CHAPTER 20

Parallel-Vector Computation with High Degree
Element-By-Element Methods

E. Barragy*
G.E Carey*

Abstract. FElement-by-element techniques and variants of this
class of methods may be interpretted as a form of abstract domain de-
composition procedure. The EBE approach, implemented as a block
iteration form of domain decomposition, offers greater flexibility than
more standard, and restrictive, domain decompositions. Hence it can
be incorporated more easily in existing finite element software. Here
we consider EBE conjugate gradient solution and some aspects of
parallel and vector processing. Of particular interest in the present
study are spectral (p) methods, with large element degree p. Numeri-
cal results are presented for representative linear and nonlinear model
problems.

1. Introduction. Domain decomposition in its simplest form consists
of dividing the domain of a problem into a number of subdomains (possibly
overlapping) and then interactively adjusting the global solution using local
subdomain solutions. This idea was suggested by Schwarz in the 1800’s for
analytical solution of Poisson’s equation using overlapping subdomains [5].
Since it offers a conceptually simple divide and conquer strategy, the idea
is also appealing from the standpoint of parallel processing. The number of
subdomains, size of subdomain grids and connectivity of the subdomains
will influence the performance of the global iteration and also the efficiency
on a given parallel computer architecture. For example, the number of
subdomains may be an integral multiple of the number of processors and the
grid size (number of nodal unknowns) equal for each subdomain to achieve
perfect load balance. For practical applications with complex geometries,
equilibrating the subdomain grids for load balance is more difficult, and has
led to so called “annealing” or grouping procedures where the subdomain
interfaces can be quite complicated.

*Depaxtment of Aerospace Engineering/Engineering Mechanics, University of Texas at
Austin, Austin, TX 78712-1085.

358

PARALLEL VECTOR COMPUTATION METHOD 359

Subdomain iteration strategies of this type are equivalent to block iter-
ative methods with the block partitioning defined by the subdomain pre-
scription [21,22]. Hence, it is useful to examine these domain decomposition
methods from this perspective. The finite element procedure begins by dis-
cretizing the domain into a union of elements. Hence, individual elements
or collections of elements can be used to define the subdomains. If the
elements in each subdomain are contiguous, one obtains a standard do-
main decomposition. If instead, the elements are not so closely associated
then the subdomains may be collections of scattered elements. Finally,

-individual elements may be taken as the subdomains. Each of the above

choices may place restrictions on the type of basic block iterative method
to be implemented, but each can be accelerated by the method of conjugate
gradients or biconjugate gradients.

2. Discussion.

2.1. Element and “Block” Parallelism. The main steps in such a
procedure involve element matrix-vector products, accumulation (or extrac-
tion) of local and global vectors, and global inner products. The element
matrix-vector products are easily parallelized over the elements to achieve
near-optimal load balance with both coarse and fine granular parallel sys-
tems. Accumulation or extraction of vectors and inner product calculations
are more troublesome. Difficulties can arise, for instance, due to communi-
cation overhead on distributed parallel systems. The communication over-
head depends on the parallel architecture, hardware characteristics, and
complexity of the subdomain interfaces. In an element-by-element subdo-
main procedure the element boundaries are the interfaces. If a large number
of simple elements are used, the measure of the interfaces is large. Then the
associated interface-related overhead in, for instance, communication will
be high. Moreover, the element calculations will be small for simple low-
degree elements such as bilinear rectangles (p = 1). Hence, for reasonable
processors the system will be communication-limited.

One alternative is to group the elements contiguously into subdomains,
each containing approximately the same number of elements and the same
small interface measure. For example, large square subdomains or rectan-
gular strips might be appropriate for certain simple geometries. This is one

360 Barragy and Carey

form of the “annealing” technique referred to earlier. Again, the number of
subdomains are restricted to be an integer multiple the number of proces-
sors. The element-by-element matrix formation, vector products and inner
products can then be made within each subdomain for a given processor.
Interchanges for global vector accumulation, dot products, etc. then in-
volve only the subdomain interfaces. If the subdomains are “topologically”
square, then the interior work increases with the number of elements N and
the interface grows with 4v/N. The domain size can therefore be chosen
so that the balance between internal subdomain computation and interface
operations can be greatly improved. The interior subdomain computations
can also be vectorized over the elements in the subdomain.

Other strategies based on this standard type of domain decomposition
are also possible. For example, in the spirit of substructure analysis, the
interior unknowns for each subdomain can be eliminated retaining only in-
terface nodes. Hach subdomain is then essentially a super-element and the
resulting system can be solved using parallel block iteration (a superele-
ment EBE scheme) or otherwise [1,4]. Various strategies involving exact
or approximate block inverses can be incorporated. They may involve full
factorization, fast direct methods, incomplete factorizations for precondi-
tioners, or a conjugate gradient procedure within each subdomain at each
outer iteration [2,3].

2.2 High-Degree Elements. Rather than use subdomains consisting
of simple elements, the EBE approach can be applied directly to blocks
made up of single high-degree elements or a few high-degree elements. It
is well known that for regular solutions the approximation error reduces
with decreasing mesh size h and with increasing polynomial degree p. This
corresponds to the so-called h and p refinement procedures, respectively.
Moreover, the error drops dramatically with increasing p [7,9]. Thus, the
use of subdomains containing one or a few high-degree elements will re-
quire dramatically fewer unknowns per block and per interface to achieve
the same accuracy. However the computation within the subdomain is
still relatively large and dense particularly is 2D. Thus a more favorable
computation/communication ratio is achieved as p is increased. In addi-
tion, for sufficiently large p, computations can be vectorized within the

PARALLEL VECTOR COMPUTATION METHOD 361

elements, rather than over the elements. This yields a procedure that is
extremely simple to vectorize and parallelize. For example, if biquintic
elements (p = 5) are used with an EBE domain decomposition (simple el-
ement subdomains) then each subdomain (element) has 36 nodes and will
generate a dense 36 x 36 element matrix. Also 20 edge nodes are now fully
connected. A 5 x § subdomain mesh of bilinear elements would be less
accurate but offer the same number of nodes (and a different sparse con-
nectivity). Efficient vectorization is more difficult to achieve and one faces
added book-keeping problems associated with “joining” the 5 x 5 block of
elements into a subdomain.

As element degree p increases, the conditioning degrades and appropri-
ate preconditioners are needed to achieve an efficient solution. (A parallel
scheme that is perfectly balanced but interminably slow to converge is of
no use.) Moreover, the preconditioner should ideally be parallelizable at
the element (or subdomain) level. For certain types of frequently encoun-
tered operators, simply choosing a special element basis will suffice [23,24].
In the numerical studies later, we consider a Helmholz operator and use
the integrated legendre polynomials. More generally, special bases can be
constructed at the element level that exploit (approximately) the orthog-
onality properties associated with the given operator and produce better
conditioned systems. Other preconditioners, such as diagonal Jacobi or el-
ement block preconditioning, can be used in conjunction with such schemes
to further accelerate convergence [6,8,18,20].

A variable p finite element analysis and an EBE conjugate gradient
parallel solver have been developed. Details of our EBE gradient scheme
are given in [10] and the parallel ideas in [12,16,17]. For other related work
see also [11,19]. In the following numerical study we focus on EBE schemes
using single element subdomains. A range of p values is considered. Studies
are made of vectorization on a Cray X-MP and parallelization on a shared
mermory multiprocessor (Alliant FX/8). Results are given for both linear
and nonlinear model problems in 2-D.

3. Numerical Studies. We first consider the following elliptic model
problem in domain £2,

362 Barragy and Carey

~Viu+4riu=f in (0,1) x(0,1)
with v =10 on boundary 00

The data f is chosen to correspond to the exact solution
u(z,y) = sin(rz)sin(2ry) + (2 — z)e"(y* — y)e¥

The second problem considered is the stréam function vorticity formulation
of the 2-D incompressible Navier-Stokes equations,

Re(U - Vw) -~ Viw = f
V% —w=0 in (0,1)0,1)

with © = 0 on boundary 9§ and where U = (94 /0y, & /0z) denotes the
velocity. Details of the mixed method used for the discretization and the
application of the vorticity boundary conditions can be found in [13] The
data f is chosen to correspond to the exact solution

Y(z,y) = sin®(rz) sin®(ry)

Newton iteration is used to solve the coupled system for a given value of
Re, the Reynold’s number. Thus a linear system is solved at each Newton
step, and an EBE scheme can be applied for each such solution.

For both problems the domain is discretized with various uniform meshes
of elements depending on the combination of h and p chosen. For the first
problem an integrated Legendre polynomial basis is chosen since this gives
reasonable conditioning [23]; for the second problem a Lobatto basis is
chosen, also for conditioning considerations [14]. A conjugate gradient iter-
ative solver is employed for the first problem for the parallelization results;
a biconjugate gradient solver is used for the vectorization results. For the
stream function vorticity problem a biconjugate gradient solver is used in
both studies. The initial solution iterate is taken to be zero and the con-
vergence criterion used was r,/ro < € = hP*)/(p 4+ 1)! where r,, denotes
the residual norm of the preconditioned system for the nth iterate and rq
for the first iterate. The convergence criterion is based on a simple Tay-
lor series estimate for discretization accuracy. Thus we attempt to solve

PARALLEL VECTOR COMPUTATION METHOD 363

each system only up to full discretization accuracy. Unless otherwise noted,
Jacobi preconditioning is used.

For these two test cases we are interested in four issues. Most impor-
tantly we would like to determine the performance of the EBE formulation
in a Fortran “dusty deck” implementation on shared memory parallel and
vector processors. The performance is expected to vary greatly with h, p
and for the two test cases considered. Note that the element matrices are
twice as large for the second problem as for the first. We emphasize that
the performance figures shown are for standard Fortran code, no “hand
tuning” was applied. Issues of subsidiary interest are the accuracy attain-
able for various choices of h, p and the associated computational costs, and
the level of parallelization possible with sophisticated block preconditioners
such as those in [14]. The parallel computations were carried out in double
precision on an FX/8 Alliant multiprocessor configured with six processors
in the “complex”. To determine speedup, we run each discretization for
parallel code executing on a single “detached” processor and for parallel
code executing on the “complex” with six processors. The speedup is then
reported as the ratio of these two run times. This should be considered
an upper value for the speedups, as the overhead for parallelization im-
plementation in the single processor code is not subtracted out. Previous
experience indicates a reasonable degradation of computed speedups due
to the subtraction of this overhead [12] Note that we do not include the
grid generation phase of the computations in the timings nor do we include
the post processing to compute the L? error. The vectorized computations
were carried out on a single CPU Cray X-MP. The CFT77 Fortran com-
piler was used and the performance figures reported were obtained with
the PERFTRACE utility. Only the performance for selected routines is
reported. Specifically, this includes element formation, matrix vector prod-
ucts, summing the results of the element matrix vector products, and the
biconjugate gradient routine, which is mostly BLAS level 1 operations.

The parallelization results are shown in Tables 1 and 2 below, for the
first and second problems respectively. Each entry has the value of the
L? error, the solution time t; for a single detached processor and for six
processors tg in the complex, as well as the speedup S obtained. No entry
indicates the case was not run. An element block type preconditioner [14]
is used in the second set of values reported (p, = 6).

364

Barragy and Carey

Table 1: Parallelization of Diffusion Problem.

I

|h=1/6|h:1/12|h=1/24|h=1/48]

p=1|Ly| 4.9e2 1.3e-2 3.2e-3 8.0e-4
t, | 0.187 0.976 6.680 53.38
ts | 0.053 0.259 1.89 15.70
S 3.53 3.77 3.54 3.40
p=2 | Ly | 3.4e-3 4.2e-4 5.2e-5
t 0.99 5.94 379
ts 0.22 1.32 8.8
S 4.52 4.50 4.31
p=3 | Ly| 2.0e-4 1.3e-5
ty 4.08 22.17
te 0.80 4.48
S 5.07 4.95
| [[h=1/3] h=1/6 |
p=©6 | Ly | 2.0e-6 1.6e-8
ty 22.1 113.2
tg 5.1 20.5
S 4.3 5.5
pp=06| Ly | 2.0e-6 1.6e-8
t 21.3 129.0
ts 5.1 25.1
S 4.1 5.1

Examining the relative L? errors for a given p, we first note that they all
appear to converge in accordance with the standard theoretical estimate for
regular problems (||u — u*||r, = ChPtD) /(p + 1), where u is the analytic
solution and u* is the finite element solution). This is to be expected
as both solutions are quite smooth. Next note that if a one percent L?
error tolerance was desired for the solution of the first problem, the best
choice here is (h,p) = (1/12,1). If a 0.1 percent error tolerance is desired,
then we could choose (1/24,1) or (1/6,2). However, choosing the latter
discretization results in a savings factor of 6 in the execution time. For the

PARALLEL VECTOR COMPUTATION METHOD 365

Table 2: Parallelization of Stream Function Vorticity Problem.

| | [h=1/6Th=1/12]h=1/24[h =1/48 |

p=1 |1, 1.57 0.40 9.9¢-2 2.5e-2
ty 7.59 92.2 980.0 9429.
t¢ | 1.93 24.0 258.6 2528.
s 3.93 3.85 3.79 3.73
p=2 | L, 0.11 1.4e-2 1.8e-3
t 109.8 1225, 6291,
te 23.9 264, 1377.
S 4.59 4.64 4.57
p=3{Ly| 6.7¢-3 4.3e-4
t 642. 7320.
te 128. 1452,
N 5.0 5.04

| | [h=1/8]h=1/4[h=1/5]
p==6|L,| 6.7¢5 9.1e-6
ty | 1679. 5277.

ts | 391 1066.
S| 429 4.95
p=6|L;| 67¢5 | 9.1e6 1.96
t, | 1090. | 3121 6255.
te | 264. 655. 1388.
S| 413 477 4.51

extreme error tolerance of 10~ one could choose from three discretizations:
(1/48,1), (1/12,2), or (1/6,3). Comparing the best (p = 3) and worst
(p = 1) execution times the savings factor is over 13. For the second
problem, where the L? error of the vorticity is given, we find a savings factor
of 8 for a one percent error tolerance ((h,p) = (1/48,1), (k,p) = (1/12,2)),
and 5 for a 0.1 percent error tolerance ((h,p) = (1/24,2), (h,p) = (1/6,3)).
As expected, p convergence is much more efficient than h convergence for
the two problems considered.

366 Barragy and Carey

Examining the results of the first problem, we find speedups of about
3.5 to 3.9 for p = 1, falling off as the mesh is refined. The speedups
increase with p up to a level of 5.0 at p = 3 and 5.5 at p = 6. (We do
not consider the cases of (h,p) = (1/3,6),(1/4,6),(1/5,6) as these are not
perfect load balance discretizations.) Applying Amdahl’s Law to fit the
observed speedups for the first problem, the performance is “equivalent”
to perfect parallelization with 14% serial code at p = 1, 7% at p = 2, 4%
at p = 3 and 2% at p = 6. The fraction of serial code for the second
problem would generally be slightly less. These results are quite disastrous
when compared to previous work (e.g., [12]) which showed good speedups
obtained with biquadratic elements on similar problems. The answer lies
partially in the routine which takes element matrix vector product results
and sums them into global results. In this work, the routine which does
the “summation” was not parallelized. In the previous study it was heavily
parallelized by forming the elements into disjoint groups and performing
the sum in parallel within each group. Comparing floating point operation
counts for the element matrix vector products and for the “summation”
operation we find a ratio given as 2(p + 1)?. Correcting for the added
CPU times in the element formation routines we estimate fractions of serial
code of 8%, 3%, 2% for p = 1,2, 3, which accounts for a substantial part of
the observed serial code. Next we note that only “user” time is reported
in the results in the tables. Substantial “system” time was observed for
p = 1, decreasing as p increased but increasing as the mesh is refined.
Beyond p = 3 there is little system time involved. Generally large “system”
times indicate considerable paging activity in the program. Based on this
observation, we deduce that the rest of the serial code deficit is a result of
memory conflicts and simple page faulting, although we have no page fault
statistics to prove this.

Examining the parallel performance of the block preconditioner we find
speedups of about 5 at p, = 6, which results in a serial code fraction of 3.5%.
Thus the block preconditioner is highly parallelizable. However, it is not as
parallelizable as Jacobi iteration, which yields a speedup of 5.5. Speedups
of about 4.5 for the block precondiditoner and 5.0 for Jacobi are found for
the second problem. Note that the number of elements precludes perfect
load balancing for the second problem, thus we see smaller speedups. In
order to assess the iterative performance of the block preconditioner we

PARALLEL VECTOR COMPUTATION METHOD 367

can compare the #; timings for p = 6,p, = 6 in Tables 1 and 1. In Table 1
we find approximately equal performance: the block preconditioner is 4%
faster for h = 1/3 and 14% slower for A = 1/6. In Table 2 we find the block
preconditioner 35 and 41% faster for h = 1/3 and h = 1/6. Thus the block
preconditioner is highly effective for the i coupled stream function vorticity
problem.

The results of the vectorization study are given in Tables 3 and 4 for the
first and second problems respectively. The tables show MFLOP rates and
CPU time spent in a routine, for four selected routines which comprise most
of the solver in the code. The routines are: ELEM, which forms the element
matrices, AX/AXT which takes matrix vector products and transposes,
SPRAY which combines elemental matrix vector product results, and BCG
which is the biconjugate gradient driver routine. In addition, the average

MFLOP rate for the solver is given under AVG.

Table 3: Vectorization of Diffusion Problem.

l h,p [ELEM | AX I SPRAY [BCG [AVG |
1/24,1| 16.8 7.5 3.5 78. | 11.9
087].163 .003 004
1/12,2| 21.9 |17.6 9.0 782 | 21.1
074 |.076 .003 004
1/6,4 | 46.1 |46.5| 231 81.6 | 47.0
115 | .088 .004 007
1/4,6 | 75.9 | 725 41.7 84.5 | 74.6
212 | .168| .003 012
1/3,8 | 91.0 |84.2] 434 85.5 | 88.0
436 .302 | .003 016

The vectorization results for the diffusion problem indicate basically
poor performance for p less than 3, reasonable performance for p = 4 and
good performance for p = 6,8. This is quite expected given the way the
routines are coded, i.e., on an element-wise basis. Only when p =6 or
more do the inner loops in the routines become large enough for effective
vectorization. At an average speed of 75 MFLOPs for p = 6 and 88 for
p = 8 we feel that our “dusty deck” is doing remarkably well in terms

368 Barragy and Carey

Table 4: Vectorization of Stream Function Vorticity Problem.

[h,p |ELEM| AX |SPRAY|BCG |AVG]

1/24,1 | 15.6 6.3/5.9 5.2 109. | 16.1
5.72 12.1 2.2 .29

1/12,2 | 204 33.9/36.3 10.5 110. | 30.8
4.4 7.83 C.T2 .34

1/6,4 | 43.3 71.7/54.5 22.9 111. | 56.4
5.67 11.6 31 .46

1/4,6 | 60.2 92.3/63.6 32.1 111. | 70.5
9.3 19.1 .23 53

1/3,8 76.2 | 106.6/68.5 32.9 112 | 80.1
19.5 26.8 21 .54

of utilizing the machine’s resources effectively. The results for the stream
function vorticity problem are somewhat worse. The code structure for
the nonlinear problem is quite different than that for the linear. diffusion
problem, and this leads to many more categories of significant computa-
tional content. For example, the application of the boundary conditions
for the stream function vorticity problem is a respectable part of the to-
tal CPU time, but it is not for the diffusion problem. Rather than give a
detailed breakdown with many new categories, the same timing categories
used for the diffusion problem in Table 4 are also used in Table 4. We have
lumped the various timings for the stream function vorticity problem into
the closest applicable functional category. For example, the application of
the boundary conditions is included in the ELEM (element formation) cat-
egory. Examining the AVG results in Table 4 we see similar performance
to that of Table 4 for the p = 1, better performance for p = 2,4 and worse
performance for p = 6,8. Overall, this is quite unexpected, as the vector
lengths should be twice as long for the stream function vorticity problem
as the diffusion problem. However, examining the code structure, it is clear
that loops are often not configured to take advantage of this extra vec-
tor potential. Rather they are written with other considerations in mind,
such as readability and code maintainability. It is still suprising that such
routines as SPRAY and ELEM exhibit lower performance on the stream

PARALLEL VECTOR COMPUTATION METHOD 369

function vorticity problem. This may indicate added memory conflicts, or
compiler difficulty in utilizing the gather/scatter hardware. Perhaps most
interesting are the MFLOP rates for routines AX and AXT. These routines
are expected to perform better as they are configured to take advantage of
the longer vector lengths. For p = 1 we find worse performance, but for
p = 2,4 we find 50 —100% better performance. For p = 6,8 we get approxi-
mately equal performance. However, examining the rates for AX and AXT
spearately, we see that the performance problems are due entirely to the
transpose product routine, AXT. Tt is unclear what is causing the problem
at this time.

Effective vectorization of the low p discretizations requires that the inner
loop in the routine run over the number of elements in the discretization.
Generally this is reasonable for an h type finite element method as many
elements will be required. Performance of these types of schemes has been
reported in [15]. Such schemes could be incorporated into the existing code
at the expense of added bookkeeping, thereby significantly improving per-
formance in the low p regime. This is essential if h — p type discretizations
are to be considered. It should also be noted that although the results
presented here were obtained for a rectangular grid, similar performance
should be expected from any mesh. In contrast, while many authors have
obtained speeds of 1504+ MFLOPS for similar problems [15,16], generally
their results have involved many more unknowns: 5000 — 20,000 as com-
pared to 625 here, and are generally for problems on rectangular grids.

4. Conclusion. Parallel and vector performance results for a standard
spectral EBE scheme were presented for both a linear and a nonlinear prob-
lem. The results indicate a high degree of parallelization and vectorization
in the formulation for p > 6. No hand tuning of the code was allowed to
obtain the results, thus reinforcing the theme that the EBE method natu-
relly introduces parallelization and vectorization into a finite element code,
given a sufficiently high p. Previous work, and the work of other authors,
indicate that parallelism and vectorization considered separately are nat-
urally introduced for any choice of p, provided that the code is properly
restructured. The present work shows that both can be achieved with a
high degree of efficiency in a single code. Calculations are performed in par-
allel over single element subdomains and vectorized within each element.

370 Barragy and Carey

This suggests that the method is ideally suited for Class VI supercomput-
ers belonging to the shared memory coarse grain vectorizing multiprocessor
variety, such as the Cray Y-MP. To produce a general purpose code that
performs well on parallel, vector and parallel/vector machines for s — p type
FEMs will require some restructuring of the low level algorithm coding to
accomodate low degree elements. The EBE formulation however, remains
intact. Examples of such low level recoding include: do loop unrolling,
inner loops of matrix vector products over the element matrices for low p
elements, and the partition of the elements into disjoint subsets for the par-
allel accumulation of element residual vectors into global residual vectors.
The results also indicate the utility of element block preconditioners for
coupled problems such as the stream function vorticity example. Not only
are such preconditioners effective on uniprocessors, they parallelize quite
nicely also.

REFERENCES

[1] O. AXELssON, G. CAREY, AND G. LINDSKOG, On a class of precondi-
tioned iterative methods on parallel computers, Int. J. Num. Meth. Eng.,
27, 1989, (in press).

[2] T. CHAN (ed.), Proc. Second Int. Symp. on Deomain Decomposition
Methods for PDE’s, SIAM Publications, Phil., 1988.

[3] R. GLowiNnskl, G. GoLuB, G. MEURANT, AND J. PERIAUX (eds.),
Proc. First Intl. Symp. on Domain Decomposition Methods for PDE’s,
SIAM Publications, Phil., 1987.

[4] B. Noor-OMID AND B, N. PARLETT, Element preconditioning using
splitting techniques, STAM J. Sci. Stat. Comp., 6, (1985), pp. 761-771.

[5] H. A. SCHWARZ, Uber einige abbildungsaufgaben, Geo. Math. Abb,, 11,
(1869), pp. 65-83.

[6] L. A. HAGEMAN AND D. M. YOUNG, Applied Iterative Methods, Aca-
demic Press, New York, 1981.

[7]

(8]

[17]

(18]

PARALLEL VECTOR COMPUTATION METHOD 371

I. BABUSKA, B. A. SzABO, AND 1. N., KATz, The p-version of the
finite element method, SIAM J.N.A., 18, 3, (1981), pp. 515-544.

I. BABUSKA, A. CrAIG, J. MANDEL, AND J. PITKARANTA, Efficient
Preconditioning for the p Version Finite Element Method in Two Di.
mensions, preliminary version, 1989,

A. T. PATERA, A speciral element method for fluid dynamics; laminar
flow in a channel ezpansion, J. Comput. Phys, 54, (1984), pp. 468-477.

G. F. CAREY AND B. JIANG, Element-by-element preconditioned con-
Jugate gradient algorithm for compressible flow, in Innovative Methods
for Nonlinear Problems, W.K. Liu, T. Belytschko, and K.C. Park, eds.,
Pineridge Press, Swansea, UK, (1984), pp. 41-49.

T. J. R. HuGHEs, I. LEVIT, AND J. WINGET, Element-by-clement so-
lution algorithm for problems of structural and solid mechanics, Comp.

Meth. Appl. Mech. Eng., 36, (1983), pp. 241-254.

E. BARRAGY AND G. F. CAREY, 4 parallel element-by-element solu-
tion scheme, IINME, 26, (1988), pp. 2367-2382.

E. BARRAGY AND G. F. CAREY, Stream function vorticity boundary
conditions and block element preconditioning, (in preparation), 1989.

E. BARRAGY AND G. F. CAREY, Preconditioners for high degree ele-
ments, (submitted), 1989.

L. J. HAYES AND P. DEVLOO, 4 Vectorized version of a sparse matriz
vector multiply, IINME, 23, (1986), pp. 1043-1056.

G. F. CAREY, R. McLay, M. SHARMA, AND E. BARAGGY, Element-
by-element vector and parallel computation, CANM, 4, (1988), pp. 299-
307.

G. F. CAREY, Parallelism in finte element modelling, CANM, 2, (1986),
pPp. 281-287.

I. GUSTAF¥SSON, A class of first order factorization methods, BIT, 18,
(1978), pp. 42-156.

372

[19]

Barragy and Carey

L. J. HAYES AND P. DEVLOO, An Element-by-element block iterative
method for large monlinear problems, in ASME-WAM, New Orleans,
W. K. Liu, K. C. Park, T. Balytschko, eds., Innovative Method for
Nonlinear Behawor, Pineridge Press, 1985.

J. MANDEL, Two-level domain decomposition preconditioning for the
p-version finite element method in three dimension, in Fourth Copper
Mountain Conference on Multigrids, April 9-14, 1989.

P. E. BJORSTAD AND O. B. WIDLUND, To overlap or not to overlap:
a note on a domain decomposition method for elliptic problems, SIAM
J. Sci. Stat. Comput., 10, 5, (1989), pp. 1053-1061.

T. CHAN AND D. RESASCO, Analysis of domain decomposition pre-
conditioners on irreqular regions, in Advances in Computer Methods

for Parital Differential Equations, R. Vichnevetsky and R. Stepleman,
eds., IMACS, 1987.

G. F. CAREY AND E. BARRAGY, Basis function selection and precon-
ditioning high degree finite element and speciral methods, BIT, 1989 (to

appear).

I. BABUSKA, M. GRIEKEL, AND J. PITKARANTA, The problem of
selecting the shape functions for a p-type finite element, IINME, 28,
(1989), pp. 1891-1908.

