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Abstract. The mortar element method is an optimal nonconforming domain decom-
position method for the discretization of partial differential equations which provides for
a maximum of mesh, refinement, and resolution flexibility while simultaneously preserving
locality and elemental structure. In this paper, we present several enhancements to the
spectral element version of the mortar method: the mortar treatment of arbitrary two-
dimensional element topologies; the application of the mortar method to moving-geometry
sliding-mesh problems; and the development of new data structures based on composite
data objects and topology trees which allow for simple implementation of complex dis-
cretizations.

1 Introduction

Spectral element methods [1,2] are weighted residual techniques for the approximation
of partial differential equations that combine the rapid convergence rate of spectral methods
[3,4] with the generality of finite element techniques [5,6,7]. The spectral element discretiza-
tion, coupled to fast iterative solvers [8,9,10], has proven computationally efficient on high
performance serial and parallel processors [11,12]. Although the spectral element method
is, by construction, applicable in complex geometries [13,14], the conforming, geometric
matching required between neighboring, high-order elements leads to complications and
inefficiencies in mesh generation, dynamic mesh refinement, and the treatment of moving
boundaries.

Non-conforming discretizations greatly increase the flexibility of the spectral element
domain decomposition. During mesh generation, this additional degree of functionality
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reduces the complexity associated with element generation and localized mesh refinement
by greatly decreasing the coupling between subdomains. In addition, such discretizations
can be used to effectively resolve solution intricacies in particular subdomains of the problem
without expending computational resources in regions where a small number of high-order
elements, or an assembly of low-order finite elements [15], is adequate for capturing the
essential features of the solution.

The mortar element method [15,16] is a nonconforming discretization based on the
explicit construction of an optimal approximation space. The method preserves element-
based locality, distinguishing it from other, more global, techniques such as functional
minimization with Lagrange multiplier constraints [17], or the “global element method” [18].
The mortar method lends itself well to efficient implementation on parallel supercomputers:
it allows for the classification and decoupling of the computational work into loosely coupled
subdomains; it lays the foundation for sparse inter-domain communication; it preserves local
structure for fast evaluation procedures.

In Section 2 of this paper we start with a brief introduction to the variational form of
the partial differential equations of interest, derive the mortar method discrete equations,
and describe the application of existing iterative approaches to solution of the resulting
matrix systems. In Section 3 we describe a mortar-based method for the sliding-mesh
treatment of moving boundaries, and present numerical verification of the accuracy of the
method. Finally, in Section 4, we describe a unified approach to the implementation of the
general non-conforming spectral element method, and demonstrate the significant simpli-
fications in computational evaluation and algorithmic complexity provided by appropriate
data structures.

2 Problem Formulation

Discretization. The discussion here is restricted to second-order linear partial dif-
ferential equations, as this will demonstrate the essential features of the discretization;
extensions to Stokes and Navier-Stokes problems are given in [16]. We consider the solution
of the Poisson equation on a domain Q of R?: Find u(z,y) such that

-Viu = f inQ, (1)
u = 0 ondf, (2)
where 9} is the boundary of €2, and [ is the prescribed force. We suppose that (1 is rect-

angularly decomposable, that is, that there exist rectangular subdomains Qf, k = 1,..., K
such that

K
0=U8" vk, k1, 000 =0 (3)
k=1

The weak formulation of the problem (1,2) takes the following form: Find u € X = H}(Q)
such that

(Vu, Vo) = (f,v), YWweX. (4)

Here (-,) represents the L? inner product over the domain 0, and L? and H} are the usual
Sobolev spaces [19)].
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The Galerkin discretization of the problem (1, 2) consists of testing the variational
form (4) with respect to a family of discrete finite dimensional spaces Xj. The discrete
problem becomes: Find up € X} such that

(Vuh,‘Vvh) = (f, vh), Yo, € X),. (5)

In the conforming case X5, C H}(12); in nonconforming approximations, X}, is not a subspace
of H}, thereby introducing additional “consistency” errors. We now describe the spectral
element form of X}, for the nonconforming mortar discretization.

To begin, we identify the K rectangular subdomains of (3) as spectral elements, with
edges denoted I'®! [ [ =1,...,4,

4
oqF = | .
I=1
We then define the skeleton S of the “mortar” system as

K
s=|Jaar. (6)
k=1

We next introduce a non-unique set of M non-empty mortars, <y,, as follows;

M
— ~P
'YP — Fk'l for some k,l such that o pL-_:JlAI
P = 9 P # q

where p is an arbitrary enumeration p = 1,..., M. The intersection of the closures of the ~?
defines a set of vertices, V, composed of all non-empty elements

3 (7)

vi=(F"NF") suchthat vig~? Vp=1,.,M , (8)

where ¢ is an arbitrary enumeration ¢ = 1, ...,V Finally, we define the set of virtual vertices,
V, composed of all non-empty elements

T=7"0a", (9)

forg=1,.., V. The geometry of the nonconforming decomposition for a general K = 4
element case is illustrated in Figure 1. Note that the conforming spectral element discretiza-
tion corresponds to the case where we (can) choose a mortar set in which I'*! = 4 for some
p for all k,[; the earlier “refinement” mortar method [16] corresponds to the case where
there are no virtual vertices.

The nonconforming spectral element discretization space, X}, is then given by
Xn= {vel*Q), Vk=1,.,K, v, € Pn(QF) such that 3¢ € W), for which:
Vg=1,..,V, Yk =1,..., K, such that v? is a vertex of 0¥, Yl ok (v?) = ¢(v?);(10)
Vg=1,..,V, Vk=1,.., K, such that ¢ is a vertex of ¥, Yl (89) = ¢(07);(11)
and WI=1,.,4,Vk=1,..,K, Y& Pno(T*), [uulv, —)pds = 0 }.(12)

Here, Py(f2¥) denotes the space of all polynomials on (3* of degree < N in each spatial
direction, and the auxiliary mortar space W), is defined as

Wy = {¢ € CO(S)> Vp = 17"'>M7 ¢{.,p € PN(’fp)a ¢lan = O} . (13)
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Pigure 1: Nonconforming subdomain decomposition (a) and associated skeleton structure
(b), showing vertices, v9, (1), virtual vertices, ¥7, (o), and mortars, v* (£=2).

Equation (10), referred to as the vertex condition, ensures exact continuity at cross points,
while Equation (12), the integral matching condition, represents an L? minimization of the
jump in functions at internal boundaries. The properties of uniqueness of the solution and
optimality of the approximation and consistency errors have been investigated in previous
publications [15,16,20].

Bases and Discrete Equations. To complete the implementation of the method a
choice of basis is required. Although the spaces W}, and X}, appear quite complicated, they
have simple basis representations which are easily evaluated to yield an efficient domain
decomposition algorithm. To begin, we write for the auxiliary space Wh,

N
1,0 = 2505 (3), Vpe{l,.,M}, (14)

Jj=0

where § is a mortar-local variable, defined on [~1,1}, and the h;‘r are the N8 order Gauss-
Lobatto Lagrangian interpolants defined as

hi € Py(] - 1,1]), hi(§;) = 8;,¥5,5 € {0,..., N}%. (15)

The &; are the Gauss-Lobatto Legendre points [21]. The representation for v € Xj is given
by

‘vlnk:Zva, V@)l (9), Yee{t,., K}, (16)
§=0 J=0

where 2,9 are element-local variables on | — 1,1[%. It is clear that the internal degrees-of-
freedom, v{“j, i, € {1,..,N — 1}?, are free, however the boundary degrees-of-freedom are
constrained through (10-12).

In order to implement the matching condition (12), we require further notation. In
Figure 2 we illustrate an arbitrary mortar/edge configuration, and introduce the notions
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Figure 2: lllustration of a mortar offset s, edge %! mortar 4®, and integration strip 4
and intersection points §+ and 5* for a particular edge mortar combination.

of mortar offset sg, mortar «y, of length | 47 |, elemental edge I'*! of length | I'®! |, and
integration strip 4 = I'®! NP of length | 4 |. We also show the intersection points 51 and
é*_ of the mortar 4? with the top and bottom corners of the corresponding integration strip
4, given in mortar-local coordinates. Note that all lengths are in absolute (z,y) coordinates.
We also introduce the notation

= { B(E) | 3]+ | min(0,—a0) | = P4

otherwise

and .
m{mmm if 55 <0
7'._.‘. jumid 0

otherwise

for some particular edge-mortar combination. In the actual implementation of 74, and r_,
the two stringent equality conditions need only be met to within a pre-specified tolerance
level [22], ; stability ensures a no-greater-than-commensurate increase in the discretization
error.

In order to express the integral matching condition (12) in matrix form (for some
particular choice of I'®! and 4P) we also require a basis for ¢, which we choose as

wipkz — Z ﬂqu -2 § (17)

where

I

(=
N-2 - N—-q~N
z)= (-1

) = ()Y
and § = & or § for a horizontal or vertical edge I'*!, respectively. We then perform (here
exact) piecewise Gauss-Lobatto quadrature on N + 1 points on a particular elemental edge
T'*! and integration strip 4, giving

€-1,1), q&{l,.N -1}, (18)

N-1 N

>. B Ej b, Vie{l,.,N-1} (19)
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where for the destination edge I'*! we have

kL .
/Wm/; — Bi; = L%_‘(A)N—’(,L;(,(gi))p,-aﬁ, vi,je{1,.,N -1}%.  (20)

For [s ¢pthds — P;; we have, for so > 0,

5 IZMz <F“l (1+€q)||A )h < 1+(1+fq)ll’;‘|>

i’”l
2

[ TE e

(- Dr_,p0 — =0 "2(+1)ryion (21)

whereas for g9 < 0,

5 _ 1Al ( m) (2|so! 7l
Py = > pn? (=14 (14¢ h; =1+ (1+€
8= (o edpery) b Ty~ 1 O &5

”‘k’ll N-2 | kl| N 2 '

LA ST WP L S e (22

The integral matching condition (12) may then be expressed in matrix form via the trans-
formation matrix @, given as

Q,;=10)= B[P, Vie{1,.,N-1},V¥je{0,..,N}. (23)

It is worthwhile to note that the formulation of the Q matrix is stable as regards virtual
vertices: their contribution vanishes uniformly as they approach true vertices from any
direction. :

Figure 3 is a diagrammatic representation of the integral matching conditions, and, in
fact, the entire X, basis. The arrows represent the descendance of mortar data to elements
with the assumed priority that, in any location, all incoming contributions will be completed
before any outgoing contributions can be activated. The vertex condition is illustrated by
the arrows emanating from the large open boxes or circles which represent real and virtual
vertices, respectively; vertex data is assigned equally to the local mortar endpoints ( B- )
as well as the elemental data vertices (o). The mortar projection (multiplication by the
@ transformation matrix) is represented by arrows between mortar strips and elemental
edges. Note that more than one arrows leading to the same edge location indicates a sum of
the contributions of all intersections of 4? with the particular I'*!, whereas equations (21)
and (22) refer to just one such intersection (i.e., just one integration strip). The role of the
virtual vertex is primarily that of a temporary buffer for holding the value of the function
¢ and descending it to elemental corners.

It is now a simple matter to construct the discrete equatiéns. In particular, we note
that our basis construction allows us to express admissible elemental degrees-of-freedom in
terms of their images via the @ transformation. (We henceforth refer to the @ operator as
the “sum” of the vertex assignment and the @ matrix operations.) This, in turn, permits us
to construct the global discrete equations directly from local structure-preserving elemental
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Figure 3: Diagrammatic representation of the basis for X}, on the nonconforming mesh Fig.
la '

equations, which is at the heart of the discretization-driven domain decomposition approach.
We thus arrive, rather simply, at the fully discrete equations for the Poisson problem (1, 2):

QTHk(AMQu=Q" [, (24)

where blk(AF) is the matrix composed of the decoupled elemental (Neumann) problems.
Equation (24) illustrates that the global Laplace operator can be thought of as a local
operator “mortared” together by the QT,Q operations; indeed, the QT operator is the
algebraic form of the standard direct stiffness procedure (here extended to nonconforming
elements). In the implementation of iterative procedures the @, QT are, of course, never
explicitly formed, but rather are evaluated; diagrammatic evaluation of Q7 (direct stiffness
summation) is shown in Figure 4.

Although the emphasis here is on the mortar discretization, the bases and evalua-
tion procedure have been tailored to admit efficient iterative solution, and it is therefore
appropriate to briefly indicate how the method is used in conjunction with {for example)
conjugate gradient iteration [23]. To solve (24) we write

up; ro = QT f — QT blk(A%)Quo; 9, =To (25)
am = (TmsTm)/ (4, QT VIE(A*)Qq,,)
Ut = Unm + O,
Tmi1 = I — amQTblk(A¥)Qq
b = (£m+1>£m+1)/(£m’3'-m)

Cpyr = Lot T 0mg,,s
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Figure 4: Direct stiffness summation Q7 of residuals on the nonconforming mesh of Figure
la.

where m refers to iteration number, r,, is the residual, q,, the search direction and (.,.) is
the usual discrete inner product. All evaluations are performed through the diagrams of
Figures 3 and 4. The Laplacian operations are entirely local at the elemental level, with all
transmission and coupling occurring through @. The local Laplacian calculations are the
standard conforming spectral element tensor product evaluations, as the mortar decoupling
allows all local structure to remain intact despite global irregularity.

3 Mortar Methods Applied to Sliding Meshes

The non-conforming approach is particularly well suited to the discretization of prob-
lems involving moving boundaries, either prescribed or free. These kinds of problems render
the task of numerical approximation of partial differential equations even more difficult by
introducing new geometric and discretization problems associated with the deforming do-
main. A step toward alleviating this additional complexity is to allow for part of the
computational domain to translate (slide) [24] in a fashion complying with the continuously
evolving geometry. The advantages of sliding meshes are that they eliminate laborious
remeshing and interpolation procedures between consecutive time steps, and allow for O(1)
element translations without encountering ill-conditioned mappings. Under the current ap-
proach, the problem can be viewed as a time series of non-conforming discretizations treated
in a manner consistent with the previous section.
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Figure 5: Model of a mixing process. The internal subdomain 25(t) follows the mixer plate
rotating with angular velocity w, while sub-domain {1; remains fixed for all time.

Weak form. To illustrate the sliding mesh concept we consider a model parabolic
equation

2= pu, zen() (26)

with Dirichlet boundary conditions on d€2(¢). Here £ is some second order elliptic spatial

operator, such as the Laplacian. Writing (26) in weak form, we arrive at the problem: Find
u € H}(Q(t)) such that

(0.2 = (v,00), W e HYO()). (27)

Although no complications exist in the continuous formulation (27), for the discrete in-time
case where the mesh is sliding or the geometry is changing (with time-step At), it is clear
that the test function v, the new solution u™*!(x) = u((n + 1)At,x) and the old solution
u™(x) = u(nAt,x) cannot all be defined on the same domain. We now address this issue.

For the sake of simplicity, let us focus on the simple case where ((t) is composed of
two rigid bodies with one sliding with respect to the other along an interface I'

Qt) = 0 UL(2)
=0 n{Q@E)
as shown in Figure 5 for a mixing process. By introducing a strip ['e € 02(¢) which encloses

the actual interface I’ by an arbitrary small amount ¢, we can decompose any test function
v € H} into a (non-unique) sum of two functions v; and vy such that

v € HOI(Ql U Fe)
v € Hy(Ma(t)) (28)
and v = vyt vy ,
where the v;’s are extended by zero in the regions of Q)(t) outside their particular range of
definition. Problem (27) can then be written as

(01, 50) + (o2, 52) = (o0, L) + (02, ), Yo € (1), (29)
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or, by restricting the integrals in the left-hand side to the support of the v;’s, as

/ o2 0 0¥ = (v1, Lu) + (vg, Lu), Vv € Hy(Q))- (30)
aur, Ot Jayr) Ot

By considering v; as a Lagrangian test function satisfying a relation of the form
vet+ V- Vvy =0, (31)
where V is the rigid-body motion of (13(t), we can rewrite equation (30) as

d

d
dt(Ulau)ﬂlul‘c -+ E_

7:(vz,u)nz(t) + (4, 'V - Vvg)a, ) = (v1, Lu) + (v2, Lu)

Yo = vy + vy € H}(Q(t)) that satisfy (31) , (32)

or
%(v,u)g + (4, V- Vug)a,) = (v, Lu) Yo =vi+ v € HY(Q(t)) that satisfy (31). (33)

Since the time derivative now appears outside the inner product in (33), we no longer have
the potential inconsistency present in (27). We can now turn to the discretization.

Mortar Method. The mortars are chosen on I' to be the set of edges of those ele-
ments that compose €11. The discrete functions over {1;(t) are then spanned by polynomials
vanishing over 01,(t), and by the extension of traces derived from I' mortar functions that
vanish at any internal Gauss-Lobatto point of {13(t)/T. The essential aspect of the mortar
method is to allow the decomposition (28), that is, the mesh can slide via (31), yet maintain
sufficient continuity of the test function through mortar projection.

We have chosen an implicit, Euler backward time integration scheme and an explicit,
third-order Adams-Bashforth method for treatment of the diffusion and convective terms of

equation (33), respectively. The corresponding fully-discrete equations can then be written
as: '

QY bk(B)Q T ™ — Q7 bK(B)Q" v =

2
S g Cr T 4 QP blk(L)Q (34)
¢=0
where
F . nT O 0 n
C" = maskr * @ [0 (v, V- V) }Q

Here maskp is the vector (...)T representing the algebraic basis of that test function v which
is unity except at mortars and vertices located on I', where it vanishes. There is a direct
analogy between equations (34) and (33): blk(B;) contains the numerical quadrature weights
corresponding to the inner product evaluations (-,-) of (33) blk(L;) is the discrete form
of the second-order elliptic operator (v, Lu); quC" ? js the Adams-Bashforth explicit
treatment of the discrete convection operator C™ which, after an integration by parts, is
equivalent to the term (u, V-Vvy); and Q, QT represent the familiar transformation matrices
for the projection and direct stiffness summation operations related to the non-conforming
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Figure 6: Sliding-mesh example problem

discretization of sliding mesh problems. We note that the distinguishing feature of our
sliding-mesh approach as compared to previous work [24,25] is the high-order convergence,
and the treatment of second-order spatial operators.

An Example. Having defined the variational form for the model parabolic equation
in (30) and the bases for the non-conforming spaces W, and X}, in the previous section, we

will proceed with an example: Find u(=,y,t) defined over the domain 0 = [-1,1] x [~1, 1]
such that s
28 vy
5 Véu in Q (35)
u(z,y,0) = sin(rz)sin(ry)
u(z,%1,t) =0

u(—1,y,t) = u(L,y,t)

We initiate the discretization by breaking the domain into two elements {23 and (1, as
shown in Figure 6 , with {13 translating with a velocity of V = 50i.

We plot in Figure 7 the L°-error as a function of N (polynomial order), for a At =
1075 and a final time Ty = .0005. The error decreases exponentially fast, as would be
expected for spectral approximation of a smooth solution. In Figure 8 we show the L%®-
error as a function of At for a fixed spatial discretization (N = 11) and the same T¥.
As predicted from the accuracy of the Euler backward scheme, the error follows a linear
dependence on the size of time-step. In addition to these tests, we have carried out very
long time integrations, Ty = .25, corresponding to 6.25 “wrap-arounds” of the domain,
without encountering any stability problems.

As a final comment, we note that the accuracy of the temporal scheme, possibly
viewed as inadequate when compared with the spatial accuracy of our discretizations, can
be easily improved by chosing any appropriate higher-order integration technique, such as
backward-differentiation.
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Figure 7: Convergence in space of the solution for the diffusion equation (34) for a time
step of At = .00001, and final time of Ty = .0005.
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4 Implementation

The final issue of concern to us regarding the successful development of non-conforming
discretizations involves the extent to which the method can be easily implemented in a
fashion that keeps intact the locality of the formulation.It has become imperative that, for
simulations of ever more.complex physical systems, minimizing the complexity of the im-
plementation is of equal importance to raw computational speed. In this section, we will
investigate the underlying structure of the required computational tasks for the mortar el-
ement method, differentiate among its fundamental building blocks, and describe methods
that ensure a smooth operation among the differing modes of the decomposition.

During the formulation of the method in Sections 2 and 3, we have made certain to
preserve locality and control at the elemental level, to ensure conceptual and actual algo-
rithmic simplification, and high performance on parallel computer architectures. Locality
condenses the development efforts to the optimal treatment of a simple, easily-replicated,
functional unit, and allows for the breakdown of the computational load into largely inde-
pendent sub-processes which can conceivably execute concurrently [12]. We have identified
spectral elements as the foundation of our computational model, with sparse inter-element
communication through mortars providing the necessary links for neighbor-neighbor in-
teraction. By its nature, this partitioning of the required work into locally-structured /
globally-unstructured operations impose widely differing needs on the underlying algorith-
mic design, and these issues will thus be treated separately in what follows.

Locality. Non-conforming discretizations introduce dissimilarities among elements.
Across-the-board uniformity, a distinct property of classical conforming discretizations, is no
longer present in the mortar element method, where objects vary considerably in size, topol-
ogy, and, hence, complexity. The potentially differing polynomial order N is an obvious
example of heterogeneity, as is the potentially different number of neighboring element-
objects. These observations lead us to the development of element-based, irregular, com-
posite data structures that preserve and reflect this heterogeneity by treating elements as
fully-independent, autonomous, computational and information-holding entities. An illus-
tration of this concept is shown in Figure 9, where an element object is depicted along
with all of its pertinent information, including identification, type parameters, field data,
and geometry data. As regards the implementation of this approach in a typical high-level
computer language, say C, the element-object becomes a user-defined structure, with the
associated arrows of Figure 9 directly translated into memory-address pointers providing
‘immediate access to corresponding data blocks. Intra-element, numerical processing re-
quired by, say, the Laplacian operator of algorithm (25), is readily supported by such data
structures; field data is retrievable locally in vectorizable form.

Subdomain Integration. Apart from the intensive floating-point computations,
inter-element communication is the other feature of algorithm (25) that we must address.
The projection of mortar data to element edges, its transpose operation of edge to mortar
transformation, and the inner product vector reduction of (25) are the main events where
elemental information is exchanged and summed. As illustrated in Figures 3 and 4, such
communication can not only be tedious, but is also of varying complexity for different
elements.
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We have developed a hierarchical connectivity pattern linking the elemental data
structures of Figures 3 and 4. This tree-like topology network is naturally organized from
the geometry of the problem in layers, with connections present both in an intra- and inter-
layer fashion. An illustration of this global data structure is shown in Figure 11 for the
sliding mesh model problem of Figure 6 for the mortar/vertex decomposition in Figure 10.
The objects, i.e. elements, occupying the top of our hierarchy, lead the way to the local
edges and corners. The latter are data structures in their own right, containing their own
information and pointing to other memory locations representing the skeleton of the non-
conforming discretization: mortars, vertices, and virtual vertices. Commonalities across
elemental boundaries in the computational domain, such as coincident edges and corners,
are reflected by the multiplicity of arrows leading to a particular mortar or vertex.

Such a direct mapping between geometrical relationships and data inter-connections
can be likened to the unrolling of the graph of, say, Figure 1 into the underlying computer
architecture. Once this data model is constructed, communication operations such as @, QT
are initiated from, and completed by, traversing the nodes in the hierarchy. For instance,
the direct stiffness summation for the sliding-mesh problem is completed by elemental edges
(1',...,4") and corners (1, ...4) projecting the local data to the common memory locations of
the mortars (e,..., i) and vertices (a,..., d), respectively; by virtue of multiple pointers to a
common memory location, the elemental contributions are automatically summed. Com-
munication primitives that drive these operations are simple but at the same time general-
purpose; assuming a consistent configuration, in the form of Figure 11, they complete the
transformations of Figures 3 and 4 by a one-time walk through the elemental /mortar spaces.
The symbolic manipulation required by traditional data structure models to decipher the
complex geometric relationships of the computational domain are, in our case, replaced by
simple “guides” which lead the way through the mortar/edge and corner/vertex interrela-
tions.
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Figure 10: Skeleton structure of the sliding mesh problem as seen at a particular instant in
time.

begin  ——u s

01 Q2

Figure 11: Global Data Structure for the sliding mesh problem of Figure 8.
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The general properties of domain-decomposition methods, that is, numerically-intensive
computations at the local level, and irregular memory accesses and data-exchange opera-
tions at the inter-element level, are reflected in our data structures in a simple and intuitive
manner. The simplicity of this structured programming approach is translated into the
tapid vertical integration of procedures into very large process entities, typical of the next
generation simulation environments.
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