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Sub-Structuring Lattice Gases*
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Abstract

In this paper we apply domain decomposition techniques to lattice gases. We demon-
strate how a lattice gas can be modeled by a non-linear partial differential equation
using the same classical techniques as were used by Chapman and Enskog in approxi-
mating the kinetics of a real gas. As an example, we show how a 1-dimensional viscous
Burgers’ equation models a specific lattice gas. We then use the domain decomposition
ideas for solving this differential equation to develop a sub-structuring technique for
this exemplary lattice gas.

1 Kinetic Theory of Gases

The kinetic theory of gases was developed to study the non-equilibrium states of gases
where they are only slightly removed from equilibrium. Mathematically,properties of the
gas are described in terms of a distribution function,n. The distribution function, in general,
will vary with time and often a non-linear integro- differential equation, viz. Boltzmann’s
equation, may be derived for the function. As a pertinent example, consider a gas composed
of identical molecules of mass m. Then, if n(z,t) is the expected number of particles per
unit volume at location z at time ¢, Boltzmann’s equation is

on on
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where £ is the velocity of each molecule and A,,yn represents the changes per unit volume
in the number of particles due to collisions, [2].

From mathematical physics it is well known that a valid description of a gas is often

given by fluid dynamics. The Navier-Stokes partial differential equations have been applied
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to gas flow problems with remarkable success. Consequently, an often asked question is
how well these equations approximate Boltzmann’s equation and in turn the kinetics of a
gas. An answer to this was provided by the Chapman-Enskog method, [2], which reduces
in a constructive manner the kinetic description of a gas in Boltzmann’s equation to the
fluid dynamics description. Basically, a supposition is made on the distribution function n
that it satisfies the regular asymptotic expansion

oo .
n = E e'n;
1=0

for some small parameter € > 0. The theory then proceeds to show that the Euler equa-
tions of hydrodynamics describe the behavior of ng and the Navier-Stokes equations of
hydrodynamics describe the behavior of nq, [2].

In this paper, we will use the ideas of the Chapman-Enskog method to generate a partial
differential equation that models the behavior of a given lattice-gas. Moreover, the solution
of this equation will have properties that lend themselves to being resolved computationally
by domain decomposition techniques. These techniques will be carried over to the lattice
gas where a decomposition into sub-lattices will be performed.

2 Kinetic Theory of Lattice Gases

According to the molecular theory of matter, a macroscopic volume of gas (say, 1 cm3) is
a system of a very large number M of particles moving in a rather irregular way. If the
laws of interaction between the particles are perfectly known, the equations describing their
motion are

T
dt - X’L’
d:L'Z'
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where z; is the position vector of the i-th particle, & the velocity vector, and X; is the
force acting upon the i-th particle divided by the mass of the particle. In order to compute
the time evolution of the system, one would have to solve the 6] first-order differential
equations. However, solving the above initial value problem for a number of particles of a re-
alistic order of magnitude (say, M = 10%°) is an impossible and useless task. Consequently,
an alternative approach is often taken.

In a lattice gas, the particles are identical with mass m and the irvelocities are restricted
to a given set: £1,...,&, with ||&] = &,i=1,...,p, [4]. That is the velocity vectors have
equal modulus, &,the particle speed. In addition, the particles are confined to move along
the edges of a regular Jattice. At each node of the lattice, there is a cell associated with it
and each cell can be occupied by at most one particle for each allowed velocity. Particles are
marched forward in time by successively applying collision and propagation rules. Specif-
ically, to each node @ of the lattice and time instance ¢, we attach an occupation number
ni(z,t) to be the number of particles moving in direction 7. Clearly, by our assumption
on the number of particles allowed to occupy a cell, n;(z,t) € {0,1}. If the there are p
directions emanating from each node of the lattice, then an occupation vector



SUB-STRUCTURING LATTICE GASES 453
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Table 1: Transition Rules ( 0 < a < 1)

nl(zvt)
n(w,t) = :

np(, 1)
is defined. The computation of n(z,t+ At) involves two successive steps: collision followed
by propagation. In this situation, collision is the simultaneous application at each node
of non-deterministic rules from an in-state p-vector a € IT6.,{0,1} to be an out-state p-
vector 8 € [T0.,1{0,1}. Here, o; = 1 indicates an incoming particle in direction i and o; = 0
indicates no incoming particle in direction 4, and, similarly, 8; = 1 indicates an outgoing
particle in direction 7 and §; = 0 indicates no outgoing particle in direction i. Note that
a(z,t) = n(z,t). Each transition is assigned a probability S(a,8) = P(a — ) of state a
evolving to state #. The computational advantage of lattice gases is that thecollision and
propagation of the particles can be carried out using Boolean logic, [3], implemented either
by logical evaluation or table-look-up; it involves no floating point arithmetic.

In this paper, we shall restrict our attention to a one-dimensional lattice gas in which
the particles move with velocity ¢; = (—1)i+1,i = 1,2, where 7 = 1 indicates propagation
to the right of a node and 7 = 2 indicates propagation to the left of a node. The transition
rules are given in Table 1.

Note that

ni(z + &Az,t + At) = ni(x,t) + ci(n)

where ¢;(n) is a collision function that can alter the direction of a particle and takes on the
values £1 or 0. An explicit form of ¢; is given by

2
c(n) = Z(ﬂ, — )5, 8) | H n;‘j(l = n]')(l"'aj) I.
g=1

o0 .

3 Lattice Boltzmann Equation

Having introduced a probabilistic description of the dynamics of a lattice gas, we now turn
to mean quantities. In particular, we consider the mean population or ensembled averaged
occupation number

Ni(z,t) =< ny(z,t) >
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where < - > is the average values n;(z,t) in which (z,¢) is fixed. As before, we let

N(z,t) = [ x;gig }

be the ensembled occupation vector. Now, if we assume the occupation numbers are un-
correlated then

Ci{(N)

< ei(n) > | o
as(Bi — @i)S(a, 8) [ [[hey N7 (1 = Nj)A-ei) ],

We then get the lattice Boltzmann equation

li

Ni(z + & Az, t + At) = Ni(z,t) + Ci(N). (2)
With regards to the transition rules given by Table 1, we have
—(C© y| *1
o) = (€O +pc®) |+ (3)
where
COW) = 2(N; - W),
Ny = %(N1 + Ny — 2N Ny),
1+a

po= =

4 Chapman-Enskog Expansion

Given the one-dimensional lattice gas whose dynamics are governed by Table 1, we now
seek a differential equation whose solution models the gas behavior. To do so, we proceed as
in the case of the classical Boltzmann equation described in section 1. That is, we assume
a regular asymptotic expansion of N,

N =Y ¢éN® (4)
1=0

for some small parameter ¢ > 0. Then,

aNAt + -a—N~Ax + O(Az?, At?)

i

N(t,z)+

o ONG) N (5)
= § (N ()
TR (N T At + P Az)

+0O(At%, Az?)
and

Cv) = O(3 N0 = (0 ()
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(M)
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for some given constants T, L, K > 0. Then on substitution of the expansions (3),(5), and

(7} into (2) we obtain

C(O)(N(O)) = 0,

L
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Using (3), we see that C(O(N(©) = 0 implies
CRRNCI,

L)
or
NO = [ u J |
U
Now,
ac(0>(zv<°) 1 [ ]
2

is a singular matrix with eigenvalues Ay = 0, Ay
11 _ 1
Q= 1 s 42 = 1|
Consequently, (11) yields
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If NO = Mg + b(Vgy, then it follows that

du
1) — g2 —
A L(’)x Ku(u - 1). (15)
Hence, (11) yields
SC O (N0
’ [_“mé'%vﬂ__l ' N(FZ) = Mgy +Pg (16)
where 5 P 9 2
@ - 9% _ ;9 ) - ,ﬁ]m_m_u_
a\?) = T(?t Lax [Ku(l u) L(?a: 5 5.2

Since Range [Qg—(%]&\],—\&h] = span [gz], we have a® = 0. Let p = 2u, ¢ = KL/T, and
v = L2/2T. Then, a® = 0 implies

Finally, letting v = ¢(p — 1), we obtain
Jv v 0%

v s Y oo T ] J e 17
TR i v | (17)
that is, viscous Burgers’ equation, [1].
Summarizing, for € > 0, a small parameter, we have that

NQN(O):[U]
u

where u = «é—(c“lvw 1) and v satisfies the Burgers equation (17). Consequently, the behavior
of the ensembled occupation vector N can be approximated by the solution of equation (17).
Moreover, this equation has been studied extensively and, in particular, the ideas of domain
decomposition have bee used effectively to solve it.

5 Domain Decomposition

Domain decomposition algorithms for solving equations such as (17) follow a general pat-
tern. First, a numerical time differencing scheme is used to advance the solution over the
entire domain. Then, a measurement of the computed solution is taken to determine sub-
domains of activity. The solution is then recomputed on these sub-domains using a different
mesh and possibly a different time differencing scheme. Initial and boundary conditions on
the subdomains are obtained by interpolating the data from the computed solution on the
global domain,[5].

Since the solution of the equation (17) has been shown to be an accurate approximation
of the lattice gas given in Table 1., it seems reasonable to expect that a domain decompo-
sition of the lattice gas using similar ideas as that for Burgers equation would be effective.
Specifically, the ensembled occupation vector N(z,t+ Act) is computed over a coarse lattice
and then a first order measurement of its gradient is taken to determine where subdomains
of activity are occurring. Initial and boundary conditions on these subdomains are obtained
by interpolating the computed values of N on the coarse lattice. The occupation vector is

then recomputed on these subdomains using a finer lattice, and the process is repeated at
t+ At
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6 Computational Example

We compute the lattice gas given in Table 1 with a = ay = 1/8 and we assume the initial
distribution of particles to be given by

~$z+1.2, 0<2<.75,
f(z) =
—~$z+20, .B5<2<l,

where 0 < 2 < 1. That is, for j = 1,2 and ; an arbitrary node,

oy |1, with prob f(z:)/2,
nj(ei) = { 0, with prob (1 - f(=;))/2.

Particles at the boundary of the global domain are assumed to “wrap around”, that is, the
boundary conditions are periodic. Nodes on the fine lattice Ly are separated by a distance
of Azy = 27! and time steps on Ly are taken with At = 271, In this case, we see that
Burgers’ equation (17) models the gas where

Az?
2»«9
v AL ’
(18)
alAzx
¢ = ax=t

The quantity %@ = (% + 1) where ¥ is the computed solution of (A7) at ¢t = 0, i.e., %
is the initial condition, is plotted in Figure 1. There, we see that the subdomain ) =
[r,s] = [9/16,15/16] contains the portion of the solution where high resolution is needed.
Consequently, we see that the lattice gas with lattice length Az 7 need only be implemented
in the region f,f = L;NQ and outside of Ly we can use a coarser lattice £,. However,
changing the lattice mesh length to a larger value can alter the behavior of the lattice
gas unless appropriate changes in the bias a is made. Recognizing again that the lattice
is approximated by the Burgers’ equation (17), we need the lattice gas with lattice mesh
length Az, > Azy to have as its approximation the same model. Thus, if Az, = 271% and
At. = 27'2, then this lattice gas will be approximated by (17) if ac = 1/4. To see this,
note that
_ Bzy

“E
where v is given by (18). Hence a necessary condition for (17) to model the coarse lattice
gas is

Azxg/2 1 1
T T TR T Y
Figure 2 exhibits the ensembled occupation number NV (z,1) for t = .125 where

/vc(l‘,t) = N1(£E,t) + Nz(.?},t)

and Ny, Nz are computed from the lattice gas using a., Ax., and At and superimposed on
the finite difference solution of (17). (Here, a first order in time and second order in space
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explicit forward Euler method was used to compute the solution of (17).) The ensemble
averages in this computation were

M

Nila, t) =< ni(e, ) >= — LS ni(z,0)

i=1

where M = 2048 are the number of lattice gases executed and €ach gas consisted of 1024
cells. Figure 3 illustrates the use of domain decomposition on the lattice gas. Here, bound-
ary conditions on  are furnished by the coarse grid calculation where

Nf(’l‘,t) = Nz(’/‘,t),
Ny(s,t) Ni(s,t).
and Ny, Nj are coarse grid calculations.
To investigate the effect of the averaging technique on the resolution of the solution,

the preceding experiments were repeated using different ensemble averages. In these calcu-
lations, spatial averages are also taken, that is, for 1 = 1,2 we use

i

M
Ni(z,t) =< ni(a,t) >= _}]\ZZ (ni(z — Az, t) + ni(z,t) + ni(z + Az, t)).

Figures 4 and 5 illustrate the results.

7 Conclusions

We have established a relationship between Burgers’ equation and a specific lattice gas
using Chapman-Enskog techniques as modified in [1]. Using ideas developed in [3] for
solving Burgers’ equation by domain decomposition, a domain decomposition method was
developed for this lattice gas. We furnished computational evidence to support the fact
that decomposing lattice gases is possible to achieve the same accuracy with increased
performance.
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Figure 2: Coarse Lattice Solution Using Only Time Averages
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Figure 3: Fine Lattice Solution Using Only Time Averages

Figure 4: Coarse Lattice Solution Using Time and Space Averages
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Figure 5: Fine Lattice Solution Using Time and Space Averages





