report.
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