CHAPTER 11

On the Schwarz Alternating Method HI: A Variant for
Nonoverlapping Subdomains

PL. Lions*,**

Abstract.

We continue here a systematic investigation of convergence properties
of the Schwarz alternating method and related domain decomposition
methods. Our study here concerns a new variant of the Schwarz method,
adapted to the situation of an arbitrary number of nonoverlapping sub-
domains. We present this iterative method in the ”continuous” situation
and analyse its convergence in self-adjoint and nonself-adjoint cases.

1. Introduction.

This paper is a sequel of [36] and [54], and part 111 of a series devoted
to the mathematical study of various decomposition methods (domain
decomposition methods) for various linear or nonlinear partial differen-
tial equations. In the recent years, the applications of iterative methods
(and their study) solving subproblems or problems in subdomains to
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the numerical analysis of boundary value problems have received a lot
of attention and a partial list of contributions to this general theme can
be found in the bibliography (and of course in this volume).

Parts I and II were devoted to the classical Schwarz alternating
method where, roughly speaking, one approximates the solution of La-
place’s equation by solving successively the same equation in two sub-
domains keeping at each step the values on the internal boundaries as
boundary conditions for the next step - passing ”Dirichlet” data from
one subdomain to the other through the respective internal boundaries.
This method requires some overlapping of the two subdomains. We re-
viewed in Parts [ and IT the convergence analysis of the classical Schwarz
method and showed, in particular, that there are two reasons for its
convergence namely some variational reason (iterated projections in an
Hilbert space) (cf. Part I [36]) and some "maximum principle type”
reason (cf. Part II [54]). This explains why Schwarz method can be
applied or extended to a wide variety of situations and equations. Let
us also mention that the arguments of [54] can be conveniently adapted
to yield some rather striking convergence results in the case of special
geometries - see T. Chan, T. Hou and P.L. Lions [55].

However, as we said above, the Schwarz method requires that the sub-
domains overlap and this may be a severe restriction - without speaking
of the obvious or intuitive waste of efforts in the region shared by the
two subdomains-. This is why the search for iterative methods allowing
to treat geometrical decompositions with non-overlapping subdomains
has received a lot of attention - at least, once decomposition methods
were realized to be useful or potentially useful. Several methods have
been proposed and we refer to (for instance) Q.V. Dinh, R. Glowinski
and J. Périaux [11], P. Bjorstad and O. Widlund [34] or, L.D. Marini
and A. Quarteroni [45], D. Funaro, A. Quarteroni and P. Zanolli [46] or
J.F. Bourgat, R. Glowinski, P. Le Tallec and M. Vidrascu [586]...



204 Lions

We present here a domain decomposition method that we believe 1s
new and that is directly inspired by the original Schwarz alternating
method. Thus, it is related to the methods referred to above and, in
particular, is of the same type of the one introduced in [45], [46] and
developed in [47]-[52]. Our method is described in section II for the
model case of Laplace’s equation with homogeneous Dirichlet boundary
conditions. At each step, we solve the same Laplace’s equation in each
subdomain ”passing from each subdomain to the others a convex com-
bination of Neumann and Dirichlet data” : in particular, this yields a
Robin (or Fourier) type boundary condition on each interface. Let us
emphasize at this point the method allows an arbitrary number of ar-
bitrary non-overlapping subdomains (in fact, they might even overlap
if necessary) and, furthermore, all subdomains are treated in a parallel
way. In particular, "interior subdomains” are allowed.

We analyse the convergence of this method in section III in the model
case and we prove its convergence through somewhat delicate "energy”
estimates. In section IV, we consider another model case namely La-
place’s equation with convection terms and we show that the method
still converges in this case. Let us also point out that the parameters
present in this method on each interface (the convex weights of Neu-
mann and Dirichlet data) do not need to be restricted because of the
convection terms.

Finally, in section V, we present various extensions, adaptations of
this method and we list some of the equations which can be treated
with our iterative method.
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1. Presentation of the method.

Let  be a bounded, smooth open set in RY. We are going to consider
a decomposition of {2 into an arbitrary number m (> 2) of subdomains
Qy,..., 0, l.e. we assume that

(1) Q=0 U--UQUD , D= |
1<ety<m

where ; are disjoint open sets in RY | v;; = 7;; is the interface between
Q; and Q; le. v = 02, N0Q; (1 < i s 57 <m). In order to simplify
the presentation, we will make the unnecessary assumptions that each
Q; is connected, ;N N O = Dforall 1 <i #j # k < m, 4 is
the trace on Q2 of a smooth manifold intersecting 99 orthogonally for
all 1 <45 5 < m. When m = 2, the two figures below show typical
decompositions of 2.

Figure 1. Figure 2.

Then, the model equation we consider is

(2) —Au=f inQ , u=0 ondQd="T

where f, say, is given in L*(€2), so the unique solution of (2) belongs to

HL(Q).

Given arbitrary initial guesses (u?)1<i<cm in H?(€2;) N H{ () where
HAQ) = {u € HY(Q)/u = 0 on 3Q; NT} (1 <4 < m), we build

inductively sequences (ul')i<i<m solving for alln > 0 and all 1 < <m
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) —aut = f e Hi(Q)

ountt ) O™ ‘ o
) O;Mj gt = 8n:j+>"'j“? onvy,V1<j<m,j#i,
where n;; (= —nj;) is the unit outward normal to 9€; on ~;;, and

Aij =A;i >0forall 1 <is5 <m.

In fact, some explanations might be useful in order to understand the
precise meaning of (3)-(4) : by induction, we see that we only have to
explain the meaning of the following problem (for each 1 < < m)

(8) —-Av=f in{ , v € HE(S)

0 . L,
(6) —anv.. =gij € L*(yi;) onwij, foralll<j<m,j#1.
ij

And this is nothing but the usual variational formulation : v € H} ()
satisfies

/Vv.Vgoda;+ > /g.ij¢dsz/ fods
Q; ii Q;

7 ‘ 1<i<m "~ 7Y
( ) j];éz‘
for all p € HM) .

Notice also that, for n > 1, we may deduce from (3)-(4) for all ¢ :

8)  —A@M —wr =0 i , wlt—utle Hi(S)

? 1 1

o . ;
(uitt —u? 1y = Aij{2u} — w1

9) Ongj
ony; forall <y <m,j#:
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Notice also that (9) may be written

(10) o (T =T g )
= 2Xi;(u] —ul™h) on 7y;j .

At this stage, it might be worth mentioning the differences between
the above iterative method and other known methods. First of all,
for overlapping subdomains, the classical Schwarz algorithm consists in,
roughly speaking, passing from one subdoamin to the neighboring ones
some ”Dirichlet data” on the relevant interfaces. In fact, one might also
pass "Neumann data” or convex combinations of both (see section IV for
comments on these possibilities) and (4) is nothing but the illustration
of this last possibility when the ”overlapping goes to 0”.

Next, we might also compare with the methods in [L1] or [56] : it is
not hard to see that the main change in (4) is that we have ul instead
of, say, u?'. Thus, in some sense, the above algorithm is an implicit
variant of the afore mentioned ones.

Finally, if we compare with [45]-[46], we see that the ”combination
of Dirichlet and Neumann problems” is done here a priori instead of a
posteriori in [45]-[46]. This allows a more symmetric treatment of all
subdomains and interior subdomains.

Let us finally mention that it is possible to view the above method
in the light of augmented Lagrangian techniques (P. Le Tallec [61], M.
Fortin [62] - where some numerical experiments can also be found).
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. Conver gence anal ysis in the sel f-adjoint case.

Our main convergence result is

Theorem 1. Forall1 <i<m, u} converges weakly to ujq, in H}(S;)
n
i|vij
as n goes to +o0o. Furthermore, %(u?"'l + u}) converges to ul.,; in
H?(~;;) as n goes to +oo for all j 1.

and in particular u converges to |, weakly in H'/? for all j # 1,

Remark: The same analysis applies to approximations of (2) by, say,
finite elements methods and, in fact, yields a convergence uniform in
the mesh size. For a finite dimensional version of the problem, one can
in fact show a geometric convergence of the method. However, in gen-
eral, we do not know of any estimate on the rate of convergence of the
method.

Proof: The proof will be divided in three steps and is based upon a
careful use of ”energy type” estimates.

Step 1: We multiply (8) by (ul ™ — u?™1), integrate by parts over €,
use (9) and find for all i, n

1

vt e pas 3o |

A

= § /\ij/ [l —ul "2 dS .
Aij

JF

W w2 dS
J

(13)

Then, summing over i and over n, we find

(14) SO0 [ v < o
Qy

n>1 =1
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(15) / luftt —u?dS <0 foralll<i#j<m,n>0
Yii

where C' denote various constants depending only on the geometry,
(uf)iand (Aij)ij. Then, if 9Q; N 0N has a nomptempty relative inte-
rior, we deduce from (14) and Poincaré’s inequality

S [t - < o
n>1 £

At this stage, we need to introduce some notations : we denote by I; =
{i € {1,...,m} such that 8Q; N 0 has a nonempty relative interior}
and then by Ir = {1 € {1,...,m} such that 9, N d€); has a nonempty
relative interior for some j € Iy} and soon ... Forsome ko € {1,...,m}
we have I, = {1,...,m}. In the case of Figure 1, I; = {1,2}, while in
the case of Figure 2, I; = {1} , I, = {1,2}. With these notations, we
have proved above

(16) Z Z/Q 2 g < O

n>1i€l

We next want to show a similar bound for 1 € I or equivalently for
© € I — I, : for such an ¢, we pick some j € I such that 99, NoQ; has a
nonempty relative interior and we remark that because of (8), (14) and
(16) we have

0 - -
Dl () = gy + 1) = uf e,y < C

then, (4) yields

0 n n— n n-
le‘“”“(u»'*‘l»ui D At - 1)“2H“1/2(w) sC

ong; >t
n>1 v
and we deduce

Z/ [ul ™' —u? 2 de < C
Q;

n>1

in view of the following lemma.
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Lemma 2. Let O be a bounded, open, smooth domain in RV, let A > 0
and let o be an open (relative to 0O ) subset of O). Then, there exists
a positive constant C such that

Ju
(19) lullr20) < C{lIVullz2(0) + I3 + Al =172 (40

for allu € H'(O) satisfying : Au = 0 in O, where v denotes the outward
unit normal to 90.

Proof of Lemma 2@ By contradiction, we consider u, € H'(O) such
that Au, = 01n @ and “un”m(o) = 1 while Vuy, — 0 in L2((’)) , %1.‘;7&

Ay = 0in H™2(xy,). Clearly, we may assume without loss of gener-
n

ality that u, converges weakly in H'(O) to some u which thus satisfies

Au=0in0O |, Vu=0in0®O g—qf-k)\u:()onyo
v

Thus, u is constant and ||u|p20y = 1 since u, converges strongly in

L*(O) to u. Therefore, u # 0. Then, we choose p € C*(O) such that
its support is contained in O U~y , ¢ > 0 and ¢ % 0 on . Since u is
contant, we have

" Ju Ju
0 = —wﬂdS:/—w—dS::—-)\/u ds
o) 31/('/ Yo 81/(‘0 o 14

and we easily reach a contradiction since u is constant.

One also sees immediately that the argument which led to (18) for an
arbitrary ¢ € I can be iterated and eventually leads to

20 B / wltt — w2 ds < O
(20) RN |

n>1 =1
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Step 22 We multiply (8) by (ul*t' — u?™"), integrate by parts over Q;,
use (9) and find for all 2, n

/ V(u?t — o7 vl de-
2

(21)
+ z Aij (u?Jrl - u?”l — Qu;‘)u;H"l ds = 0.

TR

We then remark that we may write

k3 (3

1 1 ;
V(u(l"klwu?_z—l)_vu?—i’l — ~|Vu?+1|2+~|V(u’7+lwu”_1 zml AV e I
9 9 : i 9 2

and

e 1, .4 1 .
(=l - 2l = Sl Sl

fult Tt —
(3

(2

n+1

! 7l‘l,-1|2 )

1
- Rt -

Inserting these formulas in (21), summing the resulting expressions with
respect to ¢ and n, we find in view of (20) '

(22) / |Vu?""1|2dac+/ e dS < C
Q; o

(23) ZZ/ ! PP dS < C.

n>0 ji 7 Vi

Of course, (22) immediately implies that (u?), is bounded in H*'(§;)
forall 1 <z <m.

Step 3 In view of (14), (20), (23), we see that u?*' — u?™" — 0 in

H'2(~;;), and that u?™ — wl — 0 in L%(y;;) for all 1 < ¢ # j <

:
m. Because of (22), we just have to consider a weakly convergent in
HY(Q;) (V1) subsequence u? and we denote by u; its limit. Of course,
u; satisfies (3) and in view of the above convergences and (4) we have
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(24) Uy = Uy on 7;; forall 1<i#)<m
and thus
(25) Oug _ Qv H™Y2(y;) forall 1<istj <m.

onij o Ongj
This is enough to ensure that u; = ujg, for all 1 <7 <m.

The remaining assertion is more complicated and in order to simplify
the presentation we will explain the idea of the proof in the (very) par-
ticular case when m = 2 | v = 719 = 791 is a piece of an hyperplane,
that 99 is also flat in a neighborhood of 5 N 00 and that 0 and 7
intersect orthogonally. Then, we may assume without loss of generality
that v = {z; = 0} N Q and we introduce v} =« — ut!,

ﬁg<xlvx’) = (u - UZ)(-—xl,JJ')
for all z = (z;,2') € QY
where QY is a rectangular domain of the form {—¢ < 23 < 0} NQ for €

small enough and where we assume that {; C {z; < 0} (for instance) -
see figure 3 below.

Figure 3.

Then, we have in view of Step 2 and by straightforward considerations



VARIANT FOR NONOVERLAPPING SUBDOMAINS 213

—~ A = ~Avptt =0 in Q¢

26 0
#8) 2 (op oty o0 i ()
87212 n

while of course 93, v7"" are bounded in H'(QJ) and converge weakly
to 0. By standard elliptic considerations, one deduces that

v?‘H + 05 — 0 in Hl/z('y)
therefore

(™ +up) —uin B ().

Do =
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0. Convergence analysis in the general case.

We now replace the Laplace operator in (2), (3), (5), (8) ... by a more
general second-order elliptic operator of the form

(27) A= —-A+bz) V+cz)

where b, ¢ are smooth (for instance). Our main assumption will be a
coercivity assumption on each subdomain 0,

3V>0,V1§i§n’a,\7’wEHll(Q,-)
(28)

i T

/ |Vw]* + b(z) - Vww + cw® de > 1// |Vw|? da .

This of course allows to consider the same iterative method as in section

1L

T heorem 3. Under the above assumption, ul' converges weakly in
L*(99;) to ujag, and u} converges in L*(§;) to g,

R emarks: 1) One can make the same remark as the one we made after
Theorem 1.

2) We do not know whether u? remains bounded in H'(£2;) but the
proof below will show that u? remains bounded in H'/2(;).

Proof: One first observes that, because of (28), the proof made in step
1 of the proof of Theorem 1 still applies and thus yields (14),(15) and
(18).

Next, we want to prove that uf  remain bounded for all 1 <: < m.
We then argue by contradiction : let n” be a subsequence such that

max
1<i<m

[uy | 2 00:) = Foo

and let < € {1,...,m}, let n’ be a subsequence of n” such that
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i loxonn = max lu? Y 2oy = +oo -

Without loss of generality we may assume that for some j # 1

1
[

! ! 1 i
Lo(yg) = 00 U ey 2 Zlut leonn
We then define wj = u}f||ul ”Ll(an , for all k,n and we claim that w?lwl

is bounded in L%(89;). First of all, because of (15), w?l“ml is bounded
in L?(7i;). Now, recalling that for all k

luk ll2ans) < lui llza0:

we see that, in view of (15), we have

[ "Mracan,) < D NuF Mrrege < CH Y i ey,
ks kg

< O lui lleaonn
where C' denotes various constants independent of n,¢, 7, k...

Therefore, w;’l'l is bounded in L?(98;). At this stage, we simplify
the presentation and avoid tedious arguments by assuming that m =
2,1=1, 7 =2. Then, we deduce from elliptic estimates that w{‘l and
w%””l are respectively bounded in H'/2(Q;), H*/?(Q;). Thus, assuming
without loss of generality that they converge, say in L?, to some wy,w, €
H/? we deduce easily that

Aw, =0 in , Aw, =0 in Qo

and that the traces of wy,w; on v (= 1) make sense, belong to L?(y)
and coincide because of (15). Furthermore, by standard uses of Green’s
n'—1

w7 Sw
formula, one checks that the traces of o e make sense and are

bounded in H~1(9Qy) , H™!(9O2) respectively and that 6“’1 = 2w op

ongg
v (in H~(«)), where v1, v denote the unit outward nor mal o 08y, 08,

(so that vy = njy = —1p on 7). Of course, one also has w; = 0 on
I NI, wy =0 on I NIN. Combining all these informations, we
deduce finally wy = wy = 0.
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Next, a similar proof to step 3 of the proof of Theorem 1 shows that
wi +wl 7! is bounded in H!/2(«), therefore

wl +wp 0 i L3(y),
while we know that w? — w;ll"l ™ 0in L*(y) because of (15). But

i 2 o 1
1280,  Vm

by the choice of ¢,j. This contradiction shows the desired bound.

1}
||w? HL2(712) = ”u?’

Then, we deduce that ) is bounded in H/?(£;). In order to conclude,
one observes that, because of (14) and (18), we have

= up)

O(u; ,
ZZ | dv; ”2H*1/2(BQ,-) < .

n>l 1

Hence using once more (14), (18)
Do Mt = w1,y < oo
n>1 i#j

Then, it is not difficult to conclude the convergence proof.

Remark: The proof above also yields a bound on wlt ul in
H'? ().
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V. Bemarks

We begin with a few remarks concerning the choice of parameters
(i) : first of all, it is possible to replace, say in the case m =2, A = Ay
and p = A9y by two arbitrary constants (i.e. we do not need to assume
A = p) or even by two proportional functions on y = 712 = 21, or even
by local or nonlocal operators (—A, or (—A,)'/? where —A, stands for
the Laplace-Beltrami operator on + ... ). One can also consider se-
quences A7, ...

Next, it is worth discussing the effective choice of A;; @ let us first
indicate that this is by large an open problem. However, some ex-
amples may be illuminating : for instance, in one dimension, when
Q= (0,1), @ = (0,h), Q2 = (h,1) (thus m = 2) one gets exact
convergence for the following two values of A = Az = Az namely A = -,17

or A == -—%—,; More generally, still in the above setting, if one replaces

T

———gg by — - (a(:c)—dd;) for some a € C([0,1]), a > 01in [0, 1}, exact con-
vergence still holds for A = a_(l)‘J (fhl 'E(IT) ds)"l or A = ?.(—lh—) (foh Z(lE) ds) -
Similarly, if € is the ball of radius Ry in R®, € is the ball of radius A
and 9 = Q — ﬁh then the iterative method for radial initial choices
converges exactly for the value of A 1 A = Tz‘(“R%Q'"iZ?

We now make some remarks about the convergence proofs : our me-
thods easily extend to a wide class of equations like general second-order
elliptic equations, systems like linear elasticity or the Stokes problem,
non selfadjoint problems like linearized Navier-Stokes equations, or even
highér~order problems and time-dependent problems. It might be worth
mentioning that it also applies to analogous iterative methods with over-
lapping subdomains (the classical ”Schwarz setting” but with Neumann
or our combinations of Neumann-Dirichlet conditions on the relevant
interfaces). Of course, general boundary conditions are possible on 9§
and we can also consider transmission problems i.e. different elliptic
equations in €; and {2, and general relations between say the normal
derivatives on each side (general oblique vectorfields are also possible).
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