CHAPTER 2

On the Coupling of Two Dimensional Hyperbolic and
Elliptic Equations: Analytical and Numerical Approach
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Abstract. The coupling of linear hyperbolic and elliptic equations in a two di-
mensional domain is considered. Physical motivations for this investigation can be
found in Fluid Dynamics (viscous/inviscid interactions for compressible flows, heat
transfer in incompressible flows and other applications). A major point in this analysis
consists in finding correct conditions at the interface separating the hyperbolic and the
elliptic regions in a rigorous way. Then an effective iterative procedure is proposed,
which alternates the solution of the hyperbolic equation and of the elliptic one within
the respective regions. The strategy is quite important in view of the numerical com-
putation since it permits to use different solvers in the two regions. The numerical
approximation based on spectral collocation methods is detailed. The convergence
analysis of the above iterative algorithm is provided both for the differential problem
and its numerical approximation.

1. Introduction. In this paper we deal with the coupling of a linear elliptic
equation with a hyperbolic one in a two dimensional domain 1. The former is an
Advection-Diffusion type equation (AD) set in a region 0y, C 1, while the latter
contains just the advection part (A) and is obtained from AD by dropping the diffusion
‘term in the complementary region {1y = O\(,.

The one-dimensional version of this problem was studied in [1], where the coupling
of parabolic and hyperbolic linear systems in one space variable is considered.

The problem at hand will be clearly stated in subsection 1.2 of this introduction
along with the main results and a detailed outline of the paper.
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C.N.R., Pavia, Italy.

22




COUPLING OF HYPERBOLIC & ELLIPTIC EQUATIONS IN 2D 23

The main point of our investigation is concerned with the setting of correct trans-
mission conditions across the interface I' = 8{1; N 8(1,: these conditions provide the
matching between the solution to the AD equation and that to the A equation.

This type of problems arises from several physical applications which are modeled
by a global AD equation in the whole (1. However, in these problems the diffusive term
is relevant only in the subregion (1 (which clearly depends on the problem at hand),
while it can be neglected in the rest of the domain 01, without affecting the solution
in a sensible way. We will give a few examples of concrete situations having such a
feature in the subsection 1.1 below. ‘

In the present paper we show that the coupled problem mentioned at the beginning
(endowed with the correct transmission conditions) is consistent with the full AD
problem in (I. Furthermore, we propose a splitting method allowing the calculation of
the solution to the coupled problem via separate calculations within (1; and (5, using
the conditions at the interface in a convenient way. Eventually, we also provide a finite
dimensional approximation of the problem at hand by the spectral collocation method.

Some of the results of this paper have been presented in [2] and [3]. We also refer
to [4] and [5] for the coupling of Stokes-like problems.

1.1. Some physical examples.  Fluid dynamics is among the fields that benefit
largely from a coupling approach of the type studied here. As an example, consider
viscous, compressible flows around rigid profiles (e.g. an aerofoil). Physical evidence
suggests that viscosity effects are negligible apart from a small region close to the
rigid body. This is one instance where the mathematical model of the problem may
lead to the use of equations of different character (precisely, Euler and Navier-Stokes
equations) in separate regions, just by dropping viscous terms when they are very
small.

Another example is provided by a heat transfer problem such as a forced, in-
compressible flow over a heated plate. In such a case the thermal diffusivity is much
more important in the boundary layer than elsewhere (here the reduced equation of
conservation of energy can be assumed to describe the flow field). The velocity field
can be evaluated independently from the temperature, while the latter is the solution
to a linear AD equation in which the transport field is given precisely by the (known)
velocity. As already noted, away from the boundary layer the diffusive term may be
neglected. We refer to [6], where problems of this type are stated in large detail.

1.2. Statement of the problem and interface conditions.  Hereafter we assume
that {1 be a bounded, connected, open subset of Riwit»}} boundary 9(; {1y and Oy
are two open subsets of 0, with 0; N Qy = 6, O; U Oy = 0 (see Figure 1.1). Set

T, =00Nn00;, i=1,2 T =00\l =080\Ts. (1.1)

Let I'2, T¥¢ be two (relatively) open subsets of 'y, with TP NI'Y* = §, TP UTY* =T,
(either may be empty). Denote by n, ny, n the unit vector normal to 911, 91y, 90,
respectively, oriented outwards. Let

by and f be scalar functions defined in ;

e v be a positive function defined in {1z;

e b be a two dimensional vector valued function defined in §1;

e ¢ be a scalar function defined on the boundary of Q.
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The following inequalities will be assumed throughout the paper, without any further
explicit mention:

(2) v(z) > v >0, z€ 1y (71) %div b(z) + bo(z) > o >0, z € 1 (1.2)
(bng)(z) >0, zeTY® (1.3)

(the reason for these assumptions will be clear later on). Moreover, adopt the following
notation, where ¥ is any subset of 91;:

e Y ={ze¥: (bn)(z) <0},

o N ={ze¥: (bny)(z)> 0},

o X0 =3\(xin U Tout);
we will use this notation either for & = 8y, or & = Iy, or ¥ = T'. The upper
index in (respectively out) stands for ”inflow” (respectively "outflow”), with respect
to the domain {1; (where a hyperbolic equation is going to be solved: the terminology
is clearly related to fluid dynamical problems). Analogously, £° is the portion of &
tangent to the vector field b,

/4 I”‘ZNe

in
Iﬂl
Figure 1.1. The geometry of the model problem: the arrows denote _

the local directions of the transport field b; shaded lines denote the inflow
boundary I'{®,

The problem we aim to solve is: find a pair of real valued Junctions u, w, defined
in 1y and (1, respectively, which satisfy the following boundary value problem:

div (bu) + bou = f in £y, (1.4)
div (~vVw + bw) + bow = f in y, (1.5)
uw=¢ on " (1.6)
w=¢ on I‘QD, (17)
811) Ne
I/'é-r?z" =0 on 1‘2 . (18)

Obviously, suitable conditions at the interface T separating the two regions 1; and €,
are required. It can be conjectured in a natural way that one condition is needed along
the whole T', in order to solve the elliptic problem in {Iz and that a further condition
is required on I'*” in order to solve the hyperbolic problem in 1.
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One of the scopes of our investigation is precisely to find these interface conditions.
Of course, we pretend that the resulting coupled problem is well posed. Among all
allowed choices, we make the most natural one, namely we take those interface condi-
tions which are generated by a limit procedure on ”globally viscous” problems, when
»viscosity” vanishes within (1;. In this respect, we will find the following interface
conditions:

0
2 +bngw = ~bmnju on I, (1.9)
an

U= w on I'"". (1.10)

Actually, we will exploit an equivalent form of these two conditions, namely:

d
~—1/m—-u-}—- +bngw = —bxuju on [ UT?, (1.11)
8n2
7] :
I/*gr?-:');' =0 on I, (1.12)
U =w on I", (1.13)

We point out that the two functions u and w exhibit a jump at I'°** U I'%, in general.
Actually, the interface conditions express the continuity of the flux along the whole
interface, while the two solutions are required to join continuously only along Ién,
However, the jump between u and w at ['°“* UT? turns out to be proportional to the
value of v at the interface. We notice that the decomposition we are dealing with is
reasonable only if v is extremely small in 4, hence at the interface. Within {15 the
viscous term div (¥Vw) of equation (1.5) may be relevant either because the coefficient
v is “large” there or because of boundary layer effects. Our approach is well suited for
the former situation, although also the latter might be recovered in some sense (with
a scaling on the variables...).

Eventually, we state the complete problem we want to solve:

(P): find a pair of real valued functions u, w, defined in {1y and (ly, respectively, which
satisfy (1.4)-(1.8), (1.11)-(1.13).

To fix ideas, we regard problem (P) as the scalar version of a stationary linearized
problem in fluid dynamics: in this framework, v represents the kinematic viscosity,
b the transport field, f the source term; the velocity field (u, w) is prescribed on the
inflow boundary I“i’”‘ of the "inviscid region” (1; and along I‘g , while along I‘Q’ ¢ a
zero flux condition is expressed by (1.8). Problem (P) could also be viewed as a time
discretization of an evolution advection-diffusion problem (namely, when a first order
derivative with respect to time is added in the differential equations) by an implicit
method. In such a case, by is essentially the reciprocal of the time step. When dealing
directly with the evolution problem, the interface conditions (1.11)-(1.13) are to be
enforced at each time instant. Owing to the connection to the evolution problem,
we term (1.4) a “hyperbolic equation” and consequently problem (P) is said to be
a “coupled hyperbolic-elliptic problem”, although actually it is a degenerate elliptic
problem.

A thorough discussion is going to be carried out on problem (P). The main steps
will concern:
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(a) the theoretical justification of the interface conditions (1.11)-(1.13) and the anal-
ysis of the well posedness of problem (P);

(b) the numerical approximation of problem (P) by spectral collocation method;

(¢) the setting of an effective iterative procedure yielding the solution of the problem
as limit of a sequence of solutions of two independent sub-problems: a purely
hyperbolic one within (; and a purely elliptic one within y;

(d) the adaptation of the above iterative procedure to the finite dimensional discretiza-
tion of problem (P);

(e) the interpretation of the iterative procedure in terms of the Steklov-Poincaré in-
terface operator.

For the sake of readability, we will state the main results concerning the previous steps
in advance, postponing the detailed mathematical proofs until later. Therefore, the
outline of the paper turns out to be the following.

In section 2 we deal with point (b); section 3 is devoted to the introduction of
functional spaces and to face some of the questions raised in point (a): a precise state-
ment of problem (P) is given, along with an existence and uniqueness theorem. Section
4 deals with points (c) and (d): in particular, the study of the iterative method is car-
ried out by means of the investigation of the two separate sub-problems (hyperbolic
in 0y and elliptic in )3) for both the differential and the numerical case. Point (e)
is developed in section 4.1.4. Section 4.2.4 contains some numerical results and their
discussion. The proofs of the results stated in sections 3 and 4 are detailed in sections
5 and 6, respectively.

We end this introduction with the index of the paper.

1. Introduction.
1.1 Some physical examples.
1.2 Statement of the problem and interface conditions.
2. Numerical approximation of the coupled problem (P).
Functional framework; existence and uniqueness for the coupled problem (P).
4. Solution of the coupled problem (P) via an iterative procedure.
4.1 The differential case.
4.1.1 The hyperbolic problem in {1;.
4.1.2 'The elliptic problem in .
4.1.3 Convergence of the iterative procedure; existence and uniqueness
results for the coupled problem (P).
4.1.4 The Steklov-Poincaré operator associated with problem (P).
4.2 The discrete case.
4.2.1 The hyperbolic collocation problem in .
4.2.2 The elliptic collocation problem in {1,.
4.2.3 Convergence of the discrete iterative procedure; existence and uni-
queness results for the coupled collocation problem.
4.2.4 Some numerical results.
Vanishing viscosity approximation to problem (P).
6. The iterative procedure of section 4: the proofs.
6.1 The differential case.
6.1.1 Proofs of the results of section 4.1.1.
6.1.2 Proofs of the results of section 4.1.2.
6.1.3 Proofs of the results of section 4.1.3.

&
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6.2 The discrete case.
6.2.1 Proofs of the results of section 4.2.1.
6.2.2 Proofs of the results of section 4.2.2.
6.2.3 Proofs of the results of section 4.2.3.

2. Numerical approximation of problem (P). In this section, we focus a
very simple geometrical situation, see Figure 2.1. The loss of generality is motivated
by our exigency of emphasizing the treatment of interface conditions. More general
geometries can be reduced to this one, at least locally, by means of suitable mappings.

.4

s out
/! r

(1,1)

b\ rin

b
(-1,-1) 2

Figure 2.1. The computational domain: arrows denote the local direc-
tions of the transport field b; shaded lines denote the inflow boundary .

We are given an integer N > 0 and denote by Py the space of algebraic poly-
nomla,ls of degree at most N with respect to each variable z and y. We then denote
by BY the set of (N + 1) collocation points of the Gauss-Lobatto formula within 1,
pertalnlg to either the Legendre or the Chebyshev weight function (see [7], Ch.2). We
recall that a set (8% )0 of (I —1)? of such points are internal to {1;, while the remaining
4N lie on the boundary of ; (precisely on each side of {}; there are N + 1 points,
including the two extrema of the side).

If ¥ is a subset of 8f);, we denote by L the intersection ¥ N E (thls amounts
to considering collocation points lying in ).

For each vector function v = (v, vs) defined on 11, we denote by vav the vector
(3, D) where ¥; (§ = 1,2) is the polynomial of Py interpolating v; at the collocation
points of Y (¢ =1,2).

Moreover, for P € B, we denote by wg') the corresponding weight in the Gauss-
Lobatto integration formula for rectangular regions. For P € (89;)n, we denote
by 09 the corresponding weight in the one-dimensional Gauss-Lobatto integration
formula referred to 9{);.

Finally, for v defined in §;, ¢ = 1,2, set

R 1 , , ‘
U= E[div It (bv) + b-Vou + v div (Iyb)] : (2.1)
i, is the discrete skew-symmetric divergence operator (actually, “}\,v is the skew-

symmetric decomposition of div (bv) relative to the discrete inner product associated
with the Gauss-Lobatto integration formula (see section 4.2)).
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Now we can state the numerical approximation to problem (P) as follows. We
look for a pair of polynomials uy € Py and wy € Py, satisfying

Liun +bouy = f at (8x)° U (M9 UT9) N U (T U % w; (2.2)
— div I (vVwy)] + L wy + bowy = f at (8%)9; (2.3)
(1) _
— [beny(uy — §)](P) = [Lyun + bouy — f](P)-‘(;% at P e (T%)n; (2.4)
P
wy = ¢ at (T2)w; (2.5)
awN . wg) Ney
[""l/ g ](P) == RZ(P);-(ET at P e (I‘z )N, (26)
Wi )
- [b-l’ll(’u,N e wN)](P) = [L}VUN + bouN el f](P)"b-(%—)- at P € (I‘m')N; (27)
P
duy |y, P) = Ry(P vy at P e (%) y; (2.8
G+ Dmalow —wn)(P) = () a P € (I™); (2.)
Oun) py = B P“g) t P e (rn 2.9
[“Vanz]()— 2 ( );@“ at P € (I"")y, (2.9)
where
R2 = — div [Iﬁ,(quN)] -+ L?\,wN + bowy — f (2.10)

is the residue coming from discrete integrations by parts.

REMARK 2.1 We just note that (2.2) corresponds to (1.4); (2.3) to (L.5); (2.4) to
(1.6); (2.5) to (1.7); (2.6) to (1.8); (2.7) to (1.13); (2.8) to (1.11); (2.9) to (1.12). The
boundary and interface conditions in (2.4), (2.6)-(2.9) are imposed in a weak form
related to a variational formulation (see section 4.2). The strong form is obtained
just by replacing the right hand sides of these formulas with zero. Since the quotient
wg) [Bg) ]~1 is proportional to N~2 (see, e.g. [7], Ch. 2), the weak form enforces the
exact boundary and interface conditions up to the value of the residue of the equation °
times a constant that tends to zero as N tends to infinity. We chose to adopt the weak
form because this suits better the analysis we will carry out, while it is equivalent to
the strong formulation from the point of view of accuracy.[]

The analysis of existence, uniqueness and stability estimates for the discrete prob-
lem (2.3)-(2.9) will be carried out under the following “coercivity assumption”, which
is the finite dimensional analogue of (1.2)(ii):

%div [,b(z)] + bo(z) = By >0, zey, i =1,2. (2.11)

Using standard interpolation error estimates, one can show that the constant Bn can
be bounded from below independently of N, provided b is a smooth function, as a
consequence of (1.2).

Under the assumptions (1.2)(i), (1.3) and (2.11), the hyperbolic-elliptic colloca-
tion problem (2.2)-(2.9) has one and only one solution. Uniqueness will be proved
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in section 6 (Propositioxi 6.10); existence follows from uniqueness as the problem has
finite dimension.

3. Functional framework; existence and uniqueness for problem (P).
In this section, we give a rigorous formulation of problem (P) and state the existence
and uniqueness results for its solution. To this end, we must introduce some functional
tools in advance.

Let A be an open, bounded subset of R?, with Lipschitz continuous boundary. If
m is a positive integer, denote by H™(A) the Sobolev space of real valued functions
belonging to L2(A) along with all derivatives up to the order m. F™(A4) is a Hilbert
space with norm

3
ikj=m ; K 3
ot v
[ollma =1 Y e (’5"7) , (3.1)
1,538+7=0 1 0% g4
where || - |lo,a denotes the L%(A) norm. Analogously, the L*°(A4) norm is denoted
by || * lleo,a; W1 (A) represents the space of Lipschitz continuous functions on A4,
endowed with the usual norm
ov Ov
011,008 = [0lloo,a + 157~ lloo,a + 5= lle0as v € whee,

It is well known (see, for instance, [8]) that the value at the boundary 84 of all elements
of H™(A) can be given a meaning through a trace operator which maps linearly and
continuously ™ (A) onto a subset of L?(84), denoted by H™ 3 (9A) (a Hilbert space

for the quotient norm | - [l,,—1,54)-
In the following, the dual space of H3 (8 A) will be called into play: this is denoted by
H~%(0A) and endowed with the dual norm || - l-3,04). Eventually, we recall some

notations and properties for vector valued functions. The space
L4, (4) ={ve [L2(A))?: divve L%(A)} (3.2)
is a Hilbert space with the graph norm:
1
Vllea,, (ay = (IvII3,a + I div V][5 .a]® (3.3)

(we adopt the same notation for norms as in the scalar case). Next, consider a
(relatively) open subset X of A and define

HE (5) = {v € L2(%) : § € H}(9A)}, (3.4)
vin®
0in 04\X
H(?o () coincides with H?(9A). Forv € HéO(E) we set

vl

where ¥ = { is the trivial extension of v outside £. If ¥ = JA, then

o s = 7308
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4
and denote by (-,-) the pairing between HfO(Z) and its topological dual (H§0(2)> .
7

It is known (see, e.g., [8], that, if v € 1,2 , then v.n € H%7 )], where
div 00

n is the outward unit vector normal to dA4. Moreover Green s formula holds for all
v € L%, (4) and all w € H'(4), with wjga5 = O:

/wdivvdm»}—/ Vw-vdz = (v-n,w). (3.5)
A A

In particular, if A is an open subset of 1 and b & [Wl"” (ﬂ)] % is the assigned transport
field, then (3.5) becomes:

/ Vwbzdz = -/ wdiv (bz) dz + (bnz,w), (3.6)
4 A

for all 2 € L?(4) with div(bz) € L2(4) and all w € H'(A) with wjga\5z = 0.
Moreover, for such a w the choice z = w in (3.6) leads to

/Vw-bwdxz—w/ wzdivbdx—/ Vw-bwd:z:-}n/ bnw?ds,
A A A 34

/Vw-bwdxz w-l-/ w? divbdx+-1—/ b-nw?ds. (3.7)
A 2Ja 2Jaa

The previous formula suggests the following notation: if v is a scalar function defined
on a (relatively) open subset ¥ of 90 U T, we say that

whence

Jvlg < 400, whenever v/[b-njv € L3(z); (3.8)
in such a case, we set

[v]Z x/ [bn|vids. (3.9) -
bH

Notice that these formulas define a weighted norm in L2(Z), at least when the weight
[b-n| does not vanish on X. In such a case, we set

LX) ={v: > R: Vbajp e L3(X)}: (3.10)

this is a Banach space for the norm | - |5 (actually, a Hilbert space).
By the way of dealing with multipliers, we state a lemma which will be used later.

LEMMA 3.1  Let A be an open, bounded subset of R?, with Lipschitz continuous
boundary. Let ¥ be a (relatively) open subset OA. Let p and z be such that

pEWL™(T), p>0 on%; .fpzeLi(R). (3.11)
. . 1 ' 1 :
() If v satisfies pv € [H()’O(E)] and pv = pz in the sense of [HgO(E)] , then

Vv €L*(Z) and v =12z ae. on X. (3.12)
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. 4
(ii) If G belongs to [Héo(}'])] and z, 1s a sequence such that \/pz, € L*(5), \/pz, —

1 ]
Jp2 in LA(E), pzo — G in [Hgo(z)] , then G = pz.
Proof. Let ¢ be a smooth function with compact support in 2. By (3.11), it is
1
~3¢ € HZ) (). To prove part (i), we note that

(po,0740) = (oz74) = [ Vs (3.13)

Cauchy-Schwarz inequality in the last integral shows that \/pv € L?(X) and then
(3.13) gives the equality \/pv = ,/pz a.e on X. Because of (3.11), this gives v = z a.e.
on ¥. To prove part (ii), we note that in the equality

(pzn,pm%ﬂ :Aﬁzngds

the left hand side converges to (G,p"lﬁ“g‘), while the right hand side converges to
[5 +/P2¢ ds, whence P3G = Vpz in L3(£).0

With the preceding notations, problem (P) may be given a precise mathematical
formulation and the following result may be proved.

THEOREM 3.2  Assume the following regularity properties on the data:

80, and 8N, are Lipschitz continuous, piecewise C!; T is of class chl; (3.14)

v e L®(), be [Whe()]?, b € L®(Q), f e L2(q); (3.15)

$ € H™3(00), with grp € HA(D), dyrin € LY. (3.16)

Finally, assume (1.2) and (1.3) (which are meaningful, due to (3.14) and (3.15)).
Then there is a unique pair (u, w) which solves problem (P) in the following sense:
(a) weL?(Qy), weH (0);

(b) equation (1.4) holds in the sense of distributions in {1;
(¢) equation (1.5) holds in the sense of distributions in {l;
(d) boundary condition (1.6) holds a.e. on I'{™;
(e) boundary condition (1.7) holds in H3(ID);

(1.8

[
(f) boundary condition (1.8) holds in the sense of [ 3 (I‘N“)} ;

(g) interface condition (1.11) holds in the sense of [ § rewty FO)] ;

(
(h) interface condition (1.12) holds in the sense of | A (1 } -
(i) interface condition (1.13) holds a.e. on T*".

Finally, problem (P) is limit of a family of globally elliptic variational problems.[]

o

We will give two different proofs of existence: one in section 5, by building a
family of globally elliptic approaching problems (in this way, we will also derive the
interface conditions); the other proof of existence will be based on the iterative proce-
dure introduced in section 4. Uniqueness will also be obtained in the framework of this
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iterative procedure (see section 6.1.3). Here we point out that boundary and interface
conditions defining problem (P) cannot be given a classical meaning, because of the
irregularity of the solution in the general case.

REMARK 8.3 * The regularity assumption made on ¢ in (3.16) is natural, in some
sense. Indeed, we will show in Theorem 4.1 that the solution u to a purely hyperbolic
problem with transport field b is such that b-nju? is integrable along the outflow
boundary. If we have in mind that the hyperbolic domain is an element of a decom-
position of a larger hyperbolic region, then we realize that the inflow boundary of our
domain is but the outflow boundary for another adjoining subdomain. Therefore, our
assumption on the inflow data matches the expected regularity for the outflow coming
from the adjoining domain.]

4. Solution of the coupled problem (P) via an iterative procedure.
Our goal in this section is to exhibit the solution of problem (P) (see (1.4)-(1.8), (1.11)-
(1.13)) as a limit of solutions of two subproblems within I; and 1, respectively. This
is done by attributing condition (1.13) to the hyperbolic problem in {2; and conditions
(1.11), (1.12) to the elliptic problem in ;. Therefore, we consider the following
iterative procedure,

Let u%, w® be given on I'*”. We define a sequence (u™,w™), n > 1 by solving for
each n the following hyperbolic problem within {1

(2) div(bu™) +bou™ = f in 0y
(¢7) u” = ¢ on I'® (4.1)

(vi%) u" =1¢"  on "

and then the following elliptic problem within {1,

() div(=vVw" +bw") + bow™ = f in 1,
(v1) w® = ¢ on 'Y
dw™
1 yo— = on I')*
a n
(tv) ~S bayw™ = —bnu” on I y T°
6‘n2
. ow™ in
(v) u«é—;l;f« =0 on I,
where
P = 0w+ (1 - 0)ut onI, §>0 (4.3)

Formally, the limit of the sequence (u™,w™), if existing, solves the coupled problem
(P).
The transformation of the original problem (P) into (4.1), (4.2) provides:
(a) aviable algorithm for finding the solution to the problem, which can be conveyed
easily to finite dimensions (see section 4.2);
(b) an alternative way of proving the existence of a solution (see section 4.1);
(c) a proof of uniqueness (see section 4.1);
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We point out that the splitting we have made carries several advantages from the
computational point of view. First of all, the two subproblems can be faced by standard
numerical methods for hyperbolic and elliptic problems, respectively. Furthermore, the
two parts of the interface boundary play a separate role in the interaction mechanism
between {1; and {l;. Actually, the hyperbolic solution u™ is influenced by the elliptic
one w™~! through I'** only, while, symmetrically, u” influences w™ through It solely.
This makes the iterative procedure very effective, as documented by some numerical
tests (see section 4.2.4).

The iterative procedure will be discussed both for the differential problem (4.1),
(4.2) (see section 4.1) and for its finite dimensional approximation (see section 4.2). In
both cases, we will face the question of solvability of the subproblems and prove some
a priori estimates that will be used in the discussion of convergence of the iterative
procedure. Finally, we will introduce the influence operator § associated with the
coupled problem (P): this is precisely the pseudodifferential operator acting solely
on the values of the solution at the interface. This operator is known as the Steklov-
Poincaré operator in the differential problem and the capacitance matriz in the discrete
approximation. The iterative algorithm can be interpreted by means of the operator
S as an iterative procedure acting solely on the interface variables.

4.1. The differential case. This subsection is divided into four parts: in the first
one, we give the precise formulation of a hyperbolic problem of type (4.1) and state an a
priori estimate for the solution; the second one contains the analogous arguments for an
elliptic problem of type (4.2); the third one is devoted to the combination of the results
of the two previous cases, in order to get a global estimate for the iterative scheme
(4.1), (4.2). This will allow us to get a proof of convergence for the scheme, along
with a new proof of existence of solutions to the coupled problem (P); uniqueness will
also follow in this framework. Finally, we will introduce the Steklov-Poincaré operator
associated with the coupled problem (P).

4.1.1. The hyperbolic problem in ;. With the usual notations, we consider the
following problem:

(Pr): u € L?(Q) satisfies

div (bu) +bou = f in D'(£1y), (4.4)
=X ae. on 0", (4.5)

where A € H~3 (8114) is given, satisfying
Alanin & L%(aﬂ’in). (4.6)

Our aim is to find how the inflow data A propagates to 8019** through the solution of
(Pg). This influence is shown in the following theorem through an a priori estimates
that will play an important role in what follows.

THEOREM 4.1  Under the same assumptions on the data Qy, b, by and f as in
Theorem 3.2, if (4.6) holds, then problem (Py) has a unique solution u. This satisfies
U|aﬂc11uf & L%(aﬂf“t) and
Bo R R 1 1.2
(‘2_ "’ )“u”gnl + Elulangwf < Zg”f”g,n; + El’\laﬂinv (4-7)
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Jor all6 > 0. If f =0, then (4.7) holds with § = 0, namely

Bo

1, o 1, .2
"é"”u”g,ﬂl + “lulang'ﬂ < “éulanin- (4.8)

2

Finally, problem (Py) is limit of a family of elliptic problems.C]

The proof of this theorem will be given in section 6.1.1, still using a regularization
argument. Here we state the estimate (4.7) for problem (4.1) as a corollary.

COROLLARY 4.2 Under the same assumptions on the data as in Theorem 3.2, if
Y™ € L (1), (4.9)
then problem (4.1) has a unique solution u™. This satisfies uﬁ-m S L%(I‘O“t) and

Bo 1, 2 1 1, 2 2
("é‘ ~ 8)[lu"[§.q, + 'z"lu lang“ < Zg”f“g,m + "Z‘I‘ﬁlrj" + |9 [ pen, (4.10)

for all § > 0. Moreover, if f = ¢ = 0, then (4.10) holds with § = 0, namely

Bo

1, .2 1 2
‘5‘“““”%,01 + 5]1/, laaeu < §I¢”|rm- (4.11)

|

Of course, u™ solves problem (4.1) in a sense analogous to that of problem (Pgr).
The assumption (4.9) holds, provided the initial guesses u®, w® are regular enough
(which we may certainly assume).

4.1.2. The elliptic problem in (. Keeping in mind the usual notations and geom-
etry, we suppose that ¢ and u are given, with

1 14
o e HI(IP), ne [HYH(D)|, mpow € L3 (o). (412)
Let V be the following affine subspace of H*({,):
V={veH" (0): v=¢onTlP}

Consider the following variational problem in (,:
(Pg): find w € V such that, for allv € V,

/nz(va ~bw)-V(w —v)dz + /

bow(w — v) dz + / bnyw(w —v)ds =
Qg

rinppie

= f(w —v) dz - bngu(w —v)ds.  (4.13)
Qg

Pout
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Problem (Pg) is the variational formulation of an elliptic boundary value problem in
{12, analogous to (4.2). More precisely, (Pg) is equivalent to finding w € H'(fl3) such
that

div (—=vVw + bw) + bow = f in 0, (4.14)
w=¢ on I, (4.15)
ow ! el
Vons =0 in [H3, (1Y), (4.16)
a g ’
Yo+ bagw = bnop in I-I;%O(I“"“t U I‘O)] , (4.17)
8112 L
Jw ) 3 aim ] ‘
Vons =0 in [H3(T )] . (4.18)

The following result holds.

THEOREM 4.3  Under the assumptions of Theorem 3.2, if (4.12) holds, then problem
(Pg) has one and only one solution w. This satisfies the estimate

1 2
1 = &) [VrIVw|li§ g, + {Bo = 6(Ibll1,00,05 + lB0llec,,) HwlE 0, + (5 - 8)lwlpinypye
1 1 1
<1+ Zg)llfll%,n, + §|¢|12~;> +C(fl2,b,b0; ) |41 rp + (5 + 8) |l Fow 1 (4.19)

where § > 0 is arbitrary and C(2,b,b0;8) is a positive quantity depending only on
its argument. Moreover, if f = ¢ =0, then (4.19) holds with § = 0, namely

1 2 1 2
VY[ Vwlllf a, + Bollwlig a, + ‘i'wlr‘murye < ’fzflﬂlrou*- (4.20)

O
Again, we state the estimate (4.19) for problem (4.2) as a corollary.

COROLLARY 4.4  Under the same assumptions on the data as in Theorem 3.2, if
(4.9) holds, then the solution to (4.2) satisfies

n n 1
(1 = O)IV¥IVw |50, + {Bo — 8(Ibll100,05 + lIbolleo,0a) Hiw™ 8,0, + (5

1 1 ‘ 1
< (14 ) [0, + 51912 + C(02,b,b0i )15 rp + (5 + )" [fune, (420)

- 5) |wn l?“”'UI‘;""

for all § > 0. Moreover, if f = ¢ = 0, then (4.21) holds with 6 = 0, namely

[u |2 ous. (4.22)

SRR

1 2
IV V™ |ll5 a, + Bollw™ (1§ q, + '2'|wnlr='nurgya <

|

The comments on the validity of (4.2) and of (4.9) are analogous to those made
for Corollary 4.2. The proof of Theorem 4.3 will be given in section 6.1.2.

4.1.3. Convergence of the iterative procedure; existence and uniqueness results
for the coupled problem {P). We begin by giving an equivalent formulation of the
convergence problem for the iterative scheme (4.1), (4.2).
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Let R and ¢ € L%(I"'”) be given. Let u¥, w¥ be respectively the solutions to
the two boundary value problems

() div(bu?) +bou? =f  in D'(Q))

(#7) w = ¢ a.e. on rin (4.23).
(v32) u¥ =14  ae on "
(1) div(~vVw?¥ + bw?) + bow? = f in D'(fy)
(77) w¥ = ¢ on I'y
aw‘f’ roo1 !
i Vo =0 in |HG, (T3
(i) o H,(r5)] "~
. Jw k4 D ) o [y out 0 !
(i) s bn,w® = ~bmnju in |HZ,(T°**ur )]
2 ke
awd) o [y in !
(v) V&nz =0 in _H&)(I‘ )] .

Define the application

Tp: LE(I™) = LE(T*); To: o= To(h) = 0w? pin + (1 — 0)9. (4.25)

PROPOSITION 4.5  The following two conditions are equivalent, for a given v €
L% (Tn).

1. The pair (u¥,w¥) solves the coupled problem (P).

2. There exists 0 € R such that ¢ is a fized point for Ty.
Moreover, each fized point for Ty belongs to H3 (Ti"). Finally, if 4 is o fized point for
Ty, then it is a fizved point for Tp, for all € R.[]

LEMMA 4.6  Under the assumptions of Theorem 3.2, the solutions ug', wg’ to (4.23),
(4.24), respectively, with f = ¢ = 0, satisfy:

[ 7. (4.26)

R

1 2
”\/_ng)luo a; T ”uo ”o 0y +ﬂoﬂwo I3 NP ‘ilwmrmur;"e <

X
In view of Proposition 4.5, we will search for fixed points of the application Tj.
LEMMA 4.7 The application Ty has a unique fized point .01

The following estimate holds for the iterative scheme (4.1), (4.2) with homogeneous
data.
LEMMA 4.8  Under the assumptions of Theorem 3.2, if the initial guesses u®, w®
are such that ¢° € L} ("), then the solutions uf, wg to (4.1), (4.2) with f = ¢ =0
satisfy '

ﬂ" [ |2, (4.27)

o

VY| Vw3 Qs T

O

1 2
lugll.a, + Bollwg |50, + §|wg|rinu1‘;"e <
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This estimate allows us to prove the following convergence result.
LEMMA 4.9  There exists § > 0 such that if ¢° € LE(T%") and 0 €]0,1+ 6|, then the
sequence Y™ defined in (4.3) converges in LI (I'"") to the (unique) fized point of T.[]
Finally, we can state the convergence theorem for the iterative scheme, containing
also the existence and uniqueness results for the coupled problem (P). The proof will
be given in section 6.1.3.
THEOREM 4.10  Under the assumptions of Theorem 3.2, if the initial guesses u%, wo
are such that ¢° € L2 (I*"), then the sequence (u™, w™) converges to a limit pair (u,
w), in the following sense:

u* - u in L%(0y); w® —w in HY(Q,).

The limit pair provides the unique solution to the coupled problem (P).0]

REMARK 4.11 It will be clear from the proof of the theorem that the rate of
convergence depends on v and b, in principle. ]

4.1.4. The Steklov-Poincaré operator associated with problem (P). In this section
we introduce the Steklov-Poincaré pseudodifferential operator associated with problem
(P) (see (1.4)-(1.8), (1.11)-(1.13)). This can be defined as an operator which permits
to reduce the solution of the coupled problem to the solution of an equation involving
only the interface values. For simplicity, we will detail only the homogeneous case

f=¢=0.
Let ¢ € Héo (T') be a given function. Correspondingly, denote by U = U(3)) the
solution to the hyperbolic problem within 1,

(z) div (bU) +bgU =0 in 04
(44) U=0  onTIP" 4.28
1
(177) U=¢  onlI"
Next, denote by W = W (¢) the solution to the elliptic problem within 0,
(i) div(—vYW +bW) + bW =0  in (s
(3) W=0 onl?
ow . (4.29)
(17%) I/(—a—ﬁ;— =0 on Iy
(v) W=1¢ onl.
Finally, define
. out
Sl = {g o, U o ;-n.’ (4.30)
mug—v—z +bm,W on T'o%,
S =4 g0 (4.31)

e on I'»
6n2

(actually, S'¢ depends only on the values of 4 on I'*®).
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The interface operator
S =8+ 8% : H(T) - [H (D)) (4.32)

is the Steklov-Poincaré operator associated to problem (P). As a matter of fact, solving
problem (P) (with homogeneous data f = ¢ = 0) is equivalent to the simultaneous
solution of the two independent problems (4.28) and (4.29) along with the interface
equation

Sy =0 (4.33)

(this equation is homogeneous because we are dealing with a homogeneous coupled
problem). We can also give a sequential version of this procedure, which is strictly
related to the iterative argument introduced at the beginning of this section 4. Indeed,
the interface equation (4.33) may be equivalently reformulated by means of the operator
(§2)~1, the inverse of S? (this exists, because (4.29) is well posed). In this case, we
end up with the equation

—($?)715 Y = 9, (4.34)

that is, we look for fixed points of the application —(5?)~15%. Now, it is readily seen
that the restriction of this application to L (I*") coincides with the map T defined
in (4.25), when § =1 and f = ¢ = 0: dropping the restriction, we simply write

—(8H)"ist =1Ty. (4.35)
More generally, for any 0 (4.25) gives
| Ty = 0T1op + (L — 0)%, (4.36)
whence (4.34) is equivalent also to the equation
Top = . (4.37)

Thus, the interface equation is equivalent to the search for fixed points of the map Tj
in the homogeneous case. The natural iterative procedure applied to (4.37) gives

PPt = Tpy. (4.38)
On one hand, (4.35) and (4.36) allow us to read this iterative procedure as
Pt = —0(82) LS g 4 (1 - 0)gn :
the application of the map S? and the definition (4.32) then give
Syt — g7) = —0Sy",

which is nothing else than the Richardson iterative method applied to equation (4.33)
with “preconditioner” (52)~! (the terminology is borrowed from numerical analysis).
On the other hand, (4.3) and (4.25) show that the iterative procedure (4.38) is equiv-
alent to the iterative algorithm (4.1), (4.2). Therefore, we conclude that the iterative
algorithm (4.1), (4.2) is equivalent to the Richardson iterative method applied to equa-
tion (4.33) with “preconditioner” (S%)~L.
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4.2. 'The discrete case. ~ The iterative procedure (4.1), (4.2) can be realized
numerically by the spectral collocation method as follows.

For each n, we look for two polynomlals uy € Py, wl € Py satisfying the
following hyperbolic problem in £1:

() Ligufy +bouly = f at (BL)°U (T Uy U (0o UTO)y
(1) ,
(1) - [bny(ufy — @)|(P) = [Lyuf + bouly — f}(P)% at P e (I'")w,

(1)

(ii7) — [y (uly — 9™)|(P) = [Ly ufy + bouy — f](P ) at P € (I*")w;
P
(4.39)
and the following elliptic problem in {15:
() — div[IF (v VuwR)] + Liwh + bowfy = f at (E%)°,
(17) wh = ¢ at (I'7)w,
(-2%8 ) (p) = Ry (P wp) t Pe(rye
() VL) = RaP) Gy at P e (X,
. ow w}()z) :
(Z'U) [‘—I/ oy +b nz(wN - ’U,Kf)](P) RQ(P);@-}- at P e (I\ou )N,
P
v (p) =R P""g)‘ t Pe (i
(v Gl (P) = FalP) oy b P e ()

(4.40)
The residue R; was defined in (2.10); moreover, the initial values %, and w9, have
to be prescribed at the collocation points of I'. For n > 1, ¥™ is defined as follows,
according to (4.3):
P = gwyt+ (1—0)uft, 0>0 (4.41)
Clearly, (4.39)-(4.40) is an iterative procedure that yields at the limit the solution to
the finite dimensional coupled problem (2.2)-(2.9).

We define the following discrete inner products, associated with the Gauss-Lobatto
collocation points:

() (o= 3 w(P)(Pwp),

Pes , (4.42)
(@) (wv)yz = Y. u(P)(P)E,
PED Ny

where ¥ is any subset of 9(}; (¥n was defined at the beginning of section 2) and
u, v are defined in §1;, ¢ = 1,2. Correspondingly, we introduce the norm associated to

(4.42)(i): i
”’U”N»Oi = (U’U)Kr,ﬂiv 1=1,2. , (4-43)

Upon the space of algebraic polynomials of degree less than or equal to N, this norm
is equivalent to the continuous L? norm with constants independent of N (see, e.g., [7],
Ch. 2). Precisely, there is a constant Cy independent of N such that

”1’”0.0;' < ”v”N‘ﬂe < Collv 1=1,2, (4'44)
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for all v € Py. Finally, we introduce the following notation, in agreement with (3.9):
for all v € Py and all subset X of 300, we set

]

Py
i”lN.z = (\b-nll,vz)j, 5 (4.45)

We recall that |v]y y is uniformly equivalent to the norm |v|y for all functions
v € Py. In particular, there is a constant C independent of N such that

lle,}: SCliUlE . (4.46)

The theoretical results we are going to give in the following three subsections will be
derived in section 6.2 for the collocation method using Legendre Gaussian points only
(the case of Chebyshev points is not covered by our analysis).

4.2.1. The hyperbolic collocation problem in {11, The following stability result
(which is the discrete analogue of (4.10)) holds for problem (4.39) (see section 6.2.1 for
the proof).

LEMMA. 4.12  Under the assumption (2.11), the solution u%y to.(4.39) satisfies

2 1 2 2
B lluk 3.0, + luf v, 000w < “‘;Hf“?v,ol +lnpin + 19" [y pin. (4.47)

D

COROLLARY 4.13  If in particular it is f = 0 and ¢ = 0 on T'Y", then the inequality
(4.47) reduces to the following “outflow-inflow” estimate:

2
ﬂN”u?/”}?\r,nl + IurzfrIN,angM < |¢nl§/,1~m. (4.48)
|

REMARK 4.14 (Boundary points in which b-n; = 0). On the boundary subset (I'?)
we have collocated the differential equation, both in (2.2) and in (4.39). In other words,
the collocation scheme here proposed treats (I'{)y as a part of the outflow boundary.
In this way, the stability inequality (4.47) states that the discrete solution uf, depends
solely on the values of the “inflow data” on I'{® UT*". As a by-product, one deduces
that w7}, = 0, whenever f =0, ¢ = 0 and ¢ = 0 (homogeneous case), i.e. the discrete
hyperbolic problem has a unique solution.]

4.2.2. The elliptic collocation problem in {lo. The following stability result holds
for problem (4.40) (see section 6.2.2 for the proof).

LEMMA 4.15  Under the assumption (2.11), if ¢ = O then the solution wy, to problem
(4.40) satisfies

2VuIVuy (%, + B lluk IR a, + (bnal, (Wh)?) vy <

1 2
< "'"I"\'I"Hf“?v,n;, + IurzfrlN,paut- (4.49)
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The inequality (4.49) is the discrete counterpart of (4.19) for the homogeneous
case.

4.2.3. Convergence of the discrete iterative procedure; existence and unigueness
results for the coupled collocation problem. To begin with, from the previous hyper-
bolic and elliptic stability estimates we deduce a global inequality (analogous to (4.27))
for the homogeneous case, which will be useful in proving convergence of the iterative
scheme.

Under the same assumptions of Corollary 4.13 and Lemma 4.15, by a simple
combination of (4.48) and (4.49) we get the following hyperbolic-elliptic inequality:

2|V VwilliFa, + B {lluirlli,a, + lwillF,a,} + lwi 3 pin < 19" |3 pin. (4.50)
As a consequence of this estimate, we will prove the existence and uniqueness of the
solution to the coupled collocation problem (2.2)-(2.9). Let us define the following
error funciions:
€r = uny —uly, ey =wy —wy, (4.51)
- where (uy, wy) is the solution to problem (2.2)-(2.9), while u%, w} are the solutions
to (4.39) and (4.40), respectively. The following theorem states the convergence of
(uy, wh) to (un,wy). The proof will be given in section 6.2.3.
THEOREM 4.16  There exists § > O such that for all § € (1~ 6,1+ &) we have
ef — 0, e —0, asn-— -+oo.

Therefore, the sequence (uly,wl) converges to the solution (uyn,wn) of the coupled
collocation problem (2.2)-(2.9). Moreover, the rate of convergence is independent of
N.O

REMARK 4.17 An argument analogous to that of Remark 4.11 can be repeated in
the present case as well.[J

4.2.4. Some numerical results. Several numerical experiments based on the spec-
tral collocation method (2.2)-(2.9) are reported in [2]. They show that the numerical
solution is in a very good agreement with the differential solution, for the commonly
used case of collocation points of Chebyshev type, even without using the (expensive)
skew-symmetric decomposition (2.1). Here we make some additional remarks about
the convergence properties of our iterative procedure (4.39), (4.40).

There are situations in which the differential problem (P) decouples in a natural
way into two problems, one of them being independent of the other. This is the case,
for instance, when either ['“* =, or I"" = () (see Figure 4.1).

Figure 4.1. Examples of convergence in one iteration: the orientation of
the characteristic lines is shown in ;.
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In these situations, our iterative procedure converges just in one iteration (in
the former case, the elliptic problem is solved first, while in the latter the hyperbolic
problem must be solved in advance). We note that this feature occurs in the first case
because we used (1.12) instead of (1.9). This choice is helpful also in a more general
context, namely when no characteristic lines exist entering {; across I'“* and leaving
{11 across I'°® (see Figure 4.2). In this case, the hyperbolic problem must be solved
first and a successive resolution in {1, and {}; provides the exact solution.

P

Figure 4.2. Examples of convergence in two 1terat1ons the orientation
of the characteristic lines is shown in 4.

Here we report some results obtained for situations in which the coupling of the
two problems is more severe. In all cases, we choose the following data:

0=(-1,1) x (-1,1), O =(-1,0) x (=1,1), €z =(0,1) x (~1,1);
f=1, bo=1, b=aB.

(N + 1)% Chebyshev collocation points are considered within each subdomain and the
skew-symmetric decomposition (2.1) is not used. We denote by n;; the minimum value
of the integer n such that

the maximum being taken on all grid points lying on T'.

Table 4.1 shows the values of n; for various choices of v, N and « in the case
B=(y,1)" |

Tables 4.2 and 4.3 deal with the case B = (y,—z)7. Table 4.2 shows the values
of ng for various choices of v and «, with NV = 8, Table 4.3 shows the dependence of
ng on N and ¢, with v = 1073,

In all of these cases, the relaxation parameter  appearing in (4.41) was chosen
dynamically so as to minimize the interface error at each step.

For the case B = (y, 1), Table 4.1 shows that the rate of convergence is indepen-
dent of the number of grid points, while it has a mild dependence on the size of v and
|bl, in agreement with the results of our investigation.

For the other case B = (y, —~:1:) Table 4.2 shows that the rate of convergence
is still mildly depending on the size of v and b, while Table 4.3 shows a dependence
also on the number of grid points, when «a = 100. We conjecture that this pathology
is due to the ill-conditioning of the problem (the rate [b|v~* ranges from 0 to 10° on
the computational domain).
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v o N it

0.1 0.1 8,16,20 4

0.1 1 8,16,20 5

0.1 10 8,16,20 | 9

0.1 100 16 13

0.01 01 | 81620 | 4

0.01 1 8,16,20 | 8

0.01 10 8,16,20 14

0.01 100 16 15

0.001 | 0.1 | 816,20 || 5

0.001 | 1 816,20 | 11

0.001 10 8,16,20 16

0.001 100 16 16

Table 4.1.
v o N4 o N Ny
0.1 1 5 1 8 6
0.1 10 16 1 10 6
0.1 100 41 1 16 6
0.01 1 6 10 8 19
0.01 10 18 10 10 20
0.01 100 55 10 16 20
0.001 1 6 100 8 50
0.001 10 19 100 10 57
0.001 100 50 100 16 64
Table 4.2. Table 4.3.

5. Vanishing viscosity approximation to problem (P). This section is
devoted to the proof of existence of a solution to problem (P), stated in Theorem 3.2,
via a ”"vanishing viscosity” argument. Throughout the section we shall assume (1.2),
(1.3), (3.14), (3.15) and (3.16) without any further explicit mention.

Let € > 0 be a small parameter and choose sequences of C* functions {¢.}, {boc},
{v¢} such that

¢ € C®(00), ¢erp — Gppp in Hi (D), $ejpin = Grin in LE(IT);  (5.1)
boe € C®(0), ve € C®(0s); boe—bo in L™(N), ve—v in LO(Ns); (5.2)

as € — 0 (in (5.2) = denotes the weak* convergence): the reason for such a regular-
ization on the data will be clear later on. As a consequence of (1.2) and (5.2), we see
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that
1
V() > %VO, v€ 0y, 3 divh(z) +bo(z) > %ﬂo, sen, (5.3)

for € small enough: form now on we shall consider only values of € such that (5.3)

holds. Set ” q
_Je Izelil,
wld) = {5 BoCol (54

Consider the closed, linear affine subspace of H!({1):
V. ={veH(Q): vpp = e} (5.5)

and the following variational problem:
(Pe): to find z. € V. such that, for all v € V,

/ (@eVze — b2z)-V(2e — v)dz + / boeze (2 — v)dz + / [bn|z(ze — v)ds =
o 0 rguturye
= / f(2ze — v)dz — bngde(ze — v)ds. (5.6)
Q rin

Note that in the last integral on the left hand side it is [b-n| = b-ny on I'{** and
|bn| = bny on TY* (by (1.3)).

As we shall see in a moment, (P,) is equivalent to a boundary value problem
quite similar to (P), the difference lying in the regularization on the data and in
the presence of an elliptic singular perturbation (which affects also the boundary and
interface conditions). To state this equivalence, we introduce the following notation
which will be adopted from now on: if 2z, is a solution to (P,), we denote by

Ue = Zejn, and we = z¢q, (5.7)

the restrictions of 2z, to {1y and {12, respectively.
LEMMA 5.1 Let z be a solution to (P.). Then

—eAu + div (bue) + boeue = f in 04, (5.8)
div (v Vw, +bwe) + bocwe = f in {lg, (5.9)
Ou. o [ i ]
—~£5~;1—1~ +bnju. =bn;p. in _Hoo(rl )] , (5.10)
Ou, - !
?9"%{ =0 in [HZ, (Tt U r‘;)] , (5.11)
We = P on ', (5.12)
dw, : !
Ve 8;: =0 in rI’I;’ho(l‘é"")] , (5.13)
Jue dw. R !
meb—%: +bnju = VGB% —bnyw, in I~IO;0 (I‘)} , (5.14) -
Ue = We on I (5.15)

Proof. Let z solve (P.) and write (5.6) with v = 2, -+ 1, where ¢ € D(Q) (that
is, a smooth function with compact support). It follows

div (—a,Vze + bze) + boeze = £ in D'(9), (5.16)
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whence (5.8) and (5.9) are obtained by localization.
Setting

F.=—a.Vz + bz (5.17)

(the fluz corresponding to z), by (5.16) we see that F. € L%, (). Hence, Green’s
formula (3.5) (with A = ) and ¥ = T'y) gives, for all ¢ € H*(02) with ¢ = 0 on T'y,

/zﬁdivFedm + / F.-Vipdr = (Feny,¥).
0 0
Now, by the regularity assumption on b, it is

Jue P) + bnjubds.

(Fe'n17¢> = <~E¢9n1’ r

Thus, (5.10) and (5.11) follow easily by taking v = z. + ¢ in (5.6), with ¥ € C*=(Q),
¢ = 0 in {l3. An analogous argument shows (5.13). Since 2z, € V, (5.12) and (5.15)
are obvious. Finally, (5.14) may be proved by a standard argument which consists in
applying Green’s formula separately to ; and (1, then using (5.8) and (5.9).0J

REMARK 5.2 The way we have chosen for regularizing problem (P) has proven ef-
fective in a low regularity framework such as ours: remind that the original inflow data
satisfies (3.16), hence a pure Dirichlet condition on I'i® for the approaching problems
is not stable as ¢ — 0. Moreover, the a priori estimates we are going to obtain are
strongly based on the type of regularization we adopted.[d

Existence and uniqueness of the solution to problem (P.) is a consequence of our
assumptions (in particular, of (5.3) and (1.3)).

THEOREM 5.3 For all € > 0, problem (P,.) has one and only one solution z..
Proof. The bilinear, continuous form appearing in (5.6)

a(u,v) = /ﬂ(aeVumbu)-Vv dx+/

[b-n|uvds + / bocuv dz
def Pgutul'\gle el
is coercive in V, — V, (algebraic difference). In fact, Green’s formula (3.7) gives, for all
u, ve Ve,

a(u——v,u——v):/a6|V(u——v)|2daz+/(—;-divb + boe) (u — v)*dz+
a

Q

1 P 1 2 (5'3)
+ - [bn|(u—v)?ds — = b-ny(u —v)?ds >
2 I\gutur\gle 2 I\in
.o 1 2, 1 2
> min(e, =) | |V{u—v)[*dz+ -fo [ (v —v)°dz+
, 27 |, 27° o
1

. 1 1
-+ 5 Lg"furge Ib-nl(u - u)zds > mm(e, -2—110, —Z-ﬂo)”u —- v”in,

Therefore, Lax-Milgram Lemma gives existence and uniqueness of the solution. These
properties are not uniform in ¢, since the coerciveness constant vanishes as € — 0.[]
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REMARK 5.4 Assumption (1.3) has proven convenient for coerciveness, although it
is not necessary. For 1nstance, one can do without it in the coerciveness computation,
whenever the integral on I'Y® can be absorbed by the H! norm near I'Ye. This requires
a balance between v, b :«md boe we do not detail here.[] =

Now we are in a position to begin our asymptotic ané,lysis, as € — 0.
LEMMA 5.5  There is a constant C > 0 such that, for all € > 0,

l2ello,0 < C, (5.18)
Vel[Vuello,a, < C, (5.19)
[Vwello,a, < C. (5.20)

Proof. For all € > 0, let ve € H!(Q) be a function such that
vrp = b lvclua < Clléellyrp
(there are such v's). By (5.1), it follows that
[vell o < M, (5.21)

for some M > 0. Write (5.6) for v = v, and apply Green’s formula (3.7):
2 1, 2 1 2
ac|Vee[*dz + [ (= divb + boe) 22 dz + = |bn|z*ds =
0 a 2 2 Jrgwuryeuri

z/aEVz(;Vv6 ci:z:——/(bze)-Vve clz,'~|~/boezeve dx»%«}— bnsd2ds+
o 0 0 2 Jrp
2

-+ / [bn|z.v, ds — by de(ue — ve)ds + / f(ze —ve) da.
rguturye rin 0

This inequahty, together with (5.3), (1.3) and the well known algebraic inequality
ab < 6a? + b2, valid for all a,b > 0 and all § > 0, gives
1 1 1 2 1 2 1 2
el Vuel 0, + fzfvoHVwellg,m + §ﬁ0“ze“g,n + Elueh‘;" + Eluelrg"f + *2‘|w6|r‘§'e <

1
+ =l ot

+ {8llzelle.a + 45 llvell aHIPlleon + llbOeIIoo,n} + 8llz][5 0+

< 8ell|Vucllg,a, + 8llvre Vwel[§.,

4 -

lvellg,n + (1 Y )HfHO ot 5'”6'1"" T3 |¢e|?‘§" + 8lvelpin+
2 . .
- 6'11)6'1'\;1& -+ _4—5—IUG|I"§’3 -+ 'é'l(lselr\? -+ Blvelg\gut +6lue|?\z{ut. (5.22)

Hence, (5.17)-(5.20) follow by (5.1), (5.2) and (5.21).01

We note here that (5.22) gives an additional information on some boundary inte-
grals that will be exploited in section 6.

Lemma 5.5 implies the following Corollary immediately.
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COROLLARY 5.6  There exist
weL?(0y), we HY(N,) (5.23)
such that, possibly taking subsequences,
ue — u weakly in L?(Q); we — w weakly in H*(025). (5.24)

Moreover,
€Vu, — 0 strongly in L?(11;). (5.25)

|
Analogous results hold for the flux ¥ defined in (5.17).
PROPOSITION 5.7 There is a constant C > 0 such that, for all € > 0,

[ Fellez,, (a) < C. (5.26)

Consequently, on a subsequence, we find that

F. — F weakly in L, (Q), (5.27)
where b o
- U m i,
F= { ~vVw +bw in ,, ; (5.28)

u, w being the functions provided by Corollary 5.6.

Proof. The estimate (5.26) follows easily by Lemma 5.5. Consequently, there
exists some F € L%, (0) such that (5.27) holds. By uniqueness of the L?((2) weak
limit, (5.2), (5.24) and (5.25) give formula (5.28) for F.[J

The limit functions u and w satisfy differential equations and boundary and in-
terface conditions. A first result is provided by next theorem.

THEOREM 5.8  The functions u and w provided by Corollary 5.6 satisfy:

div (bu) + bou = f in D'(€1y), (5.29)
div (~vVw + bw) + bow = f in D'(02), (5.30)

- . 7
b-niu = by é in HO%O(I‘;“)] , (5.31)
w=¢ on I'g, (5.32)

Jdw o [erd el
u—a—-;; =0 in .Hgo(l‘év )] , (5.33)

]
~bnju = _U_(?_w_ +bnaw in H(;%o(l‘)] . (5.34)
an

Proof. Let ¢; € D((%), ¢ = 1,2, and choose v = 2, + ; in (5.6). Thanks to
(5.2), (5.24) and (5.25), we may take the limit in (5.6), obtaining the two differential
equations (5.29) and (5.30). The boundary condition (5.32) follows by (5.1), (5.12) and

¢

PR
(5.24). Moreover, (5.27) implies the weak convergence of F,-n to F-n in [Hgo (I‘*{‘)] )

?

’
[HS}O(P)} and [HO%O(I‘Q"’)] , so that (5.28), (5.10), (5.1) and Lemma 3.1, part (ii),
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give (5.31). Again (5.28), (5.24) and (5.13) imply (5.33), while (5.34) follows by (5.28)
and (5.14). Finally, assumption (3.16) on ¢ and Lemma 3.1, part (i), (with A = Q,
» =TI, p = |bny, v=uand z = ¢) show that Ujpin € L} (I") and that the
boundary condition (5.31) gives u = ¢ a.e. on I'i®, which is the sense stated in
Theorem 3.2.01 ’

To complete the proof of Theorem 3.2, we must show that u and w satisfy a further
condition on I'*®. This needs a preliminary study of higher regularity for u. and w,.

PROPOSITION 5.9  The solution z to (P.) is such that a.Vz, € H'(Q\A), where
A is an arbitrarily small neighborhood of 911.

Proof. Since the local regularity result is well known in the interior of {};, here
we check the local regularity near a point P € I', where the transmission condition is
enforced.

After a localization and flattening of T', we are left with the problem of finding
3. € H'(R?) such that, for all v € H!(R?),

/ (V5. — bz.)- Vv dz + / bocevdz= | fudz (5.35)
R? R3? R

(tildas take into account that the original solution has been multiplied by a localizing
factor and that a change of variables has been made in order to flatten the interface;
note that @, shows a jump across {z, = 0} and that it behaves like ¢ on {z < 0}).
We note that (5.35) is equivalent to the differential equation

div (—3c Ve + b3) + bo,ce = f in D'(R?). (5.36)

To shorten notations, we will drop the tildas, the subscript ¢ and the domain of
integration R? in the rest of this computation. Moreover, we will denote by C, C(e), ...
possibly different constants.

With the aim of applying a difference quotients technique, we fix o > 0 and set,
for a given v defined in R?,

v (z1,22) = v(zy + R, x2), (x1,22) € R%;, v =uv4 —v.
Plug v = 8,z in (5.35): it follows

/(aVz ~bz)-V(bpz) dz + / bo (6 2) dz = / f(62) dez. (5.37)

Next, make the change of variables (zy,z2) = (z1 + h,z3) in (5.35), then choose
v4 = pz in the transformed equation: it follows

/ (04V 2y —by2s) V(6nz) do + / boy 2 (61.2) dz = / fo(6h2)do.  (5.38)

Taking the difference between (5.37) and (5.38), observing that V and 6, commute
and recalling the identity 6, (uv) = ubpv + v Spu, we find

~/a+|V(5hz)|2dx~/(5haVz-\7(5hz) dx+/b+6hz-V(5hz) dz+

~+/z5th(5hz) d:l;-/b0+|5hz|2dx——/6hboz6hzd:1:: w/éhf&bzdx.
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Therefore,

/a+|V(5hZ)lzdsc < l[énalloo [V 2ll0 [V (8n2)llo + [[blloo lI6n2ll0 IV (8n.2)llo+

+ [|8nbllco | 2llol V (8r.2) o + [|Bo]|co [|6n2]I3+
+ [|6nbolloo 1282 ll0 + [|6n f1I - 11| 6n 211, (5.39)

where || - ||~1 denotes the norm of the dual space of H*(R?) = H}(R?). Now,
126n2ll0 < ll2lloll6nzllos  [16n2llT = l|6n2II3 + 1V (6n2)II3

and, for h small,

da
16nalloo < Chllz—=lleos [|0nblleo < ChlIbll1c0,  [IEnbollo < Chlboll1,
[ fll-1 < CRIIfllos  Ni6nzllo < Chllz]ly.
Thus, (5.39) gives in a standard way
IV(6.2)15 < C()h*{Jlallf o + DT 00 -+ lboll + 15 + 12T}

Taking the limit as A — 0, we find

——a——(aVz) € L?(R?) and

1, (aV2)]lo < C(e), (5.40)

I
(9:31
because a is regular in the z; direction. By (5.36), we know that

3 ) .
-é-;:-—z—(aVz) = m—a-;—l-(aVz) + div (bz) + boz — f,

so that (5.40) implies
: 7]
— <
I (92l < (),

that is
[(aV2)|lx < C(e). (5.41)

Note that the constant C(¢) is unbounded as ¢ — 0. Going back to the original
variables, (5.41) gives the local H! regularity of a.Vz, near the point P, whence the
proof is complete.[]

REMARK 5.10 We did not care about the regularity near the fixed boundary 911,
which will be of no use in the sequel. We just warn the reader that H? regularity of
the solution near a point of 81 may not hold, even for very smooth data, unless some
compatibility condition depending also on the geometry of 1 is satisfied.[]

The local regularity provided by Proposition 5.9 enables us to get an a priori
estimate for 2. -

LEMMA 5.11  Let ¢ be a nonnegative, smooth function defined in R?, vanishing in
a neighborhood of 30 UT**, There is a constant Cy, > 0 such that, for all ¢,

/ﬂzﬁ] div (bz)|?dz < Cy. (5.42)
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Proof. Let ¢ be such a function and take the L?(f) scalar product of (5.16) by
¥ div (bz.). Recalling (5.7), it follows:

- e/ AuYb-Vu, dz — e/ Auvcpdivbu, dz—
0y 0

1

- / div (v Vw)Yb-Vw, dz — / div (v Vw)y divb w, dz+
02 02

+/1/)|div (bze)|2d:z:—l—/zpbvoeze div (bz) da:z/qpfdiv (bze)dz.  (5.43)
Q Q Q

Proposition 5.9 allows us to apply Green’s formula separately to {1; and £, since the
restriction of 4 div (bz.) to Q; belongs to H!({);), ¢ = 1,2. Therefore, we find

p / Autpb-Vu, de = ¢ / Vi Vi b-Vu, dot
1951 Q1

e[ YVuVbVu)dz—e [ 33
Oy an, Ong

b-Vu, ds. (5.44)
The second integral on the right hand side of (5.44) may be worked out as follows:
e | YVuV(b-Vu,)dz = ;- Yb-V(VuP)de+e | $Vue(VueVb)dz =

0y Qy 951

= -§-/ div (¥b)|Vu,[?dz + -;— Ybony |V 2ds + E/ PVue (Vue-Vb) dz.
0y

a0y Qy

Therefore, the first integral in (5.43) becomes:
- e/ AuYpb-Vu.dz = ¢ Viue-Vip b-Vu, dz+
Q; Qy

+ 6/01 YVue(VueVb) dx — »26—/n div (¢b) |Vu, |2 dz—

1 8
—ef p2bvuds+ S [ by Vufds. (5.45)
an, Onj 2 Jaa,

Analogously, the third integral in (5.43) becomes:

— [ div (v V) gb- Vs, ds = / v V.-V bV, do+

03 02
+/ vepVwe (Vwe-Vb) dz — —1-/ div (¥b)v|Vw |*dz—
02 2Ja,
dw, 1 9
- Yre—b-Vw,ds + = Yrbng | Vw[*ds. (5.46)
a0y 6n2 2 an,

Using (5.16), second and fourth integrals in (5.43) become respectively:

me/n Aucpdivbu, de = / (f = div (buc) — boeue) Yuc divb dz, (5.47)
1 Q

1
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— div (1. Vwe )y divbw, dz = / (f = div (bwe) — bocwe) Ywe divbdz.  (5.48)
03 02

Taking (5.45)-(5.48) into account, (5.43) becomes

/ Y| div (bze)[*dz — € P Oue
0

€
b-Vu,ds 4 — / bng |Vu|?ds—
a0, Omi 2 601¢ 1V

dw,
- ’(ﬁl/e-"-u")-b-V‘we ds + 1 / Yr by | Vw, [2ds <
an,  Ong 2 Jaq,

< C() {IIbllsco.0 [IVEIVuel 130, + IVl l30,] +
+ [V div (bze)lo.a + b1,00,0llzell0.0] (10,0 + 1bocllcoa

Jzello.a] }» (5.49)
for a constant C(3) independent of e. Recalling (5.2), (5.24) and (5.25), we have that

{right hand side of (5.49)} < C($){1 + [|v/¥ div (bz)[o.a}, (5.50)

where C() is a new constant, depending on €, b, by, v, f, ¢ and ¥, but not on .
Now we deal with the boundary integrals on the left hand side of (5.49). To begin with,
we recall that the only nontrivial contribution is along I'*"*, because of the assumption
on the support of . Next, denote by t; (respectively, t5) the unit vector tangent
to I, oriented in the usual way with respect to n; (respectively, ny): note that
ti = —t2). Thanks to Proposition 5.9, the gradient of 2. on I may be decomposed
along the directions n; and t;, that is

ow, dw,
+ JE——

_ Owe du, Jdu,
- (91’12 2 8t2

ny +—1t; on I‘in.

Vw, o
v 8n1 8t1

tz, Vu,=

Moreover, the transmission condition (5.14) gives

Jw, € Ju, in
e on I'*",
ons, Ve Ony

Therefore, the boundary integrals on the left hand side of (5.49) become

ou €
— € p—=b-Vu,ds + -—/ bng|Vue|?ds—
a0, Ony 2 am¢ 1V
€ 1
- YU, Ow b-Vw,ds + / Yrebmg|Vw|?ds =
a0, on, 2 Jaq,

1 du,

du,
=3 [/m(ue - b5 |2ds+/rm (1~ = obm|

8n1

}2ds .

Each of the two integrals between square brackets is nonpositive, for € small, because
b < 0 on T'% U T, Therefore, the contribution of the boundary integrals on the
left hand side of (5.49) is nonnegative and (5.42) follows easily by (5.50).00

REMARK 5.12 We note that the local regularity result of Proposition 5.9 has been
used only to apply Green’s formula, to give the boundary integrals in (5.49) a meaning
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and to decompose the gradient along the normal and the tangent directions. In partic-
ular, we need not the FI? local estimates be uniform in ¢ (which cannot be expected).[]

As a consequence of Lemma 5.11, we get a convergence result.
PROPOSITION 5.13  Let Q' be any open subset of 1y, such that N [T{UTou] = §.
Possibly taking a subsequence, bu, converges to bu weakly in L%, (1), as e = 0 (u is
the function found in Corollary 5.6).

Proof. By (5.17) and (5.42), bu, is bounded in L%, ('), uniformly in e. There-
fore, a subsequence must converge weakly in L%;, (). Possibly taking a further sub-
sequence, by (5.24), the limit must be bu.[]

We are in a position to find the remaining interface condition fulfilled by the limit
functions v and w.
PROPOSITION 5.14 The functions u, w defined in Corollary 5.6 satisfy

L
~banju=bun,w in H% ™. 5.51
00

Proof. Let I’ be any (relatively) open subset of I*", with T/ ¢ I'", Let OV
be the intersection of £33 with a small neighborhood of I'Y. By Proposition 5.13, bu,
converges to bu weakly in L%, (Q), whence b-nju. converges to b-nju weakly in

1
H‘%(aﬂ’). Choosing test functions in HZ,(I'), it follows that the convergence is

¢
weak in H% )| . Recalling (3.15) and (5.15), we get that
00

L

]
—bnju=bmnyw in [Hgo(r')] .

Since I is arbitrary, this gives (5.51). Again, Lemma 3.1, part (i), allows us to read
condition (5.51) as u = w a.e. on I''", which is the sense stated in Theorem 3.2.01

The proof of the existence part of Theorem 3.2 is complete. Clearly, the very
procedure we have followed gives (P) as a limit of globally elliptic problems, as stated
in the existence theorem. The uniqueness part will be proved by means of a different
argument in section 6.1.3.

6. The iterative procedure of section 4: the proofs. In this section we
prove the results stated in section 4.

6.1. The differential case.  We begin by detailing the differential problem first,
distinguishing between the hyperbolic and the elliptic subproblems.

6.1.1. Proofs of the results of section 4.1.1. Our goal is to prove Theorem 4.1. The
strategy of approaching (Pg) by regularized problems has proven effective also in this
case, yielding the a priori estimate (4.7). As a by-product, we will also get a direct
proof of existence and uniqueness of a solution to (Pg).

Let € > 0 be a small parameter and choose sequences of functions {Ac}, {boc}
satisfying

boe € C%(€11), boe—bo in L (0y). (6.2)
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As in the preceding section, we may assume that (5.3) holds for all values of ¢ which
will appear in the sequel.

Consider the variational problem
(Pye): to find u, € H' (1) such that, for all v € H* (),

/m(szu€ ~bue) V(ue — v)de + /

431

= flue —v)de — / - baygde(ue —v)ds.  (6.3)
01 aqir

Problem (Py) is an elliptic regularization to the hyperbolic problem (Ps), analogous
to the one introduced in the previous section for the coupled problem (P). Therefore,
the techniques developed in section 5 still apply to the present case and give a number
of properties, which we summarize as follows.

PROPOSITION 6.1  For all € > 0, problem (Py.) has a unique solution u., which
" satisfies:

—eAue + div (bu,) + bocue = f in D'(1y), (6.4)
6u€ . '% in !
—eanl +bnjue =bngA in [Hoo(aﬂl )] ) (6.5)
au’é — H ':l;‘ out ,,
s =0 in [H3, (00 )]s (6.6)
eVu, — 0 strongly in L%(;), ase¢— 0. (6.7)

Moreover, there is o function u € L?(Q1) such that (possibly taking a subsequence)
ue — u weakly in L%((}), (6.8)
. 14
by — bnju weakly in [Hé‘o(amﬂ)] , (6.9)

{
bnjue — bnju weakly in [Héo(aﬂ‘f“t)] . (6.10)
Finally, the limit function satisfies (4.4) and (4.5).

Proof. The proof of (6.4)-(6.9) is obtained by repeating the corresponding argu-
ments of section 5. We just note that the boundary integrals of (5.49) (in the proof of
Lemma 5.11) do not contain any interface contribution: now the whole boundary 91,
behaves like T'; did in the preceding case. To show (6.10), let us repeat the proof of
Lemma 5.11, this time choosing a nonnegative, smooth ¢ vanishing in a neighborhood
of 811", All steps in the proof of the lemma can be followed again, up to the treatment
of the boundary integrals in (5.49). Now, we may exploit (6.6) to see that the two
integrals on 8f1; (presently, there is no contribution from 911,) reduce to

This is a nonnegative quantity added to the left hand side of (5.49), hence it can be
dropped in the subsequent computation. As a consequence, we get that Lemma 5.11

]
still holds with this ¢, hence b-n;u, — bnju in {Hé-o (80'{“)] . This proves (6.10).0
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REMARK 6.2 More precisely, the strategy adopted in section 5 permits to obtain
(6.10) along 907, except at singular points. We do not stick to this matter, because
we will exploit this convergence along I'*“t, which is regular.[]

In addition to the previous properties, the following estimate is fulfilled.
PROPOSITION 6.3 For all ¢ > 0 and all § > 0,

b_s

llVuclda, + (5

1 2 1 1 2
Muells,a, + Eluelang“ < Zg”f“g,m + El}\elan‘ln- (6.11)
Moreover, if f = 0 then (6.11) holds with é = 0.
Proof. Choose v = 0in (6.3): Green’s formula (3.7) gives

e/ |Vu|2dz + / (—1— divb + boe)u 2dz + 1 / bnju2ds—
01 nl 2 2 3ngut
1

—— / bnjulds = fucdx ~ / bunjucAe ds.
2 Jaqir o aqin

Owing to (5.3), we get (6.11) easily. Note that the small parameter § comes into play
just in order to treat the first term on the right hand side of the previous equality.
Therefore, one can forget it whenever f = 0.0J

Proof of Theorem 4.1, For all ¢ > 0, set

(0041) = {z € 307" : (bny)(z) > o}. (6.12)

Obviously, 801§“ = U,50(81),; moreover, (6.11) and (6.1) imply that

0/ u2ds < C,
(801) s

for all o > 0, with a constant C independent of € and ¢. Therefore, for all ¢ > 0 there
is g5 € L?((091),) such that ue — g, weakly in L?((81;),), as € — 0 (possibly taking
a subsequence). Thus,

bnjue — bngg, weakly in L2((00),) : (6.13)
by (6.10), g, does not depend on the above subsequence and
90 = u on (911),, whence u € L?((804),), (6.14)

for all ¢ > 0. By (6.1), (6.7), (6.13), (6.14) and by the lower semicontinuity of | - [,
the limit of (6.11) as € — 0 gives :

B 1, 2 1 1
(5 = Ol a, +5lultoa,, < SlIfEa, + 517500 (6.15)

The family of functions {G,} defined by

Q. - bxnu?, on (80;),,
e 0, on 30‘{”\(801)0
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is such that: G, > 0 on 90*, for all o > 0; Goy 2 Go,, if 01 < 095 G, is integrable
on 811§%¢, this integral equals I“'?aol)a, hence it is uniformly bounded with o, due to
(6.15). Thus, Beppo Levi’s theorem on monotone convergence applies and gives the
a.e. pointwise convergence of G, to some Gg € Ll(aﬂ‘{“t), along with the convergence
of the corresponding integrals. It follows that b-nu? € L'(80¢*) and (6.15) yields
(4.7).

It remains to discuss uniqueness: by linearity, it is enough to do this in the
homogeneous case f = A = 0. With this assumption, (4.7) gives immediately that
v = 0 a.e. in {l; and a.e. on 9N7™ (whence uniqueness), but only for the solution
obtained as limit of solutions to the regularized problems (Pye). Next Proposition
shows that uniqueness holds independently of the regularization. Introduce the space

W ={vel?®(): b-Vve L), v=0on dN"}, (6.16)
endowed with the norm
1
lol§a, + bVl a,]*, vew.

The vanishing of the elements of W on 801%" is intended in the following sense: bnjv =
0 in [Héo (30’;")}’ (which is meaningful, since bv belongs to L%, (£21)), or even a.e.
on 80", due to Lemma 3.1, part (i).

PROPOSITION 6.4 Let u € W be such that

b-Vu + (bp + divb)u =0 a.e. in . (6.17)

Then, v = 0 a.e. in 0y and a.e. on N, In particular, problem (Prr) with
homogeneous data f = X = 0 has only the trivial solution, whence the nonhomogeneous
problem has a unique solution.

Proof. It is easy to check that the space W is complete. Moreover, the family
Z ={veCy): vjaqin = O} is dense in W. This can be shown by means of the
same technique used to prove the density of the smooth functions in Sobolev spaces
(see [8]). As a consequence, we claim that Green’s formula (3.7) holds for all v € W,

namely
l/ b-nvzds=/ vb-Vvdz + -1—/ v? div b dz. (6.18)
2 Jangw 0, 2 Ja

1

Indeed, let {v,} be a sequence in Z, converging to v in W: in particular, bv,, — bv

in L%, (Q), whence
?

bnv, — bnv in [Héo(an;m)] (6.19)
Now, (3.7) gives
1 ’ . 1 2 1
= bnv.ds = VabVu,de+ = | v divbds, (6.20)
2 aniut o7} 2 0y

for all n. The right hand side of this equality converges to the right hand side of (6.18),
because v, — v in W. Therefore, the left hand side of (6.20) has a limit, which turns
out to be equal to the left hand side of (6.18) (this can be shown by the same argument
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used at the beginning of the proof of Theorem 4.1, recalling also (6.19)). Thus, (6.18)
holds. Now, take the L?(f);) scalar product of (6.17) by u and apply (6.18): it follows

! / bnu?ds + / uz(l divb + by) dz = 0.
2 30{1&# 0y 2

Hence, (1.2) gives u = 0 a.e. in {3y and a.e. on 0N¢**. The consequent application to
problem (Pg) is trivial, because (6.17) is nothing else than (4.4) when f = 0.0

REMARK 6.5 Proposition 6.4 does not provide any information on the behavior of
the solution to the homogeneous problem along 80F, where b-ny = 0. Clearly, this
lack of information is not relevant, for “regular” solutions.[]

By now, the proof of Theorem 4.1 is complete.

6.1.2. Proofs of the results of section 4.1.2. Proof of Theorem 4.3. By Green’s for-
mula (3.7), the variational equality (4.13) gives

/ u|\7w|2d:::+/ (-1— divb + bg)w?dz — l/ bnyw?ds+:
03 02 2

Doutyrd
+—1~/ b-nyw?ds =/ I/Vw-Vvd:cm/ (bw)-Vu dz+
2 Jpinypye 03 03

+ / bowv dz + / bungwvds + | f(w—v)dz — b-nau(w — v)ds.
23 rinurye 0,

out

Recalling (1.2), (1.3) and noticing that b-n, is negative on I'°* and positive on Iin,
for all § > 0 we get

IVZAVullR 0, + BollwlBa, + (G ~ Ol wlimurge < VAT 0, + o5 lol 0,
+ {81010, + 25 1010, HIBl1.00,05 + [bolloo,0 1+
+ 6wl a, + ol a, + 1+ )17 1Z 0, + 51812+
+ (%‘ + 8) | ulBoue + Z%Ivlfmz\w. (6.21)

Now, we may choose a test function v such that ||v||1,q, < Cll¢ll3,rp, hence (6.21)
gives

- .
IVYIVwllE0, + Bollwli§,a, + (5 = O)lwlrimorye < 6IVEIVWI[3 0,+
1
+ 6l|wl[5,0, {Ill 00,05 + Ibollco,0s} + 6w][3 0, + (1 + ) 1/116.0,+

1 1
+ §|¢|12412> + (5 + 8) il fons + C(ﬂz,b,bo;&”‘f’“gé,rg?’
for a suitable positive constant C((l,b,bo;6) depending only on its argument. This
proves (4.19). Finally, if f = ¢ = 0, then we may choose v =0 in (4.13): 6§ = 0 is then
allowed in (6.21) and (4.20) follows.[]
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6.1.3. Pr_oofs of the results of section 4.1.3. Proof of Proposition 4.5. Let 3 be
given in L (I'*").

(1) = (2). If (u¥,w?) solves problem (P), then it is u? = w? a.e. on I"". By
(4.23), it is u¥ = ¢ a.e. in I'"*", whence w¥ = ¢ a.e. on I'*", Therefore, for all § € R,
C Totp = 0(w¢)|pm + (1 — 8)¢ = 9, that is, ¢ is a fixed point for Typ. In particular, it
follows that the fixed point 4 belongs to H3 (I'*?) and that it does not depend on .

(2) = (1). Let ¢ be a fixed point for Ty, for some 0 € R. Then, ¢ = Tty =
H(w’/’)lpm + (1 —0)9, that is, w?¥ = 9 a.e. on ", Thus, u¥ = ¢ = w?¥ a.e. in I'*" and
the pair (u¥,w"¥) solves the coupled problem (P).O3

Proof of Lemma 4.6. The proof is immediate, by a simple combination of the es-
timates (4.8) and (4.20) applied to (4.23), (4.24).00

Proof of Lemma 4.7. Our aim is to show that the map T is a contraction. To
this end, let 91, 12 be given in L2 (). By linearity, T1%y — Tiv2 = T (Y1 — ) =
(wg’ 1"”/”)“—-;" (notation of Lemma 4.6), since we have to solve the two problems (4.23),

(4.24) with f = ¢ = 0 and ¢ = ¢; — 2. Therefore, Lemma 4.6 applies and (4.26)
holds. Now, if v denotes the trace constant in {15 (that is, [|v][1 aq, < ~|lvll1,0,, for

all v € H'(03)), we have that

. - 1 2
IVoIVwe I3 q, + Bollwd lI3.a, = min(vo, Bo) lewg’llé,anz >C fz—lwff’lm, (6.22)

where . .
0= 2y~2 min(vo, Bo) >o.
maXxpin [bny|
Thus, a combination of (4.26) and (6.22) gives
b2 < 1 rula
g in < I3,
namely
2 1 2
T - T in L e - ine 6. 3
|T191 — Tigalpin < C+1|¢1 Yol , (6.23)

Therefore, Ty is a contraction in L2 (T'**), hence it admits a unique fixed point.[d

REMARK 6.6 Since fixed points for Ty do not depend on 0, Lemma 4.7 provides the
existence and uniqueness of the fixed point for T, for all § € R. Actually, a convenient
choice of § might diminish the value of the contraction constant appearing in (6.23),
thus improving the rate of convergence in numerical approximations.[]

Proof of Lemma 4.8. By the assumption on ¢°, Corollary 4.2 implies that (4.9)
holds for all n. After this remark, the proof is immediate, by a simple combination of
the estimates (4.11) and (4.22).0

Proof of Lemma 4.9. Let 1 be the fixed point of Ty. For all n, set

v =gr—y, Ur=u"—u¥, Wr=uw"-w’, (6.24)

where u™, w" solve (4.1), (4.2), while u¥,w¥ solve (4.23), (4.24). It is immediate to
see that U™, W™ solve the two boundary value problems (4.1), (4.2) with f = ¢ =0
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and 9™ replaced by d®. Therefore, we can read (4.27) with uf, wg and " replaced
by U™, W™ and d", respectively: it follows

n ’ g n n 1 ni2 nj2
VAW 2.0, + L2100, + B0l B, + S irge < 31" 2. (625)

Bo |

This inequality and a trick analogous to (6.22) give
2 2
W™ 2in < K2[d*|1in, (6.26)

for a suitable constant K < 1. Since (w¥)ipin = Ti¢p = ¢, by (6.24) and (4.3) it
follows that d*t! = W™ + (1 — 6)d", whence

(6.26)
[t i < OUW ™ |pin + 1= ld* | pin - < (101K + |1 = 6)|d pin.  (6:27)

Therefore, if § belongs to the interval |0, '1'127{"[ (which includes the value 1), then
the constant |9]K + |1 — 6] is smaller than 1 and (6.27) entails that |d*|nin — 0, as

n — -+oo. It follows that ™ — ¢ in L2 (I").00

Proof of Theorem 4.10. Again, let ¥ be the fixed point of Ty and denote by u¥,w?
the corresponding solutions to (4.23), (4.24). By Lemma 4.9, the sequence d™ (defined
in (6.24)) converges to 0 in L2(I'**). By (6.25), the sequences of functions U™, W™
(still defined in (6.24)) satisfy U™ — 0 in L*((;) and W™ — 0 in H!(0,). Therefore,
u® — w¥ in L2(4) and w® — w¥ in H'(O,). By Proposition 4.5, we know that
(u?,w?) is a solution to the coupled problem (P).

Finally, we discuss uniqueness. If ¢ is the unique fixed point of Ty, the solutions
w’,w¥ to (4.23), (4.24) are such that u¥ is uniquely determined, in the sense of
Proposition 6.4, and consequently w¥ is unique as a solution to (4.24). By Proposition

4.5, (u¥,w?) provides the unique solution (in the above sense) to the coupled problem
(P).00 '

6.2. The discrete case.  The analysis we are going to carry out in this section
is concerned solely with the collocation method using the Legendre Gaussian points.
In particular, it does not apply to the case in which the collocation points pertain to
the Chebyshev-Lobatto formula.

LEMMA 6.7 Within the domain ), § = 1,2, the operator L}, defined by (2.1) satisfies
the following property:

: 1, .. . 1
(Liyv,v)w,0; = 5 (div (I%b),v*)na; + §(b'ni,v2)1v,an.- (6.28)

for all polynomial v of degree N (the discrete inner products are defined in (4.42)). '
Proof. Since the one-dimensional Gauss-Lobatto quadrature formula is exact
when the integrand is a one-dimensional algebraic polynomial of degree less than or

equal to 2N — 1 (see, e.g., [10]), it is easy to show that the following discrete rule of
integration by parts holds:

(divg,v)n,a; = (8, Vo)n,a, + (815, v,00; (6.29)
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for all polynomials g, v such that g;v € Pay, 7 = 1,2. From (6.29) it follows:
(div (I bv),v) w0, = —(bv, Vv) .0, + (b1, v*)y 00, (6.30)

The inequality (6.28) follows from (6.30) and from the definition (2.1).0]
Let us now define the bilinear form ¢i : Py x Py — R,

cy (u,v) djf(Lﬁvu,v)N,n,. + (b)) " w,v)n,00,, ¢=1,2: (6.31)

here and in the following we denote by u® the positive and negative parts of the
function u, respectively. From (6.28) we easily deduce that

) 1 1 1 - .

civ (v,v) = 5 (div (Iyb),v")w 0, +5 (b0:) T, 0" w00, + 5 (bi) ™, v)w 00, i=1,2
(6.32)

for all polynomial v € Py.

6.2.1. Proofs of the results of section 4.2.1.
LEMMA 6.8  The hyperbolic problem (4.39) can be written equivalently as follows:

find u} € Py such that for all v € Py
cllv (urlz\‘/’v) + (bOurJ'\'I’v)N,ﬂl = (f,v)v0, + ((b'nl)_;%v)N,I"'l”’{’

+ ((bny) ™", v) ypin. (6.33)

Proof. The finite dimensional problem (6.33) can be equivalently reformulated
by restricting test functions to the (IV +1)2 Lagrangean functions v(*) € Py such that
o8 (P;) = by for all P; € Y. If Py is an internal point and v(*) is the associated
Lagrangean function, then it is v¥) = 0 on 80;. Hence (6.33) with v = v%) gives
(4.39)(i) immediately, owing to (6.31).

Next, write (6.33) with v = v(¥), where P; € 9Q;. Using (4.39)(i), (4.42) as well as
(6.31), we find

(Lhufy + boufy = I(P)wp) = [(bm)~ (x —ui)I(PNOR),  (6:34)
where (rin)
- ¢ at (I'Y" Ny
X = {,‘/)n at (Iw.ln)N (635)

Therefore, (4.39)(ii) and (4.39)(iii) follow easily by (6.34).0]

Proof of Lemma 4.12. We use the equivalent variational formulation (6.33). Tak-
ing v = u} and using (6.32) along with definitions (4.43) and (4.45), by (2.11) we
obtain

1 2 1 2
Bw llu 3q, + ‘z‘lu?/lN,ang"t + §IUZ|N,80§” =

(fsuR)w,a, + ((bn1)” X, v )N,00;- (6.36)
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By Cauchy-Schwarz inequality we have

1 Bn
ks < 5311, + 2108 B (637

- 1 2 1, 2 1,
((bny)™x,uf) w00, < 5|¢|N,1‘;n + 5|¢"|N,r=‘» + “ZfIUMN,an;n- (6.38)

The inequality (4.47) follows by (6.36)-(6.38).[1

6.2.2. Proofs of the results of section 4.2.2. We turn now to the elliptic problem
(4.40). Let us define the following polynomial subset:

Py dff{v €Py:v=00onTZ}. (6.39)

This is precisely the set of algebraic polynomials of degree less than or equal to N
that vanish on the portion of 9(1; where a Dirichlet condition is prescribed. We start
proving the following equivalence statement.

LEMMA 6.9 Assume ¢ = 0 on I'P. The collocation problem (4.40) is equivalent to
the following discrete variational problem: ‘
find wh € P§ such that for all v € PR
(Vi Voln,a, + & (wh,v) + (bowh, v)n.0, =
= (f,9)m,, + (bn) T ufy,v)nr. (6.40)

Proof. We first note that the same argument used to get (6.29) gives the discrete
integration by parts formula:

. ., dw
(qul'f,, V'U)N’QQ = _( div [Ilzv(l/va)], 'U)N'Q'- -+ (IJ BZZ ,’U)N,anz. (6.41)

As we noticed in the proof of Lemma 6.8, problem (6.40) can be equivalently refor-
mulated by letting the test functions v range within the space of Lagrangean functions
v(*) € PR associated with the collocation points of 8%, N ([1;\I'2).

(i) If v® is associated with a collocation point Py of (8%)°, then v(*) vanishes on
90, hence all boundary termes involving v(*) can be dropped. Therefore, from
(6.40), (6.41) and (6.31) it follows that the set of equations (4.40)(i) holds.

(ii) Let v(*) be now the Lagrangean function associated with a collocation point Py
of (I'Y¢) . Taking v = v(¥) in (6.40) and using (6.41) and (6.31) we obtain

Ra(PL)of) -+ (bma) wRI(B)OF) = (b a0 = L (YO,
(6.42)
The second term in the left hand side vanishes because of (1.3). Morover, the
first term in the right hand side vanishes, since v(*) is zero on T'. Therefore, we
obtain (4.40)(iii).
(iii) Now, take v = v(¥) in (6.40), with v(¥) associated to a point Py of (I**) . Relation
(6.42) holds also in the present case, but now we have that

((bny)tuf, o™y = [(bng)tug ()6
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This term vanishes along with the first term in the right hand side, because
(bmgz)™ = (bmy)* =0on ", Thus, the set of relations (4.40)(v) holds.

(iv) Finally, let v%) be the Lagrangean function associated with a collocation point
Py of (I'“*) . Taking v = »(¥) in (6.40) and using (6.42) we obtain

ouy _

dny bmg) " wiy + (bny)Tuf ] ()05

RZ(Pk)wj(mi) = [~V

Noticing that (b-ng)~ = (bn)* = ~bxmy on To% the set of relations (4.40)(iv)
follows. ]

We are in a position to prove the stability estimate (4.49).
Proof of Lemma 4.15. Take v = wY in (6.40) and use (2.11) and (6.32). It follows

7L k(3 1¢3 1
(vaN’val”?V,ﬂg + ﬂNHwN”?\r,n, + '2'((b'n2)+s ('wzr\br)z)N.aﬂz“‘“
1

+ 5((b'n2)”,(w?v)2)w,am = (fywh)k.a, + (bo) e, wi)vr.  (6:43)

We notice that
(bna)™, (W) w,00, = ((b12) 7, (Wh))x.rs (6.44)

since wf = 0 on I'P and (b'nz)”™ =0on I')e. Moreover, using once again the identity
(b))t = (bmg)” onI' and the Cauchy-Schwarz inequality, it follows

(oma) ¥, wi e < S((a) s (45 avr 5 (Bna) > (R vy

(s S 5o, + IR 0, (649

2o | =

Owing to (6.44) and (6.45), we get (4.49) easily from (6.43).00

6.2.3. Proofs of the results of section 4.2.3. Owing to the previous stability in-
equalities we can deduce the uniqueness result for the collocation coupled problem
(2.2)-(2.9), stated in Theorem 4.16.

PROPOSITION 6.10  The collocation coupled problem (2.2)-(2.9) has a unique solu-
tion.

Proof. It is enough to prove that the homogeneous problem (namely the one
with f = ¢ = 0) has the only trivial solution uy = wy = 0. Let us introduce the
unknown function

YN djf(ww)lrm- (6.46)

As soon as ¥y is available on " we can solve the hyperbolic problem (2.2), (2.4),
(2.7) first. Next we can solve the elliptic problem (2.3), (2.5), (2.6), (2.8), (2.9). We
can therefore read the stability estimate (4.50) with ™ replaced by ¥n, uly by un
and w% by wy, obtaining

2|7 Vun 3,0, + Bn w0, + lowlia,] + lww [3pen < lon [ pin-
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By (6.46), we may drop the two boundary terms in the previous inequality and conclude
that uy = wy = 0.00
Now we turn to the proof of the convergence results of Theorem 4.16.

By simply taking the difference between equations (2.2)-(2.9) and the correspond-
ing equations (4.39), (4.40), we see immediately that the following statement holds.

PROPOSITION 6.11  The error functions defined in (4.51) satisfy the same equations
(4.39), (4.40), with u%y and wy replaced respectively by € and €3, f =0, ¢ =0 and

™ = 0el "t + (1— 0™, 8> 0. (6.47)

|

In view of the above statement, we can write the inequality (4.50) for e} and e%,
obtaining:

2 2
2vuIVeslliaa, + Bvlletlda, + lezlRa,] + le3 Iy rm < 19"y pim.  (6.48)

Now, (1.2), (4.44), (4.46) and (6.22) give

2
2VvIVes|iida, +AnllelNa, > Klesly i, (6.49)

where
K= +~2 min(vo, Bn)

"~ C? maxpin by |

Thus, a combination of (6.48) and (6.49) gives

> 0.

2 1 n
le [y rin < ml@b |?v,r"n : (6.50)

this inequality expresses a contraction of the input error ¢ on I'*. More precisely,
let us define a discrete interface operator as follows (see (4.25))

Ty : Py(T*") = Py(T*"), ¢" > Tyy™ dff(€§)|rfn- (6.51)

The inequality (6.50) reads equivalently in terms of this operator:

1

T [ % pins V™ € Py (T%). (6.52)

ITN"pnl}?\r,rin <
If 0 = 1in (6.47), then it is (e§)jpin = ¥, Vn. Thus, (6.52) yields

2 1
I¢n+1IN,I"'"' <

< ml«ﬁ”l?v,pm, Vi > 2, (6.53)

hence the operator Ty is a contraction and %™ — 0 as n — +oco. As shown in the
proof of Proposition 6.10, this (trivial) limit value at I'” allows us to reconstruct
the whole solution to the coupled homogeneous collocation problem (2.2)-(2.9), which
turns out to be identically zero. Therefore, we get e}, ef — 0, as n — +oo. In view
of the definition (4.51), we infer that the sequence (u%;,w%) converges to the (unique)
solution of the collocation problem (2.2)-(2.9), in the case § = 1.
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If 0 < 0 5 1, then we define

TN,O = OTN 4 (1 - 9)1, (6.54)
def

where I is the identity operator. From (6.47) we deduce that

P = Ty o™,  Vn > 2.

Since Ty,1 = T, for 0 sufficiently close to 1 the operator Ty, is still a contraction
(with a contraction constant possibly smaller than (K +1)71).00
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