CHAPTER 18

Performance of the Neumann-Dirichlet Preconditioner for
Substructures with Intersecting Interfaces

Wiodzimierz Proskurowski*
Saliha Sha*

Abstract. There is indication that the Neumann-Dirichlet preconditioner for
substructures with intersecting interfaces performs erratically for strongly discontinuous
coefficients. The present work investigates the cause for such a behavior.

Introduction. Results in [2] indicated that the Neumann-Dirichlet preconditioner for
substructures with intersecting interfaces works well even in some cases when sharp
discontinuities of the coefficients at the interfaces are present. Experimental evidence in
[4] shows that, in general, the iterations in which this preconditioner is employed
converge unsatisfactorily slowly. Since the method works well for some discontinuous
coefficients but not for some others we engaged in this study to determine the source of
the difficulties. We, therefore, started a process of backtracking the effects of the
method on increasingly more complex problems. We thus monitored the properties of
the capacitance matrix and the rate of convergence of the corresponding iterations. As
the main experimental tool we used MATLAB run on the SUN 3/260 computer with the
precision of about le-14. This paper presents the logbook of our investigations.

We first examine the spectral distribution of the capacitance matrix for the Neumann-
Dirichlet preconditioner with intersecting interfaces for the model problem with
continuous and discontinuous coefficients in subregions (in [6] similar preconditioners
with non-intersecting interfaces were considered). Next, we study the performance of
the preconditioned conjugate gradient iterations for such capacitance matrix systems.
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Neumann-Dirichlet preconditioners. Let us consider two dimensional elliptic
problems with self-adjoint operators

- div(k(x,y)gradu) = f(x,y) in Q= (0,1)x(0,1) ¢))
with Dirichlet boundary conditions at 9. We use the standard second order accurate

staggered grid approximation that gives rise to a symmetric matrix representation A;

For i,j=1,...,n-1:
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21,5125 12,512 K k2,510 K 2,1 2) W 2028

It should be noted that the approximation by piecewise linear finite elements on regular
triangles results in exactly the same matrix A.

In the case when k(x,y)=1, i.e. of the Laplace operator, the (n~1)2x(n—l)2 matrix A has
the well known form (here, (n-1)2 is the number of grid points inside £2):
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Let us now introduce a preconditioner, matrix B, constructed by imposing additional
boundary conditions on the inner interfaces (or separators) in the following way. We
divide €2, here the unit square, with horizontal and vertical lines (interfaces) into N2
subregions in a chessboard like manner (see Fig.1). We impose Neumann conditions
on the boundary of the shaded subregions and Dirichlet conditions on the boundary of
the remaining ones, and retain the original conditions on 9Q. The (N-1)2 points of
intersection of the interfaces we shall call cross points. The total number of grid points
on the interfaces is equal to p=2(n~1)(N~1)-(N~1)2. Thus, p is much smaller than n2.

After reordering, matrices A and B can be represented in a block form as:

Ay 0 A Ay 0 AL
A=l0 A, Ayl B=|0 A, A,y (2)
Agp Agy Ay 0 Bj;, By,

where the block-rows correspond to the Dirichlet subregions, Neumann subregions, and
the interfaces. We retain the same staggered grid approximation as in A and approximate
the Neumann boundary conditions by the second order central difference, i.e., when
k(x,y)=1, B33=A33 and B32=2A32. In this case, finite elements produce matrix B
with the third block-row scaled by 1/2 that has identical spectral properties.

(4 -1-1 )
4 ~1-1
4 -1 -1
4 -1 -1
B = -2 4 -1 (3)
~2 4 -1
~1=-1 4 -1-1
-2 -1 4
-2 -1 4)

In the simplest case of only four subregions (N=2 and n=4, see Fig.1) matrix B has the
form (3).
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In general, B can be used as an efficient preconditioner for A if it satisfies the two
principal conditions:
a) a system with B is easily solvable (relatively to that with A),
b) the spectrum of AB-1 is well conditioned.
Additionally, the existence of a cluster of eigenvalues away from zero is advantageous.
Questions concerned with the first condition were addressed in [2] (for its parallel
implementation see also [3]).
The second condition is best satisfied if A and B are spectrally equivalent. The method
of domain decomposition often can be considered as a process in a subspace. This
amounts to performing the main iteration for the system with the pxp capacitance matrix
C of the form:

C=STAB-1s,
where ST is the restriction operator STx(O, 0, Ip).

Thus, it is sufficient to require that A and B are spectrally equivalent in a subspace:
ax'STASx < xTSTBSx < apxTSTASx
where the constants a; and aj are independent of the grid size parameter h=1/n. In

practice, it suffices if they are at most weakly (logarithmically) dependent on h.

It can also be shown, see [1], that C=C 1C; 1, where the Schur complements of A and

B are defined as follows:

c,=s"A"l) =4

c,=@"B7 ') =8

-1
- A A ‘A32A22A23

-1 -1 4
33"331A11A13"332A22A23 )

-1
31A11

33 13

Obviously, if A and B are symmetric positive definite, so are C1 and C2. The
capacitance matrix C is nonsymmetric, in general. Nevertheless, if C1 and C7 remain

symmetric then all eigenvalues of C are real, since C is similar to C;”zC 1C;”z:
-1 -1/2 -1/2 .
Co=C,C; 0=2x0, C,'"%cc;" %=1 (5)

where  C, 1/24) = Q.
Theoretical predictions about the behavior of the Neumann-Dirichlet preconditioﬁer fora
large class of elliptic operators were presented in [7]. They show that the spectral bound
agja; equals to O(1+log2(n/N)), i.e. is a very slow growing function of the ratio of the
pumbers of grid points to subregions.
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We verify this prediction experimentally by examining the condition number of the
capacitance matrix, k(C), and then check the correlation between k(C) and the rate of

convergence of the preconditioned conjugate gradient iterations measured by the number
of iterations required for convergence. It should be noted that some estimates of k(C)

were obtained previously in [2] and [3]. The results reported below were computed
using MATLAB. ’

Condition number of the capacitance matrix. In contrast to the situation with
non-intersecting interfaces, see [6], even for the simplest case of four subregions (N=2
and n==4) the capacitance matrix is not equal to the unity, namely:

1 -7 0 7 -1
-7 1 0 -1 7
C=I+3R R=[0 0 0 0 0| (6)
7 -1 0
-1 7 0 =7 1

The eigenvalues of R are 16, -12, and a triple zero eigenvalue (thus, the condition

1+ 2
3 _ 4

number of the capacitance matrix is x(C)= oI 3). This observation about the

%
existence of many multiple unity eigenvalues of the capacitance matrix was found to be
true also for all other values of n and N. In fact, the number of multiple unity
eigenvalues is equal to s:p-(N2 - ¢)(n/N - 1), where p is the total number of
eigenvalues, p=2(n~1)(N—1)-(N~-1)2, ¢=2 for N even, and c=1 for N odd.

It is interesting to see the similarity of C1 and C) here (N=2 and n=4):

4 -1 -4 -1 0 14 0 -4 -2 0
-1 14 —-4 0 -1 0 14 -4 0 -2
1 _1 \
Cle;—-4 -4 16 -4 -4 | C2~°Z*"-=4 -4 16 -4 ~4 |(6)
-1 0 -4 14 -1 -2 0 -4 14 0
0O ~1 -4 -1 14 0 -2 -4 0 14

Table 1 demonstrates the dependence of the condition number of the capacitance matrix,
k(C), on the number of grid points, n, and subregions, N.
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NA\n] 4 8 16 18 20 24 30 32
2 1133 195 276 291 3.05 330 3.63 3.72
4 - 271 4.76 - 5.58 6.30 - 7.52
6 - - - 4.02 - 4.99 582 -
8 - - 2.93 - - 4.10 - 5.08
10 - - - - 2.96 - 4.14 -
12 - - - - - 2.97 - -

Table 1. Condition number of the capacitance matrix, x(C), versus n and N,

The largest size of the capacitance matrix reported here is p=441 (for n=30 and N=10).
For convenience, in Table 2, we tabulate the values of p for the range of experiments

presented above.

N\n | 4 8 16 18 20 24 30 32
2 5 13 29 33 37 45 57 61
4 - 33 81 - 105 129 - 177
6 - - - 85 - 145 205 -
8 - - 161 - - 273 - 385
10 - - - - 261 - 441 -
12 - - - - - 385 - -
The size of the capacitance matrix, p, versus n and N.

Table 2.

As the results in Table 1 show, the condition number of the capacitance matrix is
changing very slowly with the size of the matrix, and more precisely, with the values of
n and N. The next figures illustrate the dependence of k(C) on n (Fig.2) and N (Fig.3).
Clearly, for N>3, the more subregions, N, the smaller the condition number, k(C). At
the same time, k(C) grows with n, the number of grids in an almost linear fashion.
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Fig.3. Condition number, k(C), versus the number of subregions,N.

From theoretical considerations, see for example [7], we expect k(C) to be proportional
to logz(n/N ): K(C)=(at+blog) /N ))2. For our data this is verified graphically in Fig.4.
Here, the slopes b are almost identical and lie in the range (1.78, 1.80). The spectra of
the capacitance matrices are indeed heavily clustered about 1. Thus, for example, for

n=32 and N=4, out of the total of p=177 eigenvalues 129 of them lie in the interval
(0.99,1.01).
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Fig.d. «/ x(C) versus log (n /N ).

Discontinuous coefficients. Let us now consider problems where the diffusion
function k(x,y) in (1) is discontinuous at all the interfaces and constant in each of the
subdomains. We first discuss the simpler case where in all the Neumann subdomains
k(x,y)=c1 and in all the Dirichlet subdomains k(x,y)=c2. For simplicity, we scale the
problem using cp=1 and we then vary c1=c from 10-5 to 105.

In the simplest case of four subregions (N=2 and n=4) and ¢=5, matrix B has the form:

/4 -1-1 )
4 11
20 -5 -5
20 -5 -5
B = -6 12 -3 (7)
6 12 -3
~3-3 12 -3-3
-6 -3 12
{ -6 -3 12

Matrices A and B have now the following block-form similar to (2) where, again, with

the use of finite elements the third block rdw of B is scaled so that B 3y = B; .
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Ay 0 Al Ay 0 Aqs
A=|0 Ay Ayl B=|0 Ay A, wheres =
Ay cAg, sA, 0 2sB,, sB ,
In this case, the capacitance matrix has the form analogous to (6):
1 -7 0 7 -1
-7 1 0 -1 7
- 1 -
C=1+ mR, R=y 0 0 0 0 O
7 -1 0 1 -7
-1 7 0 -7 1

Its condition numberis & (C)=

1

e+ 1)

1+ 16
e When ¢ —> 0, K(C)—> 5= 1778.

TEETFD

c+ 1
2 .

The results of some of the experiments are tabulated below. (Table 3)

N=4 n=24
c n=8 n=12 n=16 n=24 n=32| N=4 N=6 N=8
105 | 7.332 14.55 22.66 39.63 56.51| 39.63 24.90 16.80
104 | 7.331 14.54 22.65 39.60 56.46| 39.60 24.88 16.80
103 | 7.315 14.49 22.55 39.39 56.09| 39.39 24.78 16.74
102 | 7.158 14.05 21.67 37.34 52.62| 37.34 23.76 16.18
101 | 5983 10.81 15.67 24.71 32.68| 24.71 16.94 12.21
0.3 | 4.484 7.317 9.920 14.37 18.05| 14.37 10.57 8.088
1 2.708 3.814 4760 6.295 7.517| 6.295 4.990 4.099
3 1.694 2.089 2.417 2.943 3.357 | 2.943 2.496 2.189
10 1.226 1.346 1.446 1.604 1.729| 1.604 1.470 1.376
102 | 1.023 1.035 1.045 1.061 1.074| 1.061 1.048 1.039
103 | 1.002 1.004 1.005 1.006 1.007| 1.006 1.005 1.004
104 | 1.000 1.000 1.000 1.001 1.001| 1.001 1.001 1.001

)

(8)

Table 3. Condition number, ¥(C), as a function of the ratio of diffusion coefficients, c;
first for N=4 and different n, then for n=24 and different N.

We plot these results, first as a function of the number of subregions, N (Fig.5), then as
a function of the number of grids, n (Fig.6).
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Fig.5. Condition number, k(C), versus the log of the ratio of coefficients, ¢, for N=4.
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Fig.6. Condition number, ¥(C), vs. the log of the ratio of coefficients, ¢, for n=24.

As is readily seen from these plots, in the two limiting cases: i/ k(C) approaches the
value of one when ¢ approaches infinity, and ii/ k(C) approaches a much higher value
when ¢ approaches zero. The first case corresponds to the situation when ¢ is much
larger in the Neumann subregions, the second to the one when ¢ is much larger in the
Dirichlet subregions.

We study in some detail the second case in order to develop from the experimental data
an empirical formula of dependence of k(C) on log(n/N). The results of experiments for
¢=10"5 are given below. (Table 4)
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n-._-.
£=l2 3 4 5 6 8

N=4 17.33 14.55 22.66 31.42 39.63 56.51
=6 |8.26 16.18 24.90 33.88 - -

=8 }8.59 16.80 - - - -
Table 4. Condition number, k(C), for c=10-3 and different values of n and N.

Based on this data, we conjuncture that ¥(C) is proportional to the fourth power of the
logarithm of (n/N): K(C):(a+blog10(n/N))4. This is verified graphically in Fig.7. Here

again, as in Fig.4, the slopes b are almost identical and lie in the range (1.77, 1.82).
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Fig.7. ~ K (C ) versus log,,(n / N) for the ratio of diffusion coefficients c=10"3.

This conjecture can easily be proven using the idea suggested by Yuri Kuznetsov [5].
Consider the generalized eigenvalue problem
ABv = Av,

where A and B are as in (9). Then
Z _ k2 +k W
= Tk, +k, o
where W is the eigenvalue for the problem with continuous coefficients:
H(A gy~ 2A32A;21A23)V3 =(Ag;—24, 1A;11A 193
Using the symmetry and antisymmetry of the eigenfunctions along the diagonals for the
Laplacian on the unit square partitioned in a chessboard manner into Neumann and

Dirichlet subregions, only the following four cases need to be examined:
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Cases 1 and 2 are benign with all eigenvalues p=1=A.

. Lo
In the cases 3 and 4 we have the estimates: (3) 1sps¢, and () g sl
where ¢ = O+ logz(n /N)), see, for example, [7].
+k [

k
Thus, A .=—~—M—f1’“‘“>g =

1
min min G and

k +kp
2 17 max
xmax: Ktk S Hmax = @

Finally we obtain

>

Kk(O)=

/’Lmax S :u'max = goz = O(1+ 10g4(n /N))’

min 7 min

independently of ki and k2.

Irregular coefficients in subregions. Finally, we consider the case when
diffusion coefficients, k, for each of the subregions are irregularly distributed. We
focus our attention on the partition into 16 subregions, i.e. when N=4. This time the
preconditioner matrices B are generated using solely finite elements since the use of
finite differences gives rise to unsymmetric Schur complement matrices C3.

Consider the magic square from the Albrecht Diirer's "Melancholia” painted in 1514:

16 3 2 13
5 10 11 8
9 6 7 12

4 15 14 1
By dividing it by 4 and subtracting 2 we obtain the set of values for the initial 4x4 matrix
of coefficients ajj that is equidistantly distributed in [-2.0,1.75].
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20 -125 -1.5 125
-0.75 05 075 00
025 -05 -025 1.0
-1.0 .75 15 -1.75
Table 5. Distributed coefficients in subregions
In order to considerably vary these coefficients we apply the stretching transformation

ma..
mo_ i . N .
4; =€ °, where m=1,..,7. As a measure of discontinuity we use r, the ratio of the

max o'
Y

mina™" "’
i

extreme diffusion coefficients in £ » =

The following table contains the results of experiments with this data. (Table 6)

m T n=8§ n=12 n=16 n=20

1 14.25e+1 2.74e+1 3.07e+1 3.40e+1 3.71e+1
2 | 1.81e+3 6.88e+2 7.37e+2 7.89¢+2 8.38e+2
3 |7.69+4 1.76e+4 1.86e+4 1.97e+4 2.07e+4
4 | 3.27e+6 4.53e+5 4.77e+5 5.02e+4 5.25¢e+4
5 | 1.39%+8 1.17e+7 1.22e+7 1.29¢+7 1.34e+7
6 | 591e+9 3.01le+8 3.15¢+8 3.30e+8 3.44e+8
7 {2.51e+11 7.75¢+9 8.11e+9 8.50e+9 8.86e+9

Table 6. Condition number, «(C), for irregularly distributed coefficients in subregions.

Here, m is the exponential stretching factor and r is the ratio of the extreme coefficients.

This data demonstrates that in this case the condition number, x(C), grows rapidly
(almost linearly) and un'boundcdly with r, where 1 is , while the dependence on the
number of grids, n, is rather weak.

Preconditioned conjugate gradients. We now consider the solution of equation
(1) using the preconditioned conjugate gradient iterations in which the Neumann-
Dirichlet preconditioner, described in section 1, is employed. To solve a system with
the capacitance matrix: Cw=b, we (formally) apply the conjugate gradient iterations to
the transformed system

~1/2 -1/2 - -1/2
¢,c,C3 v =d, where v=C;"" and d=C;Y%.
For the sake of completeness we summarize here the experimental results for the case of

constant coefficients, i.e. k(x,y)=1, presented previously in [2] and [3]. In all the

1/2
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experiments (the largest problem involved 256 subregions and about 16,000 unknowns)
the initial guess was zero and the iterations were terminated when the energy norm,

[ ro-1
rTB r , decreased 10,000 times, where, r is the residual .

N\n| 32 48 64 96 128 32 48 64 96 128
4 1708 879 101 121 136| 7 8§ 8 8 8
6 - 754 - 108 - - 9 - 10 -
8 |491 639 768 956 110l 8 8 9 9 9
12 - 492 - 763 - - 7 - 9 -
16 - 401 494 645 7.65]| - 7 7 8 9

Table 7. Estimates of the condition number, k(C), and number of conjugate

gradient iterations versus n and N.

The number of iterations remains almost constant within the range of experiments and
the estimates of the condition number of the capacitance matrix, k(C), obtained during
conjugate gradient iterations are in good agreement with those results in Table 1 where
they overlap.

We also performed a series of experiments for problems with discontinuous diffusion
coefficients k(x,y). As before, we first discuss the simplest case where the constant k in
all the Neumann subdomains varies from 10-4 to 103 , and k=1 in all the Dirichlet
subdomains. The results for 16 subdomains (N=4) are tabulated and plotted below.

(Fig. 8 and Table 8)

number of iterations

log ¢

Fig.8. Number of iterations versus the log of the ratio of coefficients, ¢, for N=4.
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loge= | -4 -3 -2 -1 -5 @ S5 1 2 3
n=8 5 5 5 5 5 4 4 3 2 2
n=16 7 7 7 7 6 5 4 4 3 2
n=24 8 8 8 7 6 5 5 4 3 2

Table 8. Number of iterations versus the log of the ratio of coefficients, ¢, for N=4,

The rate of convergence of the conjugate gradient iterations changes smoothly with ¢, the
ratio of coefficients, and essentially does not grow when this ratio becomes less than
0.01. This is consistent with the behavior of the condition number, k(C), as a function

of ¢ (see Figs. 5 and 6).

Next we performed the experiments using the irregularly the distributed coefficients in
16 subregions (N=4), see Tables 5 and 6.

m T n=8 n=12 n=16 n=20
1 1425+1 |12 15 17 17

2 {1.8le+3 |13 19 28 28

3 17.69+4 |11 18 25 27

4] 3.27e+6 | 7 10 15 11
5113%+81( 5 8 10 11

61 59le+9 | 4 7 7

7 {2.5le+11| 4 6 7

Table 9. Number of iterations for irregularly distributed coefficients in subregions.

To better understand the erratic behavior of the iterations let us focus our attention on the
simplest case of four subregions (N=2). We choose the 2x2 matrix of diffusion

COefﬁCientS as:
(1 1)
2 ! 1

with i=0, 1, 2, ... where the coefficients equal to 1 are situated in the Neumann
subregions. With this construction, only the triangles that belong to the Neumann
subregions contribute to the elements of matrix B corresponding to the points on the
interfaces. Thus, the Schur complement matrices C2 remain unchanged when we vary
the coefficients (=0, 1, 2, ...) in the Dirichlet subregions; at the same time the Schur
complement matrices C1 change dramatically. Asa consequence, matrices Ct and Cp

for strongly dicontinuous coefficients are no longer similar, thus obviously not
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spectrally equivalent either. To illustrate the point we present the results of some
experiments (see (6') for the case i=0), first for i=1 then for i=10:

42 ~2 ~-12 -4 0 007 ~.001 -.002 .0 0
-2 21 —-6 0 -1 6 -.001  7.35 ~2.10 0 -1.05
1 10
Clz g—12 -6 36 ~12 -6 ,Clx 7655 -.002 -2.10 420 .002 -2 10
-4 0 -12 42 -2 .0 0 -.002 .007 —-. 001
0 -1 -6 -2 21 0 ~105 -2.10 —.001 7.35

Finally we compile the table of results where the condition numbers of C and C1 are

compared while the discontinuity coefficients in the Dirichlet subregions increases. (Table 10)
i 0 1 2 3 4 10
®(C) 1.33 235 4.67 934 1877 1.19e43
k(C1) 3.86 446 6.29 11.0 19.5 1.14e+3

Table 10. Condition numbers of C & C1 depending on the discontinuity of coefficients.
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