CHAPTER 16

Multigrid Domain Decomposition Methods
Yuri A. KuznetsovT

Abstract - The paper outlines the pasic items and some general results
of the multi-level domain decomposition methods (DD-methods) with the
alternating Neumann-Dirichlet boundary conditions, which are based on
a symmetric representation of the DD-preconditioner. For the model
diffusion problem a close relation is established between the
multi-level DD-methods involving a partitioning of grids into small
substructures and the algebraic multigrid methods. For this reason the
methods constructed have been called multigrid domain decomposition
methods (MGDD-methods). Explicit estimates of condition numbers are
established for the constructed two-grid methods and multigrid methods
with inner Tchebyshev iterative procedures. The paper contains
egtimates of the arithmetic complexity of the methods suggested and
the results of the numerical experiments.

1. INTRODUCTION

In this paper we will outline multi-~level domain decomposition methods
with alternating Neumann-Dirichlet boundary conditions and establish
their remarkablé relation with algebraic multigrid methods. To be more
precise, we will prove that the multi~level domain decomposition
methods involving a partitioning of grids intoc small substructures
will lead to special multigrid methods and, hence, the intersection of
these important classes of iterative methods is non-empty.

An impetus to these investigations was given by the publiéation

t Department of Numerical Mathematics, USSR Academy of Sciences,
14 Leninskiy Prospect, 117901 Moscow B-71 USSR.
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MULTIGRID DOMAIN DECOMPOSITION METHODS 291

[6] which suggested a new symmetric representation for preconditioners
in the Neumann-Dirichlet domain decomposition methods [4,8,13,14]. The
first results were announced by the author in ([9]. The theory of
multi-level DD-methods was outlined in more detail in [10]. The
multigrid versions of these methods for the model diffusion equation
were described in detail in the recent paper [11] which contains all
the arguments. The author called them multigrid domain decomposition
methods (MGDD-methods). The theory of MGDD-methods with inner
Tchebyshev iterative procedures has much in common with the theory of
algebraic multigrid methods contained in [2]. In addition, the
superelement approach used here to estimate condition numbers Ffor

two-grid methods coincides with that used before in {1,3,5,12].

2. MULTI-LEVEL DOMAIN DECOMPOSITION METHOD

Let € be a bounded r~dimensional (r = 2,8) domain with the piecewise-
linear boundary 8% and rb be a closed poligonal subset of 3Q.

Define a bllinear form

a(u,v) = f [avuevv + buvld@ + [ 6uv 4dI" (2.1)
Q I
i
where [1 = ag\rb, a linear form
Wv) = f fv ad@ (2.2)
[0

where f e LZ(Q) is a given function and a space
V={vi ve I' , v=20 on [b} {2.3)

where H' = H'(Q) is a Sobolev space. We assume that a is a bounded
piecewise-smooth function satisfying the condition Jinf‘2 a>0, b and
6 are bounded piecewise-smooth nonnegative functions, and the form
alu,v) is positive definite.
Let wus consider the following variational problem: find ue V
such that
alu,v) = l{v) Yve V. ) (2.4)

Let us construct a triangular (tetrahedral)} partitioning ﬂh of

the domain £ and define the space Vh as a set consisting of
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functions wich are continuous in $2, linear in each of triangles

{tetrahedrons) and vanishing on rb. We assume that Vh < V. Then the

dimension of VE is equal to N, where N 1is the number of vertices

of the triangles (tétrahedrons) belonging to Qv i}.

Consider the following finite element problem: find u, & ¥V

/3 h
such that
ah%,w = L{v) Yv e %1. (2.5)
With respect to the natural basis of vh this problem leads to the
system of linear algebraic equations
Au = f (2.6)

with a symmetric positive definite AxWN matrix 4 and a vector [ = RA{

Remark. In case of the Neumann problem where [b =@, b=0 in

¢ and &=0 on [}, the matrix 4 is singular, and by virtue of
the condition IQ £FdR =0 system (2.6) is compatible.
Partition the set of triangles (tetrahedrons) of @, into two non-

intersecting subsets and construct domains Q& and ﬁ%h consisting of
triangles (tetrahedrons) from these subsets. Then partition the set of
vertices of the triangles (tetrahedrons) into two groups; the second
group includes the vertices belonging to E%, and the first group
includes all the remaining vertices. Similarly, partition the
components of the vectors from RN' into two groups. Then (2.6) can be

rewritten as follows:

11 12 I I (2.7)
49 422 Uy f,

where‘ Aij are A&xmj submatrices of 4 and Nj are equal to the

number of components in the fth group, I = 1,2.

Let us consider the representation

A 0
a=p M P (2.8)

0 Spo

where .. = A - A A ‘4
29 22 21%11%12°

E 0
P o= H (2.9)

A, A E

21 11 22
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and Eji are iden‘city NjXNj matrices, £ = 1,2. The matrix Szz is
called the Schur complement for the matrix A.
Prescribe a symmetric positive definite Nzxwa matrix B and an

22
M matrix

A, . 0 A 4
B=-p 1 =] Y 2 . (2.10)
0 Bra A1 Byptay A4,
Assume the eigenvalues of the matrix B;;Sza to belong to a segment

[af;'ﬁ], where 0 < o < /ﬁ Then the following statement is valid.

Lemma 2.1. The eigenvalues of the matrix BMIA belong to the
segment [or B}, where o = min{l;&} and B = max{l;%}.

Denote by aa(u, v) the restriction of the form a{w,v) onto the

subdomain @ and define the N =N, matrix B by using the relation

2 2 2 22
N .
(Bzzuz,vz) = az(uh,vh) Vuh, vy = Vh {(u,veR) (2.11)
where uT = [u'{,ug], VT = [Vf,vg} and u @ IRNZ. As is  Kknown

20 Yy
1.

[4,13], in this case we have @=1 and ﬁ > "Hence, in Lemma 2.1

we have o= 1 and ﬂ=?3.
Remark. Here and henceforth, we make use of the one-to—one

correspondence between the functions from Vh and the vectors from RN.

The matrix B from (2.10) with the matrix Baa from (2.11) will

be called a one-level DD-preconditioner for the matrix 4: this
preconditione‘r is supposed to arise in domain decomposition methods
with the alternating Neumann-Dirichlet boundary conditions. The
DD-preconditioner in form (2.10) was suggested in [6].

Q(k) a subdomain of @ composed of the triangles (tetra-

(k)(u,

Denote by

hedrons) belonging to £,, by a v) the restriction of alu,v)

B (k)

onto this subdomain and by 4 the stiffness matrix for the subdomain

Q(k) which is considered as a superelement of £ . The latter means
0 (k) (&) h
that the N( x iy matrix A4 is determined by using the relation
(k) (k) (k), _ (k) .
(4 u , Vv ) = a (uh,vh) Vuh, Vh = Vh {2.12)

k)
(k),v(k) = E&N are subvectors of the vectors u,v e ERN.

B( k) for the

where u

Let us construct a one-level DD~preconditioner'

R )

. To this end, partition into two non-overlapping

Qik) and Qék), denote by a;k)(u, v}  the

matrix

grid subdomains
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)

restriction of a(u,v) onto Q;k) and determine the Nék)XNék matrix
Bég) by using the relation
(k) (k) (ky, _ (k)
(13’22 u, , ¥, ) = a, ("h’ Vh) Vuh, Vhe Vh, (2.13)
(k)
where ul® W & gh2

. Then the one-level DD-preconditioner for the

'R
N( k) XN( k? matrix

(k) (k)
A A
(k) 11 12
A = 2.1
RURT: (2.14)
21 22
with N&k)XNgk) submatrices A§§)' i,j=1,2, is prescribed by the
formula
(k) Aif) 0
B = Fp ] B(k) k (2.18)
22
where
g 0
= .16
Fie™ | 0,001 gl (2.16)
21 11 22

and E(il;) are identity N;.k)XN.(ik) matrices, 1 = 1,2.

Iin what follows, we shall assume the quadratic forms agk)(v, )
to be positive definite.

Assume that 9(1) = € and A(l) = 4. Then successively for

B
k=1,2,...,p prescribe partitionings of Q(k) into non-overlapping
subdomains Qflk) and Qék), for the stiffness matrices A(k) from
(2.12) determine the one-level DD-preconditioners B(k) form (2.15)
and set Q(kd) = Q;k). Finally, using the recurrent formulae
| AN o
B, = F F, , k=p1,...,1 (2.17)
k k 0 B k
k+1
where Bp = B(p), determine the NxN matrix
B =B (2.18)

as a p-level DD-preconditioner for the matrix A of system (2.6).
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Lemma 2.2. Let the eigenvalues of the matrices [B(k)]mlA(k)
belong to segments [l;ﬂk], k=1,...,p. Then the eigenvalues of the
matrix B*IA belong to the segment [1;8], where 8 =|1£:1 ﬁk.

Corollary. Under the assumptions made, we have

p
cond B 14 < Nl Cond [B(k)]“lA(k) . (2.19)
k=1 :

Let us present £, as a union of {p+l) non-overlapping subdomains

(1) (2) (p) (P)
o he",...e o,

and and assume that the corresponding

partitioning of A4 into blocks is the block tridiagonal (p+l1)x={p+l)

matrix
- .
All A12 0
A . .
a=| % . . (2.20)
4p, pr1
0 . .
A A
A prl,p p+l, prl]
. o D
with njxn submatrices A i, j=1,...,pr1. Here, nj =M

i iJ
i=1,...,p, and np+1 = Népi. The corresponding p-level DD-precon-

ditioner for the matrix 4 1is prescribed by the formula

- (p), T ,
| B=F[B, 08,0 ... 08 oB8, 1F (2.21)
A )] _
where Bjj = A i=1,...,p,
By
-1 . 0
F=| %1% . (2.22)
° A FY g
- p+l,p pp  p+l,prl -
E.. =89 .1, . ..p and E - P

ii 11, p+l, prl 22
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3. MULTI-LEVEL DD-PRECONDITIONER WITH INNER CHEBYSHEV
ITERATIVE PROCEDURE
For the sake of simplicity, iet us consider only the case of block

tridiagonal matrices.

Prescribe a symmetric A#p)x (p) matrix H(p) and assume the eigen-
values of the matrix H(p) (p) ito belong to a segment [d&;dé],

22 22
0 < di < d%. Then following [9,11} for a fixed integer s> 0 define

symmetric positive definite Nép)xﬂép) matrices

R(P {(p) _ (D) (p) p(p) (p),-
Ry, = LBy, ﬂ (Eyy® - 'UH22 o 10855 ] (3.1)
and
A(p) (p),-

22 = [R ] , {(3.2)
where the parameters ij, j=1,...,8, are chosen such that the
polynomial

s
Z(t) =N (1 - %T,0) (3.3)
s j=1 b

is least deviating from zero on the segment [¢l;dé]. As the solution
to this problem is given in terms of Tchebyshev polynomials [15],

corresponding procedure will be called a Tchebyshev one.

It is obvious that for given g the vector w = ;g)g can be
computed as a result of the following jiterative procedure: (0) = 0
R cﬂég)(y(p)wj' j=1,...,8 (3.4)
that is w= nﬂs). Call the matrix
B-FB, 0B, 0..0 (p)][:r (3.5)

i1 22 p

a p-level DD-preconditioner with the inner Tchebyshev iterative
procedure for the matrizx 4 from (2.20).

The theory of Tchebyshev methods implies [11,18] that the
(p)] -1 4(p)

eigenvalues of the matrix [B 22

[(1 )2 (1+g 12]
28 2s
i+qg i+qg

belong to the segment

where g = (Vv - 1)/(J¥ + 1) and ¥ = dzldl.
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This fact and Lemmas 2.1 and 2.2 imply the following statement.
Lemma 3.1. The eigenvalues of the matrix irld belong to the

segment

(1-¢°)% (1+qs)"’,3
2s ’ 28
1+qg 1+g

Corollary. Under the assumptions made, we have

Cond B "4 g =241 Cond B "4 . (3.6)

4. THWO-DIMENSIONAL MGDD-PRECONDITIONER

Let 2 be a two-dimensional domain with the boundary @@ which is a
union of a certain number ®m 2 1 of unit squares with sides parallel

to the coordinate axes Xi and Xé, as is shown, for example, in
Fig.1. To be precise, we set Q= U?zl Z?J., where G, are

pairwise-disjoint squares with boundaries an, i=1,...,m We define
Ib as a closed subset of 3@ consisting of the sides of the squares

Gi and set [i = aﬁAfb.

[
@

3 4
i
6& : Gé

Figure 1. A case of domain £ (m = 4).

Consider the following variational problem: for given f & Lz(ﬁﬂ
find we V such that

J avuevv d@ = § fvd@ VYveV {(4.1)
o4 [7]

where a2 1is a positive function constant in each square Gj.
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Let us choose a certain positive t2 1 and for the values

L1 =90,1,...,¢ determine grid domains ?2}1“ as unions of
pairwise-disjoint squares G(jl'), 1=1,...,nl, with side lengths equal to
hl, = 2_". where ﬂl, = 4"&. Then again for the values . 1=0,1,...,¢
partition eact(n Square Ggl), i=1,. "’.l’ into two triangles and

denote by Qh a union of such triangles. The grid domains ??;11')
arnd !?:'l) thus constitute the domain ¢ decomposed into squares and
right-angled jsosceles triangles, respectively. For the domain Q

shown in Fig.1, the grid domains ?2;1” and ,‘9;11') are shown in Fig.2.

Pigure 2. Grid domains ?2;1”) and QE,L) for value I = 2.

g
Now we define a sequence of grids I‘fbl) = Uile aeﬁ.”, =0,1,...,¢,

where aGfil') are boundaries of the squares Gg.l), and also a sequence of
grids I‘;‘lwl/a) which are constructed using the grids l‘}llwl) by
introducing additional nodes at the mid-sides of the squares G(jl—l),

L=1,...,& as is shown, for example, in Fig.3.

Figure 3. Grids F;L) and I‘}ll'”l/z)for value [ = 2.

The grids I';’l) and I'Ll'_l/a) thus consist of segments of

straight lines, whose length is hl.
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Determine a sequence of spaces Vzl) as a set of functions

continuous in &, linear in each triangle from ﬂil), L=0,1,...,1¢,

and vanishing on Ib.

Let us consider the finite element problem: find uhﬁ Vh such that
J &Vu,ovv dR =  fv dQ VYve Vv {(4.2)
(o) h 2 h

which leads to the system of linear algebraic equations

Au = f (4.8)

with the symmetric, positive definite MxH matrix A4 and the vector
Fe RN: Here, Vh = Vit), and N denotes the dimension of the space V,.
Let us fix a value ¢t 2 1 and partition the nodes of the grid r{t’
belonging to Qu ri into three groups. To the third grou?tﬁi)refer the
r to the

h ?
t1/2) but not

nodes which are at the same time nodes of the'grid

second group we refer the nodes which are nodes of ri
included into the third group [these are midpoints of sides of the

§t~1)], and to the first group we refer all the remaining

nodes [these are the centres of the squares Gﬁt.l)]. In Fig.4 the

nodes of the first group are denoted by rhombs, while the nodes of the

squares G

second and third groups are denoted by boxes and tircles,

respectively.

t)

Figure 4. Grid F(

P ¢ are nodes of the first group

# are nodes of the second group

® are nodes of the third group .

According to the given partition of nodes of the grid fit)\lb the

matrix A of system (4.3) can be presented in the following block form:

All A12 0
A= A21 A22 AZS . (4.4)
0 A A
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Note that All’ A22 and A33 are diagonal matrices of orders
.t~1' nt__1 and Nt~1' respectively, where nt_l = Nt - Nt—l - ntwl'

The following statement plays a very important role in all
further arguments. it can be established by straightforward
computations.

Lemma 4.1. The matrix A of system (4.2) can be defined by the

relation
m {(t)
(v ) A B T I w.5)
i t 2 ds ds )
J=1 aG(t)

which is assumed to hold for any v, we R (V w & Vh)

In (4.5) the quantities agt) are restrlctlons of a onto the
(t) _
squares Gi , I = 1,...,mt.

Representation (4.5) makes it possible to apply to constructing
the preconditioner B for the matrix A the technique of domain
decomposition methods (DD-methods) with alternating Neumann-Dirichlet

boundary conditions but in a very specific formulation. Introduce an

additional notation = Fﬁt) and conditionally call the set Y a
‘domain®. Then decompose ¥ into twe “subdomains?®: 2 Ui -1 aa(t 1)
and Yi = ¥\ Yé. The structure of the sets Yi and Yé is shown in

Fig.5 (the arrow-heads at the end points of the segments indicate that
these end points do not belong to this ‘subdomain’®}.

¥
—3p
wwlppn
4
‘subdomain® Y ‘subdomain’® Y

1 2

Figure %. Decomposition of Y into ‘subdomains?® Yi and Yé

It can be easily seen that the ‘subdomain’ Yi contains only

Wi =&, nodes of the first group. In addition, the following

statement is obvious.
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Lemma 4.2. The matrix All

relation

dv, dw

;g b

t ds ds
Yi

(All‘i,’ “i) = h

which is assumed to hold for any Z,qze D%

in (4.4) caﬁ be

ds = ht 'E
i=1

301

defined by the

(4.6)

under the additional

condition vy = wh = 0 on Yé.
The last lenna directly enables us to construct
DD-preconditioners with alternating Neumann-Dirichelt boundary

conditions with respect to the ‘domain® ¥ following, for example,
[4,8,13,14]. Using the relation
_ (4.7)
. . dvh dwh My q agt 1 dvh dWh
(Bpo¥ W) = by [ agemge ds= by 2 ~S5—  f  gihgy d
Yi I=1 aG(t—l)

which is assumed to hold for all vwv,we Rnb or (this is the same) for

ail vh,ﬁé & VE, let us diflne the AEXA% matrix Béz, where
Né = N - Ni. Here, by a = a(x) we denote the mean value of the
piecewise-constant function a over all closed unit squares bj,
i=1,...,m to which the'given point: x = (Xi.Xé) belongs.
Write down the matrix A4 in the new block form
A 4
4= Nll ~12 (4.8)
A21 A22
with ﬁEXW3 submatrices zjj’ 1, 7= 1,2. 1t is obvious that
4 A A
~ ~T ~ 22 23
11 = 41 0 A T Ay r Agp T 4 4 (4.9)
32 33
Lemma 4.3. The matrix EEZ in (##.7) can be written in the
following block form:
B Y.
v - 22 23 (4.10)
22 | A2 443
submatrix.

where B is a diagonal m =xn
22 t
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According to Section 2 and [6] define the symmetric, positive
definite Meq matrix

. ” 44 412 0
444 A4p -1
B = 5 % i oaly = A BpptAy A4 Ay, (4.11)
21 22" %21411%12 o 4 4
32 33

as a one-level DD-preconditioner for the matrix A4.

Lemma 4.4. The eigenvalues of the matrix B“IA belong to the
segment [1:3].

Remark. The condition number of thé matrix B_lA (with respect
to the energetic norm generated by the matrix A) is thus estimated

from above by a constant independent of the grid step size h = h_,

¢
the values of the diffusion coefficient & in subdomains Gﬁ,
I=1,...,8 and the structure of the boundary conditions, i.e. the

structure of the set rb.

Consider the Nt—lxﬂf~1 matrix
-1

Byg = 433 7 4328554, (4.12)
where the matrix 822 is defined in (4.7), (4.10), and introduce
another notation Eﬁl = All’ Then the matrix B from (4.11) can be

written in the following form:

B A 0 B

11 12 11
-1 T
B = |4y By,tAy BiA, Ayq =F o B, F(4.13)
-1
0 A3a Bygt432850454 0 Byg
where
g, 0 0
-1
F=| A B By o | . (4.14)
-1
0 432820 Fag

This representation of the matrix B coincides with representation
of the two-level preconditioner for the matrix 4 in (4.4).

All consequent arguments are based on the following result which

can be proved by direct verification.
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Lemma 4.5, The following equality is valid:

1
Bés = zAt 1 {(4.15)
Thus, the matrix B from (4.13) is, up to a constant

33
multiplier, the stiffness matrix of the finite element method for the

space vﬁt_l). It is precisely due to this fact, the iterative methods
with the constructed preconditioner B for the matrix A can be
called two-grid methods. On the other hand, the wmatrix B has been
‘ constructed on the basis of thé decomposition of the ‘domain® ¥ into
the ‘subdomains?® Yi and Yé, and hence, we refer the iterative methods
with B used as a preconditioner to domain decomposition methods.
Combining these two standpoints we call the above-constructed matrix
B a two-grid DD-preconditioner of the matrix 4 of system (4.3).
Using the assumptions and results of the previous sections let us

define N xN, 6 matrices

171
LSO A )
44 A2 0
= | a® A0,
A4y = Ay 4r2 43 (4.16)
A0 (L
0 435 433

and put them into correspondence with two-grid DD-preconditioners

(L)
11 0 0
_ (L) T
Bl = Fl 0 Béz 4] FL {4.17)
(L)
0 4] 833
(l)_w (1) (l) _
where 33 ZAL 1 and E&l i1=1,2,...,¢t. Then choose a

H(H T

= and for the values
I1=2,...,t, successively define (us1ng the results of Section 3)

positive integer s 2 1, set

N, . xN matrices

-1V
NN S R R G -1
Ras [Eéa - ng (Bag' = Ty Hag ~1)]Al-1 (4.18)
(l) - [ (l)] ’ (4.19)

33

and, finally, NixNL matriceé
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(Y
Bll 0 0
~ (1) él (l+1) _ ~-1
Bl = Fl 0 Béz 0 L Hés = BL . (4.20)
' (0
0 0 833

Lemma 4.4 implies that the eigenvalues of matrices BEIAL and,
S |
1 = B4

the segment {1:;3]. Choose an integer 12 2 and assume that the

specifically, the eigenvalues of the matrix Héf)A , belong to

belong to the segment
= 1 and t& = 3. Then

. . 3]
eigenvalues of the matrix qéa Al~1

for 0 < o where

-1 Pl -1 < Pra

following Section 3 choose parameters , J=1,...,8, in formula

&,
1:(.1”
J

(4.19) as roots of the corresponding Tchebyshev polynomial.

Let us set

B = ’bt (4.21)

and call this matrix a multigrid DD-preconditioner
(MGDD-preconditioner) for the matrix A4 in (4.4).
The above-outlined arguments imply

Lemma 4.6. The following inequality is valid:

Cond B 14 < v, (4.22)

where ¥, = 8 and

1
g« 07 = g - 0

v, =8 —— . —= ol b2t (4.23)
W+ D7 - (Y-

The simplest calculations lead to the following statements,

Lemma 4.7. If s = 2, the following estimate is valid:

1

Cond B A€ 3 + 243", (4.24)

Lemma 4.8. If s = 3, the following estimate is valid:

1

Cond B A<€1+ %Jé’. (4.25)
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5. THREE-DIMENSIONAL MGDD-PRECONDITIONER
Let £ be a connected three-dimensional domain with the boundary 3@
which is a union of a certain number ® of unit cubes whose vertices

have only integral-valued coordinates. In other words, we set

0= -1 E&. where G, are pairwise-disjoint unit cubes with the

boundaries an, i=1,...,m Similarly to Section 4 we define fb as

a closed subset @€ consisting of sides of the cubes Gj and set
ri = 65A1b.

Choose a positive ¢ 32 1 and for the values 1 =0,1,...,¢ find

grid domains ﬁél) as wunions of pairwise-disjoint cubes &gl),

i= 1,...,nl, with the edge length hl = 2“L, where nl = alm. Then
partition each cube Ggl), i=12,...,m into tetrahedrons in such a
way that the resultant tetrahedron partitioning of the domain &
permits the application of the finite element method with
piecewise-linear basis functions. Denote such tetrahedron partitions
of the domain £ by Qil), 1=06,1,....,¢.
Let us consider variational problem (4.1) assuming the function
a to be a positive constant in each cube Gj. To approximate this
problem, we make use of finite element method (4.2), which with the
natural basis used leads to the system of linear algebraic equations

Au = [ (5.1)

with the symmetric, positive definite MxN matrix A, where N is
equal‘to the dimension of the space Vh = vﬁt). Then we assume that
the utilized tetrahedron partitioning of the domain £ is such that
system (§.4) is a classical seven-point difference scheme. It means
that in the case where @ is a unit cube and 3@ = I',, the matrix of

system (§5.4) can be written in terms of tensor products as

A=Keoe Mo M+ M® Ko M+ M® M K (5.2)
where
2 -1 0
_1 ‘
K= aht Coe (5.3)
. .o~1
s 0 -1 2 ol

4
is a (zt—l)x(zt—l) matrix, and X is an identity (2t-1)X(2 -1)
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matrix. Likewise, 1f 9@ = l‘l, then

1 —1. 0 1/2 0

K = ah oLt , M= o (5.4)

-1 1 i 1/2 |

s E

are (2t+1)X(2t+1) matrices. The assumption made will be exploited for
the alternative technique of determining the matrix 4.

Let us fix a value of ¢ 2 1 and partition the nodes of the grid

domain ﬂit) belonging to Qu r& into four groups. To the fourth
group we refer the vertices of the cubes th—l), to the third one,

the centres of the edges of these cubes, to the second one, the

centres of the sides, and to the first one, all the remaining nodes
G§t~1)’
According to such partitioning of the nodes the matrix

which are at the same time the centres of the cﬁbes
i = 1""’ﬂt—1'
A of system (7.83) can be presented in the following block form:

i N

A11 A12 0 4]
4= Aa1 A22 A23 0
i (5.5)
0 A32 A33 A34
! 0 0 A43 A44_
with N}xNj submatrices Aij’ i,j=1,2,3,4. Note that in the case
where a=1 and P = [b, we have Ajj =@§Efi' where Ejj are
identity NQXN matrices, i = 1,2,3,4.
Similarly to Section 4 denote by ril) a set made up of all the
edges of the cubes G(l) i= 1,...,&1, and define the sets of elements
(L) QA U G A R
Zj Gi n Fh , 1 1,...,ml (5.6)
for grids Fil), {=0,1,...,¢
Using the relations
2 (t)
dv, dw
(1) (4) (1) meay Mg,__g (1
(AL v } = i J is ds Vv Wy & Vh (5.7)

define 8x8 stiffness matrices A(j) for elements Z(l)

) P where vectors
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(1) (i)

v w © Rs are restrictions of the functions Vi W € Vﬁl),
Z(l)
i

i =1,...,t, onto nodes of elements . Then by straightforward

calculations we can readily establish the following fact similar to
Lemma 4.1 for the two-dimensional problenm.

Lemma 8.1. The matrix A of system (7.3) can be determined by
using the relations
m,

(Av,w) = S (A(” () WDy vy wer? . (5.8)
i=1

Similarly to Section 4 we call the grid Y = rﬁt) a °‘domain’ and

apply to constructing the preconditioner B for the matrix 4 from
(5.5) the technigue of multi-level domain decomposition methods with
altérnating Neumann-Dirichlet boundary conditions.

Set Y(l) = ¥ and define the ‘subdomains?®

-1

t
VEL R (ot
1 ,

i=1

n r}zt)) (5.9)

(1)

and Yél) Y(l) Y(l). We thus prescribe the matrix A All and

define the matrix B(l) in the way similar to that of Section 4. Then

22
partition the ‘domain? Y‘z) Y(l) into ‘subdomains® sz) = r(t 1)

and }12) y12) Y‘z) and deflne the corresponding matrlces (2)
and Eég). It is not difficult to show that the latter is of the form
(3)
A A
(2) 11 34 (5.10)
22 4 A
43 44

Using the results obtained in Sections 3 and 4 define the AxH
matrix

B= F[B, K6 ®B,, © By, © 344]FT (5.11)
where B,, = A(I) i=1,2,3, B, L6 = A _ -~ A _B 14 and
ii 11’ Y ¥ 44 43733 34
E}l 0 0 0
A, Bt E, 0 0
po | 2111 22,1 (5.12)
0 ASZBZ2 Eés 0
-1
| 0 0 A4afa3  Fhy |

and call it a DD-preconditioner for the matrix A4 from (5.5).




308 Kuznetsov

Remark. The first and second levels of decomposition of the
‘domain® ¥ are shown in the case of two superelements th ‘1>in
Figs.6 and 7. The arrow-heads at the end points of segments of length

bk wmean that thése end points do not belong to the given ‘subdomain’.

To illustrate Yéa) and Yél), only visible sides of superelements

{t-1)
G,
i

are used.

On the one hand, the matrix B is written in the form of a
three- level preconditioner, and, on the other hand, we have made use
of only the two-level procedure of decomposition of the ‘domain’® ¥,

and at the last stage we have used the elimination procedure for

A

Pigure 6. ‘Subdomains’® Yél) and Yil)

defining the matrix 844.

YDVl

@
©
N
i
H
i
b |
i
1
i
]

@ o - -
I I !

4 $ p ] ] (M 74
i i (s
[ MR I T A 4

Figure 7. ‘Subdomains’® Yéz) and Yiz)

By making straightforward calculations we can prove the following
statements.

Lemma 5.1. The eigenvalues of the matrix BMIA belong to the
segment [1:B8], where b = (7 + vﬁﬁ)/a.

corollary. The following estimates are valid:

Cond B4 < b < 5.68 . (5.13)
Lemma 5.2. The following equality is valid:

1
B, . = 3 A . (5.14)
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Thus, as in Section 4, the matrix B from (5.11) can be called a
two-grid DD-preconditioner for the matrix 4 from (5.5).

Using (8.7), (5.8), for the values L=1,...,t define leNl
matrices
[ (D (D
All 12 0 0
A9 DA
T I LD (5.15)
32 33 34
A 40
| 0 0 Ay 444 |

and find the corresponding DD-preconditioners

- (l) (l) (L) (l)
B, = F|[B B, © 8. o5 ]FI (5.16)
(l) (l) (L) (l) (l) (L) l(l)
where 11 11 and 44 44 [B 1 . Choose a
positive integer sz 1, set H;;) = 81 = E&l and for the values
L=2,...,t by formulae (4.18), (4.19) successively define Nl~1le~1
matrices ﬁ(l) and N x}¥, 6 matrices
44 171
3 (1) (L (1) . ~f I,) (1«*1)A-
Bl L[B 2] 322 @ 333 @ B %4 L {(5.17)
Finally, set
B = Bt . (5.18)
The following statements can be proved [11].
Lemma 5.3. If 8 = 8, the following estimates are valid:
Cond B 14 < avb - 1 < 9.97 . (5.19)
3 - Vb
Lemma 5.4. If 8 = 4, the following estimates are valid:
cond Blas v _ <6.6 (5.20)
max
where
22«/217_2«/5‘ +1—3JE‘~2_ (5.21)

max 4 - «/l?
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6. NUMERICAL RESULTS

Let us apply to solving system (4.3) with the matrix A4 from (4.4)
the generalized conjugate gradient method [7,13]: ;
k-1

R --1~[B~1{k - e (uk -u )]
. k-1
) +1,2 (6.1)
~1 2
157 22 Ea o
g, = ——7s== - e , e q, ———T
k 2 k-1 k k 2
192, 149,
B B
€ = 0, k=1, 'ke

with the matrix B8 from (4.21) for the value =2 or s = 3, where
o al -t ana pa, - (42,02 cen”.

Choose the quantity k&' in such a way that a given positive g
(& « 1) will surely satisfy the inequality

k +1

& 0 *
- < - R
lu ul,<elu -ul, (6.2)

% -1 . 0 N
where uw = A4 " f, for any initial guess u @ .

Taking into account that method (6.1) obeys the estimate

k
k * 2q 0 *
- g e - .
e - ull, 7 L (6.8)
1+ q

where g = (ﬁ« 1)/(ﬁ+ 1) and ¥ is an arbitrary but fixed
positive number such that Cond BmlA £ ¥, we can choose for the
regquired value of kﬁ the maximal integer satisfying the inequality

lng

kE)( i‘ﬁ“-’q . (6.4)

The following statements can be established.

Statement 6.1, To solve system (4.3) by method (6.1) with accu~
racy € in the sense of inequality (6.2), it is sufficient to choose
ks = {1.21 In %J in the case of s =2 and ke = [0.81 1In %J in the
case of g = 3, where [2] denotes the integral part of number =z.

Statement 6.2. For the values s = 2 and $ = 3 the number of
arithmetic operations required for solving system (4.3) by method
(6.1) with accuracy & in the sense of inequality (6.2) can be

estimated from above by the gquantities 60N ln% and &N In %,
respectively.
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Remark. Straightforward calculations indicate that for the model
diffusion problem discussed the coefficient in Statement 6.2 for
8 =3 is less than that for & = 2, i.e. theoretically the value
8= 3 is more preferable. At the same time the numerical experiments
have shown that in practice the choice of & = 2 is more preferable
for obtaining (6.2) from the standpoint of the computational cost.
Statement 6.3. To solve system (5.4) with accuracy e in the
sense of inequality (6.2) by generalized conjugate gradient method
(6.1) with the matrix B from (5.18), it 1is sufficient to choose
k8 = [1.58 In %J in the case of & =3 and ke = [1.22 1ln 2

&J in

!

the case of s = 4. ]

Statement 6.4. For the values g8=3 and s =4 the number of
arithmetic operations required for solving system (5.4) by method
(6.1) with accuracy ¢ in the sense of inequality (6.2) can be
estimated from above by the quantities T8N In %’ and 70N Im %,
respectively.

Remark. Straigtforward calculations indicate that for the
three-dimensional model diffusion problem the coefficient in
Statement 6.4 takes the least value for s = 4. At the same time the
numerical experiments have shown that from the standpoint of costs the
value of 8 =8 is more preferable for obtaining estimate (6.2). The
comparison of theoretical and experimental values of ke required for
solving system (5.4) by method (6.1) in the sense of inequality (6.2)

for =3 and s =17 is given in Table 1.

Theoretical Experimental
value of k value of k
& &
e s = 3 s =7 s = 3 s =9
1072 8 6 6 6
-4
10 i5 12 13 10
-8
10 22 17 17 15
-8
10 30 23 22 20

Table 1. Numerical results for the

three-dimensional problem
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7. CONCLUSION

All theoretical results obtained in Section 4 and 5 remain valid for
i

the Neumann problem if in the formulae we use B* instead of B,
i.e. we replace the inversion of the non—singular‘ matrix by the
generalized inversion. It is also interesting to note that the
constructed estimates of the condition number for the two-grid method

cannot be improved for the Neumann problem in the square domain .
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