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Parallel Multilevel Preconditioners*
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1. Introduction

In this paper, we shall report on some techniques for the development of precon-
ditioners for the discrete systems which arise in the approximation of solutions to
elliptic boundary value problems. These techniques are analyzed in [11]. Here we
shall only state the resulting theorems; complete proofs can be found in [11].

It has been demonstrated that preconditioned iteration techniques often lead to
the most computationally effective algorithms for the solution of the large algebraic
systems corresponding to boundary value problems in two and three dimensional
Euclidean space (cf. [3] and the included references). The use of preconditioned
iteration will become even more important on computers with parallel architecture.
This paper discusses an approach for developing completely parallel multilevel pre-
conditioners. In order to illustrate the resulting algorithms, we shall describe the
simplest application of the technique to a model elliptic problem. Let € be a polyg-
onal domain in R? and consider the problem of approximating the solution u of

Lu= fin§
w=find, (1.1)
u =0 on 69,

where

2
0 Ju
Ly = — Z 5.;:(1,']'5;; -+ au.

i-,j:l

We assume that the matrix {a;;(z)} is symmetric and uniformly positive definite
and a(z) > 0 in .
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We first define a sequence of multilevel finite element spaces in the usual way.
Since § is polygonal, we can define a ‘coarse’ triangulation 7, = Upr{ where 7/
represents an individual triangle and 7; denotes the triangulation. Successively
finer triangulations {7,k = 2,...,J} are defined by breaking each triangle of a
coarser triangulation into four triangles by connecting the midpoints of the edges.
The space My is defined to be the continuous functions defined on § which are
piecewise linear with respect to 7, and vanish on 8Q. We shall be interested in
developing a preconditioner for the solution of the Galerkin equations on the J’th

subspace, i.e. U € M satisfying
AU, ¢) = (£, ), for all ¢ € M. (1.2)

Here A(,-) denotes the generalized Dirichlet integral defined by

2
Ou Ov
Alu,v) = Z Laijézéz;dm+/52auvdw (1.3)

i,j=1

and (-,-) denotes the L? inner product on Q. '

Let {¢.} denote the usual nodal basis for the subspace My, i.e. the I’th basis
function is one on the I’th node of k’th triangulation and vanishes on all others.
The preconditioner B is defined by

J
Bo=73 % (v, L)} (14)
k=1 1

The above preconditioner is simply a double sum, the terms of which can be com-
puted concurrently. This results in an inherently parallel algorithm.

As is well known, the rate of convergence of an iterative method can be estimated
in terms of the condition number of the preconditioned system. In [11], a theory
for the estimation of the condition number for this type of multilevel preconditioner
in terms of a number of a prior: assumptions is given. In the above example, this
theory can be used to show that the relevant condition number is at worst O(J2),
Moreover, these results hold for problems in two, three and higher dimensions as
well as problems with only locally quasi-uniform mesh approximation.

We note that many alternative preconditioning techniques have been proposed
for such discrete systems. For example, domain decomposition preconditioners have
been developed ([5],[6],[7],[8],[14], and the included references). These domain de-
composition preconditioners are inherently parallel however become somewhat com-
plex in three dimensional applications. Alternatively, multigrid [4],[9], [15],[18] and
hierarchical multigrid [2],[21] techniques give rise to different multilevel precondi-
tioners. The standard multigrid algorithms do not allow for completely parallel
computations since the computations on a given level use results from the previous
levels. Theoretical results for the usual multigrid algorithms are available, in gen-
eral, for problems in any number of spatial dimensions but only for quasi-uniform
mesh approximation. Good results hold for the hierarchical basis method in two
dimensions with refined meshes but degenerate when applied to three dimensional
problems. Finally, preconditioners based on approximate LU factorization are often
proposed however a comprehensive theory is yet to be developed [12],{13], [19].
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The outline of the remainder of the paper is as follows. A general abstract theory
for the development of parallel multilevel preconditioners is discussed in Section 2.
In Section 3, this theory is applied to second order elliptic boundary value problems
and the serial and parallel complexity of the resulting algorithms is discussed. We
apply the abstract theory to a second order problem with a locally refined mesh in
Section 4. Finally, the results of numerical experiments illustrating the theory of
the earlier sections are given in Section 5.

2. General theory.

In this section, we discuss a general theory for the construction of parallel multi-
level preconditioners. This theory is presented in an abstract setting to most clearly
illustrate the relevant analytic assumptions. The development of this class of pre-
conditioners is based on a certain orthogonal decomposition of the approximation
space. The parallel multilevel preconditioners are then abstractly defined in terms
of this decomposition by the replacement of orthogonal projections by more compu-
tationally efficient operators. Applications to second order elliptic boundary value
problems are given in Sections 3 and 4.

We start with the basic abstract framework. We assume that we are given a
nested sequence of finite dimensional spaces,

MiCcMyC...CMy=M, J=>2 (2.1)
The space M and hence all of its subspaces are equipped with two inner products
(-,-) and A(-,-). The first part of this section will consider properties of a certain
orthogonal decomposition of M with respect to the inner product (-,-) and the
sequence of spaces (2.1). We shall investigate the spectral properties of these spaces

with respect to the form A(:,-) since, ultimately, we are interested in computing the
solution to the Galerkin equations: Given f € M, find U € M satisfying

A(U,v) = (f,v) for all v € M. (2.2)

We shall use the following notation in the development. For each k =1,...,/J,
we introduce the following operators:

(1) The projection P : M —> M is defined for u € M by
A(Pyu,v) = A(u,v), for all v € Mg.
(2) The projection Q% : M — My is defined for u € M by
(Qiu,v) = (u,v),  for all v € Mj.
(3) The operator Ay : My —> My, is defined for u € My by

(Agu,v) = Ay, v), for all v € M.
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We shall also denote A = Ay and define

O = {¢|¢ = (Qk - Qk—l)w y ¢ € M}a

where Qo = 0. We shall discuss the spectral properties of A with respect to the
decomposition

M=0y+---+0y. (2.3)
It follows from the above definitions that
A=ALP
Qr ©Pr (2.4)

Qe = QiQr = Q; for 1 <k.
From the second equation of (2.4), it follows that

(Qk — Qr-1)(Q1 — Qi-1) =0

if k 5 [ and hence the decomposition (2.3) is orthogonal, i.e. (u,v) = 0 whenever
u € O, v € O with [ # k.

We consider first the operator

J .
B =% 2" Qk - Qi) (2.5)

k=1

where A denotes the spectral radius of Ax. Clearly, B is symmetric and positive
definite and

J ,
A(BAv,v) = Y A (Qk — Qr—y)Av|, (2.6)

k=1

where ||-[|* = (-, -). Note that B is block diagonal with respect to the decomposition
(2.3) and each diagonal block is a multiple of the identity matrix.

The operator B may be thought of as an “approximate inverse” for A. Thus, we
shall state theorems estimating the condition number K'(BA) of BA. We note that
K(BA) < ¢ /e for any positive constants cg, ¢; satisfying

coA(v,v) < A(BAv,v) < c1A(v,v), for all v € M. (2.7)

REMARK 2.1: The form of the operator B can be motivated by the spectral decom-
position of the operator A. Indeed, for a special example, namely, M, the space

spanned by the eigenvectors corresponding to the smallest & distinct eigenvalues of
A, the operator B defined by (2.5) is in fact equal to A™!.

It is straightforward to show that (cf. [11])
A(BAv,v) < JA(v,v), for all v € M. (2.8)

The lower estimate of (2.7) will require some additional hypotheses concerning the
spaces M. We first consider the following assumptions on the operators Qy: For
k=1,...,J, there exists a constant C; > 0 such that

11~ Qr-1)vl* < CiAT A(v,v),  forall v € M. (A1)

We have the following theorem and corollaries.
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Theorem 1. Assume that (A.1) holds. Then
CT I A(v,v) < A(BAw,v) < JA(v,v), for allv € M. (2.9)

Corollary 1. For any real s,

J
B =% A0 (Qk — Q). (2.10)
k=1
Moreover, for any s € [0,1],
J A%, 0) < (B %v,v) < (C1J)°(A’v,v), for all v € M. (2.11)

We have included Corollary 1 for the purpose of future applications which will
not be described in this paper. In particular, it will be used for the development of
preconditioners for certain boundary operators which arise in domain decomposition
techniques for second order boundary value problems [10].

In the next corollary, we consider the case of the sum of two operators. Let _/i(, )
be another symmetric positive definite form and let A, {Az} and {\;} be defined
analogously in terms of A(, )). Consider the operator B : M + M defined by

J
B= Z(x\k + j\k)—l(Qk -~ Qr—1).

1

Theorem 1 immediately implies the following corollary.

Corollary 2. Assume that (A.1) holds for both A and A. Then,
J Y (A4 Ao, v) < (B 1o,0) < CLJ(A+ A)w,v),  forallv € M.

The most natural application of the above corollary is to the discrete systems
which arise in parabolic time stepping algorithms. At each time level, a function
U™ € M satisfying

(I+4+7A)U™=F",

with known F™ € M must be computed. Here 7 is a positive number which is
related to the time step size. We shall not consider further application of Corollary
2 in this paper.

We next apply the above results to analyze parallel multilevel preconditioners for
A. An operator B : M + M is a good preconditioner for A if it satisfies:

(1) The action of B on vectors of M is economical to compute.
(2) The condition number K(BA) of the preconditioned system is not too large.
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Item (1) above guarantees that the cost per iteration in a preconditioned scheme
using B for solving (2.2) will not be unreasonable. Item (2) guarantees that the
number of iterations in a preconditioned scheme will not be too large. Note that
by Theorem 1, B satisfies (2). B may in fact satisfy (1) in many applications but
generally it is desirable to avoid evaluating the action of Q. Hence we shall develop
more computationally effective algorithms by modifying (2.5).

'To get a computationally effective preconditioner, we write (2.5) in the form

J-1 )
B=)Y (A= Aii)Qs + A7
k=1

Notice that if {\x}]_, satisfies the growth condition Agy; > oAy, for o > 1 then
the operator

J
B=> A" (2.12)
k=1

satisfies

(1 - oY) Bu,u) < (Bu,u) < (Bu,u), for all u € M.

We consider a slightly more general operator defined by replacing )\,'C'II in (2.12)
with a symmetric positive definite operator Ry : My = My, i.e.

J
B=) RiQ:. (2.13)
k=1

Clearly, B is symmetric and positive definite on M. The cost of evaluating the
action of the preconditioner B on a vector in M will be discussed in later sections
but will obviously depend on an appropriate choice of Ry.

For our subsequent development, we shall need to make the following assumption
concerning the operator R;. We assume that

2
Cs ”?;” < (Riw,u) < Ca(Af ' w,u),  forall u € My, (A-2)
k

where Cy and Cj are positive constants not depending on J. Clearly the choice
Ry = A\;'I corresponding to (2.12) satisfies (A.2).

The preconditioner (2.13) can be thought of as a parallel version of a V-cycle
multigrid algorithm. The operator Ry plays the role of a smoothing procedure.
The major difference between (2.13) and the V-cycle multigrid scheme is that the
smoothing on every level of (2.13) is applied to the original fine grid residual. In
contrast, the multigrid V-cycle applies the smoothing to the residual computed using
the corrections from the previously visited grid. Obviously, the different terms in
(2.13) can be computed in parallel while, in contrast, computations on a given grid
level in a standard multigrid algorithm must wait for the results from previous
levels. The connection between (2.13) and the multigrid V-cycle will be more fully
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discussed in Section 3. However, it is not surprising that assumptions which are
equivalent to (A.2) have been made in the analysis of the usual serial multigrid
algorithms [4],[9],[16],[17].

REMARK 2.2: A particularly interesting choice of Ry can be motivated as follows.
As noted above, Ry = A;'I satisfies (A.2). Let {1)L} be an orthonormal basis for
Myp. Then

Atu = A7t Z(u,d;fc)z/)é, for all u € My. (2.14)
l

In practice, an orthonormal basis for My is seldom available. However, for finite
element applications with quasi-uniform grids, the right hand side of (2.14) with
normalized nodal basis functions {1}} defines an Ry satisfying (A.2) (see Section
3). Moreover, we note that for u € M,

RiQru = A" Y (u, $) 6k
1

and hence Ry Q) is computable without the solution of gram matrix systems. This
will be discussed in more detail in Section 3.

With B defined in (2.13), we have the following corollary.
Corollary 3. Under assumptions (A.1) and (A.2),

Cr1Ca T A(v,v) < A(BAv,v) < CaJA(v,v), for all v € M. (2.15)

We next provide an alternative hypothesis for a lower estimate in (2.15). This
is the so called “regularity and approximation” assumption often used in multigrid
analysis (cf. [4],[15],[18]). We assume that for a fixed a € (0,1], there exists a
positive constant Cy not depending on k = 1,... , J satisfying

A((I = Pr—1)v,0) < (CA | Awo )% A(,0)' ™%, forallv € My,  (A.3)

where Py = 0. In finite element applications, the above assumption is usually
proved by using elliptic regularity for the continuous problem and the approximation
properties of the space My_; [1],[4]. In such applications, assumption (A.3) may
be stronger than (A.1), e.g. when a = 1, (A.3) implies (A.1).

Theorem 2. Assume that (A.2) and (A.3) hold. Then
CoC7 T2 A(v,v) < A(BAv,v) < CsJA(v,v),  for allv € M.

Remark 2.3: Included in (A.1) and (A.3) is the implicit assumption that C; and
Cy are greater than or equal to K(A;). In finite element applications, K (A4;) will
not be large if the grid size of the coarsest grid is of unit size. However, if a good
preconditioner R; is available for any finer grid, i.e. R; satisfies in addition,

(R;lu,u) < Cs(Aju,u), (2.16)
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then it suffices to use

J
B = RiQ:.

ke=j

In such applications, (A.1) or (A.3) need only be satisfied for k > j. Note that
R; = A;l will be computationally economical provided that the j’th grid size is
relatively small. Many alternative choices are possible.

3. The quasi-uniform finite element application.

In this section, we shall illustrate the application of the abstract theory and algo-
rithms discussed in the previous section to a second order elliptic boundary value
problem approximated using finite element functions on a quasi-uniform mesh. We
note that the hypotheses of the previous section are satisfied. We also consider
the computational complexity of the resulting algorithm in both serial and parallel
computing applications. For brevity, we consider only the most basic finite element
applications. Many other applications are possible including examples of elliptic
problems in higher dimensions. '

Let My C -+ C My = M be the finite element spaces defined in the introduction
subsequent to (1.1), A(-,) be the generalized Dirichlet form defined in (1.3) and
(+,*) be the L? inner product on €.

We will apply the results stated in Section 2 to Problem (1.2) with the above
sequence of spaces. Let h; denote the size of the k’th triangulation. It easily
follows that there are constants ¢y and ¢;, not depending on k and satisfying

cohi? < Ay < e (3.1)
Inequality (A.1) with & > 2 is well known. For k = 1, we have that
o <A™ A(v,v),  forallve M

where A is the smallest eigenvalue of 4 and is obviously bounded from away from

zero (independently of J). We shall suppose in this application that M is such

that hy is proportional to the diameter of Q so that Ct > A1 /A which is not large.
We next consider the operator Ry motivated by Remark 2.2, ie.

Ryv = Z(v,qﬁi)qﬁi, for v € My, (3.2)
!

where the sum is taken over all nodes of 7. As observed in Remark 2.2, the action
of RiQ can be computed without explicitly computing Q). Moreover, using Ry
defined by (3.2) in (2.13) leads to the preconditioner of (1.4) It is shown in [11]that
(A.2) holds for this Ry.

For this problem, (A.3) will always be satisfied for some a € (0,1], (cf. [1],[4]).
The size of a depends on the elliptic regularity of Problem (1.1). Thus, in the case
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when () is a convex polygonal domain and the coeflicients defining L are smooth,
(A.3) holds with a = 1 and we conclude from Theorem 2 that

K(BA) < cJ.

In the case of a so called crack problem (with smooth coeflicients), the largest
interior angle is 27 and the regularity of (1.1) is such that (A.3) does not hold for
a > 1/2. Hence Corollary 3 yields the better estimate and shows that

K(BA) < CJ?,

Remark 3.1: It is possible to apply the theory of Section 2 to elliptic problems
in three or more dimensions. Many examples are possible but we consider only the
simplest. In three dimensions, we let the coarse mesh be a union of equally sized
cubes. Finer meshes are obtained by breaking each cube of a coarser mesh into
eight smaller cubes in the obvious way. The subspaces { M} are defined to be the
functions on § which are continuous and piecewise trilinear with respect to the £’th
mesh and vanish on 9Q. The nodes of these spaces are the vertices of the cubes
defining the mesh. We may take

J
Bu=Y hi" Y (u,é})ék, (3.3)
k=1 l

where {¢}} denotes the set of nodal basis functions. We emphasize here again that
all the terms in (3.3) are independent and hence may be computed concurrently.

Remark 3.2: Assumption (A.1) is often easier to verify than (A.3). For example,
we consider the two dimensional problem (1.1) when the coefficients of the operator
L are discontinuous. If the jumps in the coefficients are only along the lines of the
coarse mesh, then it is possible to prove that (A.1) holds with €} < CJ where the
constant C depends on the local variation of the coefficients of L on the coarse grid
triangles but not on the magnitude of the jumps across triangles [20]. This leads
to a conditioning result of the form

K(BA) < CJ3.

The dependence of constant Cy4 (in (A.3)) on the size of the jumps is a much more
difficult question since it requires the knowledge of the dependence of the elliptic
regularity constants on such jumps.

In the remainder of this section, we consider computational issues involved in
implementing the above algorithm in serial and parallel computing architectures.
However, before proceeding, we make the following observation. Even though we
have defined B as an operator on M, in a preconditioned iterative scheme we are
only required to compute Bv given the data W} = (v, ¢%). This is because when
v = A8, we always compute {(A4,0,¢") = A(8,4%)} and hence avoid the solution
of the gram matrix problem required for the computation of A ;0.

e
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We first consider the serial version of the algorithm. Let v € M be given and
define Wy = (v, ¢%). Let Wy denote the vector with entries (Wy); = W]. We need
to compute the action of By given Wj;. We define Wi—1 from Wy in a recursive
manner. Note that each basis function in M_1 can be written as a local linear
combination of basis functions for M k. Thus, each value of W,g_l can be written as a
local linear combination of values of Wr. Moreover, the work involved in computing
W1 from Wy is proportional to the number of unknowns in M_;. Consequently,
the work involved in computing the vectors {W;}, k = 1,...,J bounded by a
constant times the number of unknowns in M. Once the vectors {W;} are known,
we are left to compute the representation of Bv in the basis for M. To do this, we
compute the representation of

By = Z Z(va ¢§c)¢§c7
k=1 1

in the basis for M,,, for m = L,...,J. The result at m = J is of course the basis
representation for Bv. For m = 1, the representation is already given by W;. The
representation of B,,v, for m > 1 is calculated from that of B,,_ v by interpolating
the By, _1v results (i.e. expanding them in terms of the m’th basis ) and adding
the m’th level contribution from W The work of calculating the representation of
By given that for Bum-1v is on the order of the number of unknowns in M,, and
thus the total work for this algorithm is bounded by a constant times the number
of unknowns on the finest grid.

Remark 3.3: The serial implementation of the operator  is closely related to the
multigrid V-cycle algorithm. The step of computing Wj,_; from W, is nothing more
that the step which “transfers the residuals” from grid level k to k—1in a multigrid
V-cycle algorithm. However, the multigrid algorithm requires extra computation
since it must smooth and then compute new residuals on the k’th level before
transferring. The second step in the serial algorithm for B is also duplicated in
the “coarser to finer interpolation” step in the multigrid V-cycle algorithm. The
symmetric multigrid V-cycle requires extra computation since it requires additional
smoothing on each grid level. Thus the serial B algorithm, in terms of complexity,
is similar to a multigrid V-cycle algorithm without smoothing.

We next consider parallel implementation of the preconditioner 5. The execution
of (1.4) can obviously be made parallel in many ways by breaking up the terms
into various numbers of parallel tasks. The optimal splitting of the sum is clearly
dependent on characteristics of the individual parallel computer, for example, mem-
Ory management considerations, task initialization overhead, the number of parallel
processors, etc. We note, however, the simplicity of the form of (1.4) allows for
almost complete freedom for parallel splitting,.

It is of theoretical interest to consider the algorithm on a shared memory machine
with an unlimited number of processors. As above, the implementation Bv involves
two steps, the calculation of the coefficients W} and the computation of the repre-
sentation of Bv in the basis for M. Each coefficient can be computed independently
and involves a linear combination (not necessarily local) of the values of Wy, With
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enough processors, a linear combination of m numbers can be computed in log,(m)
time. Hence the coefficient vectors {Wy} can be computed in log,(N) time where N
is the dimension of M. Each coeflicient of Bv involves a linear combination of M, J
contributions from the J grid levels (here M, is the maximum number of neighbors
for any given level. Thus, computation of Bv can in done in time bounded by CJ.

4. A local refinement application.

In this section, we shall discuss the application of the parallel multilevel algorithm
to the finite element equations corresponding to a problem with mesh refinement.
Such mesh refinements are necessary for accurate modeling of problems with various
type of singular behavior. For simplicity, we shall make no attempt at generality.
Instead, we shall illustrate the technique by considering an example from which
many obvious generalizations are possible. For this example, the domain ) will be
the unit square and we shall approximate the solution to (1.1). The form A(,-)
and the inner product (+,-) will be as in Section 3. The sequence of grids which we
shall consider will be progressively more refined as we approach the corner (1,1).
Such a mesh would be effective if, for example, the function f in (1.1) behaved like
a 0 function distribution at the point (1,1).

To define the mesh, we first start with a sequence of subspaces My,... , M;
defined using uniform grids of size hy = 27% k = 1,...,j as described in the
quasi-uniform case (See Section 1). The j + 1’st triangulation is then defined by
refining only those triangles in the upper quarter, [1/2,1] x [1/2,1]. Similarly, the
J + 2'nd triangulation is defined by refining only those triangles in the j + 1’st
grid which are in the region [3/4,1] x [3/4,1], etc. Accordingly, we shall denote
Qp = (1~297% 1) x (1 -27"% 1) and define the spaces My for k= j+1,...,J to
be the continuous functions on {2 which are piecewise linear with respect to the k’th
grid. Note that this introduces slave nodes into the computation, i.e. the vertices
of the triangles on the boundary of the k’th refinement region which are not nodes
for the k — 1’st subspace. These nodes are slaves since the values of functions on
these nodes are determined by the values of neighboring nodes and the continuity
condition on the subspace. Thus, they do not represent degrees of freedom in the
subspace. It is shown in [11], that (A.1) is satisfied for this sequence of subspaces.

We next define a sequence of operators {Ry} satisfying (A.2). For k < j, Ry is
given by (3.2). Let {z}} denote the nodes of the k’th grid and let {¢%} denote the
corresponding nodal basis functions. For each node z} with k > j we define

By = hi ifx;cEQk,
T A b it el € Qo /O, § <m < k.

Note that if 2} € Qk/Q+1 then 2} is a node for each finer subspace and gets
assigned the same value hy. We then define

Reu=hy > hil(u, 6})8k. ' (4.1)
{



352 Bramble et al.

We can apply Corollary 3 to show that K(BA) < CJ? where B is defined by
(2.13) with Ry and My as above. For this application, we have not been able to
prove the regularity and approximation assumption (A.3).

For the purpose of implementation, it is more efficient to reorder the terms defin-
ing B. For k = §,...,J let N}, be the nodes of My in Qf and for k < J let N} be
the nodes of My in Qk/Qk+1. For a function u € M, it is not difficult to see by
induction on J that

7—1
Bu= > RiQiu+ Y (u,65)¢}

LES :E!JG./\/J

J-1

k=j "zl €N} oL €N [N

(4.2)

where v = hj? Zm i h2,. Note that the Ry terms in the first sum of (4.2) involves
the same sums which appear in the uniform case of Section 3. In addition, the
calculation corresponding to the k’th mesh in (4.2) for k = j,...,J only involves
nodal basis functions on Q.

Finally we define a sunpler preconditioner B by replacmg v by one in (4.2), i.e.

zzzuqﬁk )i + Z Z(U 31 )P (4.3)
k=1

{ k=j+1  zlem,

Note that in (4.3), the k’th refinement grid only adds a sum over the nodes in (1.
We note that for u € M, by (4.2)

(Bu,u) = LL(U ¢k 2_, (u, ¢J)2

z! ENJ
+§:[ Y e Y <u,¢z>2]
k=j "zl e} T ENL /NG

with an analogous expression for B. Clearly, 1 < v < 4/3 from which it follows
that

(Bu,u) < (Bu,u) < %(l?u,u), for all u € M.

From the discussion in Section 3, it is clear that the first sum in (4.3) is a precon-
ditioner for the problem on M, i.e. the finest uniform grid. As we shall see, this
sum can also be replaced by any uniform preconditioner for A; without adversely
effecting the asymptotic behavior of the overall condition number. Indeed, let the
operator R; be a preconditioner for A; (satisfying (2.16) and the second inequality
of (A.2)) and define for u € M,

J
Bu=RiQu+ Y, Y (u,})éi. (4.4)

F=i+1 2l eN;
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Note that by Remark 2.3, the operator
. J
Bu= Y RiQpu
k=g

satisfies K(BA) < C(J — 7)%. It is shown in [11]that B is uniformly equivalent to
B. Thus, K(BA) < C(J - j)2.

Remark 4.1: Clearly, we could generalize this example to include much more gen-
eral refinements for problems in R? as well as higher dimensional space. Note that
the refinement only changes the preconditioner B (resp. I}) by adding additional
terms in (4.3) (resp. (4.4)) involving nodes from the refinement region. Thus, this
approach is well suited to dynamic adaptive refinement techniques. New refinement
regions add terms to the sum whereas the “de-refinement” of existing regions only
takes away terms from the sum. The operator B is even more useful in this context
since it allows the easy inclusion of this refinement preconditioner into existing large
scale uniform grid codes. Preconditioners for the uniform grid already available in
the existing code can be used, supplemented with additional routines implementing
the terms due to the refinement.

5. Numerical results

In this section, we provide the results of numerical examples illustrating the theory
discussed in the earlier sections. To demonstrate the performance of the proposed
algorithms, we shall provide numerical results for a two dimensional problem with
full elliptic regularity and one with less than full elliptic regularity, a two dimensional
example with a geometric mesh refinement and a three dimensional example. In
all of the reported results, the experimentally observed behavior of the condition
number of the preconditioned system was in agreement with the theorems presented
earlier. In the first example, we also compare the results of the new method with
those obtained using the hierarchical preconditioning method [21] and a classical
V-cycle multigrid preconditioner[4].

For our first example, we consider Problem (1.1) when L = —A = —9%/02? —
0% /022 and Q is the unit square. This example satisfies the regularity and approx-
imation assumption (A.3) for « = 1 as well as (A.1).

We will use a finite element discretization of (1.1) and develop a sequence of
grids in a standard way. To define the coarsest grid, we start by breaking the
square into four smaller squares of side length 1/2 and then dividing each smaller
square into two triangles by connecting the lower left hand corner with the upper
right hand corner. Subsequently finer grids are developed as in the introduction,
i.e., by dividing each triangle into the four triangles formed by the edges of the
original triangle and the lines connecting the centers of these edges. The space M;
is defined to be the set of continuous functions on Q which are piecewise linear on
the ¢’th triangulation and vanish on 09Q.

We shall compare three preconditioners for (1.2). The first preconditioner B
is defined by the multilevel algorithm (2.13) with Ry given by (3.2) and fits into
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the framework considered in Section 3. For comparison, we also provide results
for the hierarchical preconditioner By [21] and a preconditioner By defined by
a standard symmetric V-cycle of multigrid [4]. The multigrid algorithm uses one
sweep of Jacobi smoothing whenever a grid level is visited and hence results in
two smoothing steps on each grid for each evaluation of the preconditioner. The
multigrid uses hg = 1/4 for the coarsest grid while both the hierarchical and the
parallel multilevel algorithms uses hy = 1/2.

Table 5.1 gives the condition numbers K of the preconditioned systems By A,
BA and By A corresponding, respectively, to the hierarchical preconditioner, the
preconditioner defined by (2.13), and the V-cycle multigrid preconditioner. We
note that for these examples, a preconditioned conjugate gradient algorithm using
the new preconditioner would be expected to take twice as many iterations as the
corresponding algorithm using the V-cycle of multigrid. However, even in a serial
implementation, the multigrid algorithm involves substantially more computational
effort per step. The new method outperforms the hierarchical preconditioner.

Table 5.1
Condition numbers when § 1s the square.

hy K(ByA) K(BA) K(ByA)
1/16 19 7.0 2.3
1/32 31 8.1 2.4
1/64 43 9.0 2.4
1/128 58 9.8 2.4

This test problem illustrates an example where all three methods work reasonably
well. However, we note that B is preferred over standard multigrid when the parallel
aspects of the algorithm are important. In addition, B generalizes to higher dimen-
sional problems without convergence rate deterioration (see Table 5.5) and hence
would be preferred to the hierarchical method in three dimensional computations.

We next consider the above preconditioners on a problem with less than full
elliptic regularity. We again consider (1.1) with L given by the Laplacian and Q
equal to the “slit domain”, i.e.  is the set of points in the interior of the unit
square excluding the line {(1/2,y)|y € [1/2,1)}. This example does not satisfy the
a priors estimates used in the proof of the regularity and approximation assumption
(A.3) for a > 1/2. However, assumption (A.1) is satisfied.

Table 5.2 gives the condition numbers K of the preconditioned systems By A,
BA and By A corresponding, respectively, to the hierarchical preconditioner, the
preconditioner defined by (2.13), and the V-cycle multigrid preconditioner. The
results are in general agreement with the theoretical estimates

K(BpA) < Cln*(1/hy),
K(BA) < Cln*(1/hy),

for the respective methods.
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Table 5.2

Condition numbers when € is the slit domain.

hy K(BpA) K(BA) K(ByA)
1/16 14.6 7.9 2.6
1/32 25.17 10.0 2.9
1/64 38.2 12.6 3.1
1/128 53.8 14.9 3.4
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We next provide numerical results for the refinement example of Section 4. We
once again, consider the solution of (1.1) with L the Laplacian and Q the unit
square. The sequence of spaces My C -+ C M are as developed in Section 4
and provide results for the preconditioner B defined by (4.3). As noted in Section
4, some such refinement would be necessary if, for example, the function f had a
§-function behavior at the point (1,1). Table 5.3 gives the condition number of the
preconditioned system BA as a function of the mesh size of the uniform grid A j and
the number of refinement levels . The size of the finest triangle can be computed
by dividing the uniform mesh size by 2'. In all of the runs, the coarsest grid level
corresponded to hg = 1/2. The numerical results seem to indicate that an increase
in the number of uniform levels has a greater effect on the condition number than
an increase in the number of refinement levels.

Table 5.3

Condition numbers for the refinement ezample.

hj =1 =2 =3 I=4
1/8 6.3 6.5 6.7 6.9
1/16 7.7 7.9 8.05 8.1
1/32 8.8 9.0 9.1 9.2
1/64 9.6 9.7 9.8 9.9

We next present results for the refinement operator defined by (4.4). The problem
and sequence of subspaces are as just described but only the subspaces My, k >
are used. In (4.4), we use a multigrid preconditioner (cf. [4]) scaled by 4 to define
R;, the operator on the finest uniform grid. The scaling was introduced to balance
the size of the two terms in (4.4). Table 5.4 gives the condition number of the
preconditioned system BA as a function of the mesh size of the uniform grid A j and
the number of refinement levels [.
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Table 5.4

Condition numbers for BA using multigrid preconditioning on level j.

hj I=1 1=2 =3 I=4
1/8 4.3 6.0 6.4 6.6
1/16 47 6.7 7.6 8.1
1/32 4.9 7.0 8.4 9.2
1/64 5.0 7.1 8.5 9.6

As a final example, we illustrate the preconditioning technique on a three dimen-
sional problem. We consider a Galerkin approximation to the Laplace equation

—Au = fin Q, (5.1)
u = 0 on 99,
where A = 8?/9xz% 4 8% /0y? + 0% /02 and Q is the unit cube. We define the coarse
mesh by dividing  into eight smaller cubes of size hy = 1/2. Successively finer
meshes are formed by dividing each cube of a coarser mesh into eight smaller cubes.
The finite element space M}, is defined to be the set of continuous functions on
which are trilinear with respect to the k’th mesh and vanish on 99.

Table 5.5 gives the condition number K of the preconditioned system BA where
B is defined by (3.3). This example satisfies full elliptic regularity and the regularity
and approximation assumption (A.3) holds with @ = 1. Thus, the theory predicts
only a logarithmic growth in the condition number which is in agreement with the
reported results. Note the finite element spaces are of rather large dimension, in
fact, the hy = 1/64 example has over a quarter of a million unknowns.

Table 5.5

Condition numbers for the three dimensional exzample.

hj K(BA)
1/8 4.1
1/16 5.2
1/32 6.0
1/64 6.6
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