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Abstract

The clustered element-by-element iteration method presented in this paper is a generalization of the
standard element-by-element method. In this method, the elements are partitioned into clusters of elements,
with a desirable number of elements in each cluster, and the iterations are performed in a cluster-by-cluster
fashion. A number of preconditioners based on the clustered element-by-element approach is introduced to
be used with the iterative solution technique employed. The proposed solution strategies are tested on model
problems with regular and irregular meshes. Several benchmark computations are performed to compare
these solution strategies based on the convergence rates achieved.

1. Introduction

In large-scale finite element computations, the cost involved in solving the linear equation systems arising
from the finite element discretization of the problem is a major one. Especially in time-dependent and/or
nonlinear cases, where such systems need to be solved many times, and for three-dimensional problems,
the cost can become unbearable. Therefore it is essential that this cost is minimized by employing solution
strategies which are as efficient as possible. We believe that no matter how competitive a sophisticated
direct (noniterative) solution technique may appear to be for a test problem of certain size, one can always
put that size to a level high enough so that the direct solution technique is no longer competitive relative
to an efficient iterative solution technique. With well chosen preconditioners, iterative solution techniques
such as the conjugate gradient method [1] (for equation systems with symmetric matrices) and the GMRES
method [2] ( for equation systems with symmetric and nonsymmetric matrices) can be efficiently used for
a wide class of large-scale applications. Of course selection of the preconditioner is a major concern, and a
substantial amount of research effort goes into this (see for example [3] and [4]).

The element-by-element {EBE) preconditioners, which are defined as series product of the element
matrices, have proven successful for several classes of problems (see [5-9]). Algorithms based on EBE
preconditioners are highly vectorizable and parallelizable [10].

As a generalization of the standard EBE method, we propose a clustered element-by-element (CEBE)
method, in which the elements are merged into clusters of elements, the preconditioners are defined as series
product of the cluster matrices, and the computations are performed in 2 cluster-by-cluster fashion. Any

1 This research was sponsored by the National Science Foundation under grant MSM 8796352.

*Department of Aerospace Engineering aud Mechanics and Minnesota Sup " Institute, University of Min-
nesota, Minneapolis, MN 55455,

140



A CLUSTERED ITERATION METHOD FOR FE COMPUTATIONS 141

number of elements can be brought together to form a cluster, and this number should be viewed as an
optimization parameter to minimize the computational cost. Each cluster matrix is formed by assembling
together the element matrices corresponding to the elements in that cluster. To facilitate vectorization and
parallel processing, just like the way it is done in the grouped element-by-element (GEBE) method [8],
the clusters can be grouped in such a way that no two clusters in any group are neighbors. Furthermore,
depending on the cluster size (i.e., the number of elements in the cluster), within each cluster elements can
again be grouped in the same way. In the two limit cases, the CEBE method becomes equivalent to the
GEBE (when the cluster size is equal to one) and direct solution (when the cluster size is equal to the total
number of elements) methods.

In this paper we consider four different CEBE preconditioners: Crout, Gauss-Seidel, 2-Pass/Product,
and 2-Pass/Average. To test these preconditioners, we use model problems governed by the Poisson equation,
employ both regular and irregular meshes, and compare the convergence rates achieved.

2. The Clustered Element-by-Element (CEBE) Iteration Method

Consider the linear equation system

Ax=bhb. (€)]
We rewrite (1) in a scaled form _ .
Ax=b, 2
where _ s
A=wW-iaw-% (3)
%=Whx, )
The scaling matrix W is defined as
W = diagA (6)

for a symmetric and positive definite A. With this definition of W, diagA becomes an identity matrix.
Since both the square root and the inverse of W is needed for the scaling, when A is not symmetric and
positive-definite, alternative definitions for W need to be used so that W is still positive-definite.

The CEBE preconditioners can be used with iterative solution techniques (such as the GMRES method)
which are applicable to equation systems with nonsymmetric matrices (see [11]). However, since the test
problems considered in this paper are all governed by the Poisson equation, we only cover the implementation
of the CEBE preconditioners with the conjugate gradient method.

Remark:

1. The convergence rate of an iteration algorithm depends on the condition mumber of the matrix PIA,
where P is the preconditioner. Therefore the target is to select a preconditioner that involves minimal
inversion cost and provides, within the cost limitations, an optimal representation of A. For example,
the Jacobi conjugate gradient (JCG) method, in which P = diagA(= T), involves a minimal cost for
the inversion of P; however this representation of A is rather a poor one, it usually takes too many
iterations to converge.

Let & denote the set of all elements resulting from the finite element discretization of the computational
domain. The set € is partitioned into subsets (clusters of neighboring elements) e, J =1,2,..., Ng, where
N, is the number of clusters, such that
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Nt

e=Uen
J=1

Ng

0=ﬂ61.
J=1

The global coefficient matrix A can then be expressed as

Na
A=%V"4,
J=1
with the cluster matrix A defined as
As=Y A
e€er

where A® is the element level matrix. Consider the following CEBE representations of A :

A~ T[@+Bs) (1- Pass/Forward),

1

N
II
J=
1
I
J=N,

CAwm T+ ﬁ]) (1 — Pass/Backward),
1]
~ Na 1- 1 1~
A H(I—l- §B]) H X+ §B1) (2 — Pass/Product),
J=1 J=Ng
where ~ ~ .
By=A;~W;,.

We now define the four CEBE preconditioners used in this paper.
(i) Crout (CR) CEBE preconditioner
Consider the Crout factorization of the matrix (I+ Bj) :
I+B;)=L;0;0;, J=1,2,..,Na.

The CR CEBE preconditioner is defined as

~ Nga . Na . 1 .
P=T[i,;[[D; I] ©s.
J=1 1

J= I=N,
(i1) Gauss-Seidel (GS} CEBE preconditioner
Consider the following lower and upper triangular decomposition of B {for W = diagA):
B;=BY+B% J=1,2.,N,

The GS CEBE preconditioner is defined as

Ng 1
P=Tla+8% [] @a+sY).
J=1 J=Ng

(iii) 2-Pass/Produci (2P/P) CEBE preconditioner
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The 2P/P CEBE preconditioner is defined based on the representation of A as given by eq. (13):

Na 1

- 1~ 1~

P=TJa+ 3B4) IT a+ 5B7). (19)
J=1 J=Ng

(iv) 2-Pass/ Average (2P/A) CEBE precondilioner

The inverse of the 2P/A CEBE preconditioner is defined as the average of the inverses of the 1-Pass
forward and backward representations of A as given by egs. (11) and (12):

Na

1
Ptz %(H(I+l§z)“+ II @+B,). (20)
J=1 J=Ne

Remarks:

2. The convergence of the algorithm depends on the numbering of the clusters, but not on the numbering
of the elements within each cluster. By treating each cluster as a super-element, we can identify the
clustered element-by-eclement procedure as a generalization of the standard element-by-element method.

3. We have the option of storing the cluster matrices and their inverses or recomputing them as they are
needed.

4. The GS CEBE preconditioner, unlike all others, does not involve the factorization of the cluster matrices.
Therefore, if the cluster matrices and their inverses are being stored, the memory needed for this purpose
by the GS CEBE preconditioner will be approximately half as much.

5. The computational cost associated with the backward and forward substitutions for the CR and GS
CEBE preconditioners is approximately half of the cost associated with the 2P/P and 2P/A CEBE
preconditioners.

3. Numerical Examples

We tested the preconditioners defined in Section 2 on several test problems governed by the Poisson
equation. A convergence criterion of 10~7 was chosen for the residual ratio |[r]{/}[roll. In all cases the initial
guess for the solution vector is set to zero. We compared the performances of these preconditioners based
on the number of iterations required by each preconditioner.

Test cases with uniform square meshes

Here we consider a steady-state version of the model problem used in {12]. The finite element meshes,
generated over a 1 x 1 computational domain, have 16j x 16j elements, with j = 1,2,3,...,10. The function
f in the governing equation

Vi=f (21)
is selected in such a way that the exact solution is of the form
¢ = z(1—=2)y(l - g)e™. (22)

We solved this problem with 2 x 1 clusters, m x m clusters with m = 2, i=1, 2, 3, and 4, and with the
standard EBE method (i.e., with 16] x 16] clusters). The clusters are numbered horizontally. Note that for
a 16 x 16 mesh with 16 x 16 clusters, the algorithm reduces to a standard EBE method. Figure 1 shows the
number of iterations vs mesh size for different CEBE preconditioners and various numbers of clusters. The
Jacobi conjugate gradient (JCG) method takes (29, 60, 91, 122, 1562, 183, 214, 246, 277, 312) iterations to
converge, respectively, for meshes with j = 1, 2,..., 10. The 2P/A preconditioner gives the best convergence
performance, followed by the CR, 2P/P and GS preconditioners. The performance of each method increases
with decreasing number of clusters. Of course, with decreasing number of clusters, the cluster matrix size
increases and so does the computational cost for each iteration. The convergence rates for the 2P/P and G5
preconditioners are less dependent on the number of clusters than for the 2P/A and CR preconditioners.
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Test cases with irregular meshes

The problem configuration for the first set of test cases with irregular meshes is shown in Figure 2.

I2
B A
nt nr
-
3] s
31
C b
T4

Figure 2. The problem configuration for the first set of test cases with irregular meshes.

The number of elements used is nr x nt x 4, with nr = nt = §j, j =1, 2, 4, and 8, equally distributed in
both directions. The problem is solved with 2 x 2° x 4 clusters, with i = 0, 1, 2, 3 and 4. In the governing
equation given by (21) f =0.

First, as boundary conditions, we set ¢ = 1 on I'; and ¢ = 0 at all other boundaries. Figure 3 shows
the number of iterations vs mesh size for different CEBE preconditioners and various numbers of clusters.
The JCG method takes (38, 78, 149, 292) iterations to converge, respectively, for meshes with j = (1,2,3,4).

Next, to make the problem no longer axially symmetric, we use the following set of nonsymmetric
boundary conditions:

¢=1 onTy, (23)
_ —ZAa
$=025——= on Ty (29)
6=022"95 095 on s, (25)
Yc —yB
$=025""2%2 o1, (26)
o — Zp
¢=0 on Is. @27

Figure 4 shows the number of iterations vs mesh size for different CEBE preconditioners and various numbers
of clusters. The JCG method takes the same numbers of iterations as it does for the previous set of tests.

In this set of tests, the convergence performances of the CEBE preconditioners have the same rela-
tive trends as they have for the test cases with regular meshes. Furthermore, we observe that the 2P/P
preconditioner is more sensitive to the boundary conditions specified than all the other preconditioners.

The second set of tests involve a ” double-plate” problem with an irregular mesh (with 7,888 elemeats and
8,169 nodal points) as shown in Figure 5. In the governing equation given by (21} f = 0. The homogeneous
Neumann type boundary condition is specified at the upper and lower boundaries. We set ¢ = 0.0, 1.0, 1.5
and 2.0, respectively, at the left and right boundaries, and the upper and lower plates. Figure 6 shows the
various types of element clustering and the number of iterations for different CEBE preconditioners. The
JCG method takes 118 iterations to converge. The 2P/A CEBE preconditioner outperforms all the other
preconditioners.
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Figure 3.  Test cases with irregular meshes and symmetric boundary conditions: number of
iterations vs mesh size for different CEBE preconditioners and various numbers
of clusters.
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Figure 4. Test cases with irregular meshes and nonsymmetric boundary conditions:
number of iterations vs mesh size for different CEBE preconditioners and
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Figure 5. The finite element mesh (with 7,888 elements and 8,169 nodal points) for the
double-plate problem.
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Figure 6. The double-plate problem: various types of element clustering and the number of

iterations for different CEBE preconditioners.
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