CHAPTER 16

A Fourier Analysis of the Two-Level Hierachical Basis
Multigrid Method for Convection-Diffusion Equations

Randolph E. Bank*
Mohamed Benbourenanet

Abstract. We consider the solution of a simple one space dimensional convection-diffusion equation by the
hierarchical basis multigrid method. The simplicity of this problem allows an exact analysis by standard Fourier
techniques. Out results explicitly show the role of upwind discretizations in promoting the convergence of the method.

1. A One Dimensional Model Problem. In this note, we consider the one dimensional
convection-diffusion equation

(1) — uII +ﬂul = f
in @ = (0, 1) with periodic boundary conditions
&) w(0) = u(1)

v(0) = «(1)

by the hierarchical basis multigrid method [2], [8], [11]. Here 8 is assumed to be a positive constant.
While there is no practical interest in actually solving this problem using the hierarchical basis
multigrid method, its simplicity allows one to obtain exact estimates for the two level iteration via
Fourier analysis, for the case of uniform mesh spacing. This can then serve a guide and motivation for
our subsequent analysis of the more complicated two space dimensional problems with nonuniform
meshes. We will consider the two dimensional case elsewhere [1]. The use of multigrid methods
for such problems has been studied theoretically and empirically in [4], [5], [10], [9]; the multigrid
bibliography in [9] contains many additional references. Our approach here is most closely related
to that of Hackbusch [4].
We assume that there exists a solution u to the problem (1)-(2). For this to be true, f must
. satisfy the consistency condition
1
/ Jdz =10
o

and then the solution is determined up to an arbitrary additive constant. We can make the solution
unique, for example, by imposing the condition

1
/ udz =0
0
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A proof of the convergence of the standard multigrid method for both the Dirichlet problem and
the periodic boundary value problem in one dimension has been given by Hackbusch in [4]. In
that analysis, a finite difference discretization using both centered and upwinded differences were
considered.

Here, we will use a streamline diffusion Petrov-Galerkin finite element discretization on a uniform
mesh of size h [6], [7]. Let n > 2 be an integer and set h = 1/(2n), and @), = kh,0 < k < 2n— 1.
The coarse mesh will have n mesh points 9,0 < & < n ~ 1, and b’ = 2h. Grid functions defined
on these meshes are assumed to be periodically extended in the usual fashion. We will refer to the
set of coarse grid points as level 1 vertices, and #9r41,0 < k < n — 1, as level 2 vertices.

We define the bilinear form B(.,-) by:

1
B(u,v) = ‘/0 (1 + chByd'v' + pu'vdz

Here ¢ > 0 is a fixed constant: Let S, be the space of continuous, periodic, piecewise linear
functions associated with the fine mesh 7. 8 has dimension 2n. The n dimensional coarse grid
space Syt C Sh, associated with the coarse grid 7;., is similarly defined. The discrete system of
equations to be solved is: find up € S such that

3) B(up,v) = (f,v +ch?') =/0 F{v+chi'}dz

for all v € Si. As with the continuous problem, the solution will be unique up to an additive
constant. See [7] for some a priori error estimates for u — uj,.

Our results show that the rapid convergence of the two level scheme is critically linked to the
strength of the upwinding. This is perhaps not surprising, since upwinding results in the addition
of a symmetric, positive semidefinite matrix to the stiffness matrix corresponding to the standard
Galerkin discretization, and this is usually helpful in speeding convergence of iterative methods. In
particular, the rate of convergence depends on the quantity fh. By adding sufficient upwinding,
the rate can be made independent of Bh; otherwise, one can guarantee convergence only for Sk
sufficiently small. In some sense, the success or failure of the multigid method is directly linked
to the underlying stability of the discretization. Roughly speaking, when the upwinding becomes
strong enough to stabilize the discretization, then one can expect a good rate of convergence of the
hierarchical basis multigrid method.

For more than two levels, and more than one space dimension, the dependence on fh becomes
more complicated, and, as one might expect, imposes additional constaints on the fineness of the
coarse grid. Nevertheless, the principle that the stability of the discretization is directly connected
with the success of the hierarchical basis multigid method is still quite apparent. We will examine
the two dimensional case in [1].

The remainder of this paper is organized as follows. In section 2, we define the hierarchical basis
and the corresponding iteration. In section 3, we analyze the convergence via Fourier analysis.

2. Two level scheme. We begin by introducing the hierarchical basis for the space Sh. Let
P, 0 < k < 2n — 1, denote the usual nodal basis for the space S

Pi(z;) = b

for 0 < j < 2n— 1. (Because of the periodic boundary conditions, the basis function 1o has support
in the interval (zon—1,23n) as well as (zg, 21).)

The hierarchical basis for S), consists of the union of the nodal basis functions for the coarse
grid space Sys and the nodal basis functions for the level 2 nodes, ¥gx+1, 0 < k < n — 1. This basis
will be denoted v, 0 <kE<2n—1.

The hierarchical basis introduces a natural splitting of the space 5. I u € 83, then we have
the unique decomposition u = v+ w, where vESp =V and w € span{Pops1tice = W.

The matrix formulation of (3) with respect to the hierarchieal basis is

(4) AUy = Fg
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where
[ ag +by  cmg —by —ag ~—CH i
—cy dg cH 0 0
—ag —cy ag+by ecm by
0 —CH dy cg 0
(5) Ag = .
0 —cyg dgy cy 0
—by —ag —cg ap+by cy
| cH 0 0 —cH dy
and
an = 1+ (c+1)rB
' = 2h
_ 1+(c—Dhp
ba = 2h
cg = E
H 2
2+ 2chp
dg = —

The matrix Ay can be transformed in two ways that are of inferest to us here. The first
transformation is a simple permutation, in which the basis functions associated with the subspace V
are ordered first, and those associated with W are ordered last. If we denote the relevant permutation
matrix by P, the permuted matrix is block 2 x 2, with n x n blocks, of the form

' A A
- t_ n Az
(6) Ay = PAgP [ Agy Az ]
with
ag +by  —by ~ag
—ag eg-+by —by
Ay = .
—ayg ag+by ~by
—-bH —ayg ag + by
-1 1
-1 1
A = _Atzl = ¢g .
-1 1
1 -1

Ay = dplaxn

Let Ay denote the stiffness matrix with respect to the standard nodal basis functions. This matrix
is of the form

ay + by —by —ay
—ay av+by by
An = . . )
—anN an + bN —bN
—bn —ay  an+by
with
ay = 2+ (2¢c+ 1A
2k
by = 2+ (2c~ 1}hp

Zh
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Then the matrix Ay can be transformed to Ag by

M Ay = S'PANP'S
Here S is a block 2 x 2 matrix of the form
{10
5=z 1]
with
11
1 1 1
R=3 .
1 1
1 1

The identity (7) is important for the practical realization of the hierarchical basis multigrid
method, since in two space dimensions, the stiffness matrix with respect to the hierarchical basis
is much more dense than that for the nodal basis. Explicit computation of the hierarchical basis
stiffness matrix should be avoided in implementing the method [3]. However, for theoretical pur-
poses, it is most convenient to formulate the method using the matrix Ay, since this simplifies the
mathematical analysis and description.

Within this framework, the 2-level hierarchical basis method is just the block symmetric Gauss-
Seidel iteration applied to the linear system

8) ApUp = Fy
This can be formulated as the two-step process
A. A i I
9 [ 61 AZ ] Uks1/2~Ur) = Fyg — AgUs
1 A D = Fy — 4
(10) Am An (Urs1r = Uryipa) = Fg — AgUkiapa

We note that the matrix A'H is singular with a one-dimensional kernel corresponding to the
constant function. The corresponding vector in R?" has the block form €' = (e} €}), with e} =
(11...1) and es = 0. Since Anre; = Azer = 0, both parts of the iteration (9)-(10) are also
singular, but with the same kernel. If we interpret (8)-(10) restricted to the orthogonal complement
subspace for e, then everything is consistent and well defined, including the (generalized) inverses
of all the relevant operators.

Standard algebraic manipulations of (9)-(10) lead to a compact definition of the the symmetric
block Gauss-Seidel iteration in terms of the preconditioner

+
s | A Az Ay 0 An 0 ]
(a M= [ 0 Az 0 Ax A1 Az

This can be written as

An— B A ]
s
(12) M = [ Az Azz
where

2 -1 -1

-1 2 -1

ch
(13) B = =
g -1 2 -1
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Setting M’ = PM P*, we can write M as

[ ég + bg  cm ~by —ag  —cg |
—cH dyg CcH 0 0
—dg —cg aGm+by cm —by
0 —CH dg cmg 0
(14) M= )
0 —CH dH CH 0
—by —ag —cg ag+bu cm
| en 0 0 —cH dg |
with
2
~ CH
a = ag — 5
H H- -
2
s C
by = bg— -2
H H o

To analyze the rate of convergence for (9)-(10), it is sufficient to study the eigenvalues of the
matrix I — Mt Ay, restricted to the orthogonal complement subspace for e, which can be done
exactly using Fourier analysis as we shall see in the next section.

3. Fourier analysis. Let B be any matrix of the form

a+d ¢ —b —a —c
—c d c 0 0
—a —c¢ a+b ¢ b

0 — d ¢ 0

(15) B= .
0 —c d ¢ 0
-b —a —c a+b ¢
c 0 0 - d

We define the discrete Fourier vectors {gi}ing" by
(16) qi - (l,eikﬁ’eﬂkv’ et ei(2n—1)k9)

with 6 = 27xh = w/n. Tt is straightforward to check that

Bgr = axge + YeQkin
1n Bgi4n = Okinlkin + Te4ndk
o = = ;’ 511 — cos(2k0)} + -‘25 +i2 = b cin(2k9) + i2csin(k)
7w = g —2’_ b{l — cos(2k6)} — -g— +iZs b sin(2k8)

Thus the two dimensional subspaces span{ygr,gr+n}, 0 < k& < n — 1, are invariant under appli-
cation of B. Since both Ay and M are of this form, the problem of analyzing the eigenvalues for
the 2n x 2n matrix I — M+ Ay is reduced to the analysis of n eigenvalue problems of dimension 2.

To find the eigenvalues of the iteration matrix, we can set

det{Ag —M—-XM}=0

Since both Ay and M are of the form (15), Fourier analysis will reduce this 2n x 2n eigenvalue
problem to n cigenvalue problems of size 2 x 2. To simplify notation in this calculation, we will set,
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for0<k<n-1,

p = ph
7 = (1+4cBh)
= (1 ~+ cp)
o= LIV con(2kt)} + i sin(ako)
%—5:070){(4112 ~ p)sin(kB) + ipy cos(k0)}

- %
Qk-—2

n

h
e = 2cpsin(kf)

psin(k8)
h

o2
sp = {1 cos(2k6)}
dy
p?sin®(k6)
4hny

Then a typical 2 x 2 determinant has the form

11 pr+ar+ite  Pr— @ }
det - . =0
e{Sk[l 1] [ Pr — k DPr+ qr —irg

The straightforward calculation of this determinant shows that
(4prgr +T3)A% — Asppr = 0

giving A = 0 and
sk
7'2
o + 5o
p2sin®(k0) [ (492 — p?)sin(k8) -+ ipy cos(kb)
- 4n? (402 + p?) sin(k8) + ipn cos(kb)

from which the estimate
p? sin?(k0)
472

e

4n?
(8h)?
4(1 + cph)?

follows. A special case occurs when k¥ = 0, and pr = v = sz = 0. This 2 x 2 block has one
Fourier component corresponding to the constant function, which should be ignored. The remaining
eigenvalue for this block is A = 0.

This analysis shows that the iteration will converge (JA] < 1) for all

Bh—2
¢ 2 max (-?ﬁh—,O)

A<

IA

This set of conditions is similar to that required for stability of the underlying streamline diffusion
discretization. If the velocity 3 or the mesh spacing h is small enough (fh < 2), then no upwinding
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is required, and we have convergence for any ¢ > 0. However, for larger Bk, ¢ > 0 is required to
achieve stability of the discretization, and also convergence of the 2-level iteration. We note that
choosing ¢ > 1/2 will always guarantee convergence of the 2-level iteration, independent of the size
of Bh.
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