CHAPTER 15

Algebraic Multilevel Preconditioning Methods, III
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ABSTRACT

A new variant of the algebraic multilevel iteration method studied by the au-
thors in previous publications is presented. In the present method it is not required
to estimate the accuracy with which the block matrices corresponding to the, at
every refined level, added meshpoints are approximated. As can be expected this
lack of information slows down the rate of convergence somewhat. However, the
rate is still of optimal order, under the same condition as for the previous methods,
namely that v > (1 — 42)~1/2, where v is the degree of the shifted and normalized
Chebyshev matrix polynomials, used to approximate the arising Schur complements
and where v is the constant in the strengthened Cauchy-Bunyakowski-Schwarz in-
equality, corresponding to the bilinear form and the function spaces spanned by the
nodal basis functions in the vertices and the new set of hierarchical basis functions

in the edge nodepoints.
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1. INTRODUCTION

In previous publications (see [2] and [3]) the authors have presented a multilevel
iteration method to solve second order self-adjoint elliptic problems with a computa-
tional complexity proportional to the number of meshpoints on the finest level. This
optimality property requires only that the coefficients of the differential operator are
smooth within elements of the coarsest mesh but they can be discontinuous between
elements. In particular they are valid for a domain with a reentrant corner. The
preconditioner is based on an approximate factorization of matrices partitioned in
a two by two block form where the inverses of the arising Schur complements are
approximated by certain matrix polynomials such as shifted and normalized Cheby-
shev polynomials, involving the inverse of the preconditioner on the next coarser
mesh level, and the Schur complement itself (version (i)) or the stiffness matrix on
the next coarser level (version (ii)). Hence the preconditioner is defined by recursion

_from a finer level to the next coarser and on the coarsest mesh it is assumed that the
matrix is solved by some direct or iterative method to full (or sufficient) precision.

The best choice of polynomials for fastest rate of convergence, the Chebyshev
polynomials requires the estimation of a certain parameter (the lower bound-of the
eigenvalues of the matrix in the polynomial). This parameter depends on 7, the
problem parameter in the strengthened Cauchy-Bunyakowski-Schwarz (C.B.S.) in-
equality and on a parameter which depends on the accuracy with which the matrices,
corresponding to the newest meshpoints and their basisfunctions, are approximated.

While the computation of 4 can be done readily from the local finite element

matrices, the estimation of the second parameter requires some extra labor (see
[3]). In the present method we consider a new method where we have avoided
the estimation of the latter parameter. The new method is based on an auxilliary
sequence of matrices which is spectrally equivalent to the original sequence of stiffness
matrices, and the multilevel preconditioner is computed from the new sequence.
Therefore, in addition we require that the matrix blocks corresponding to the newest
meshpoints in this latter matrix sequence are approximated to a sufficient accuracy
& priori. How this can be done will be shown in the paper.
The remainder of the paper is organized as follows. In Section 2 we present the
prerequisites of knowledge required for the presentation of the multilevel methods
and in Section 3 the new matrix sequence is presented and the spectral equivalence
of it with the given matrix sequence is shown. The definition of the multilevel
preconditioner and the estimate of the rate of convergence can be found in Section
4. Finally the new method is illustrated with numerical tests.

While we present the methods only for elliptic boundary value problems in two
space dimensions, the method is equally applicable for problems in three space di-
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mensions. The computational complexity is of optimal order in two space dimensions
for piecewise linear basisfunctions for any initial triangulation, if this is refined uni-
formly. In three space dimensions the value of v is not known for a general division
of a domain in tetrahedrons. However for the standard tetrahedrons, for instance it
suffices to choose v = 2 for an optimal rate of convergence.

2. PREREQUISITES

Consider the variational formulation of the second order self-adjoint elliptic
operator problem

DILAIORS

with Dirichlet boundary condition on Iy, a subset of the boundary I of the polygonal
domain Q C R?, with meas (T'y) # 0 and homogeneous Neuman boundary conditions
on I'\T'y. Hence, given f € L(R) we wish to find u € H}(Q) such that

a(u,v) = (f,v), all v € H3(Q),

where Hg(Q) and H;(£2) are the Sobolev spaces of functions with trace equal to zero
and g, respectively on I'y and

a(u,v) = / z aij(@) 7 g’“ g; 2.1)

We assume that the matrix (ai;(z)), 7,7 = 1,2 is bounded, symmetric and

positive definite on Q and we let

(f,v):/fvdx.
. Q

As is well known the bilinear form is then symmetric, bounded and H}-elliptic.

By a standard refining procedure we obtain a sequence of triangulations 7,
k= 1,2,...,4. The refinement is done by introducing new nodes in the midpoints
of the edges of the triangles of the previous triangulation and connecting them with
the opposite vertices. This refinement can be done locally, i.e., it does not have to
take place in all triangles.
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With any triangulation 73 we associate the corresponding finite element space
V3 of piecewise polynomial functions that are continuous in §. As basis functions for
Vi we choose the standard nodal basis functions, {S": },_1, where ny is the number
of nodepoints in 7. Therefore, if N; is the set of nodes in 73 and z; runs over these
nodes then
gogk)(a:j) = 8;j, the Kronecker function.

Once having a basis the following sequence of stiffness matrices can be computed
(%
AR = (a(gagk),go] )))1 =1 k=12 ..,¢

By construction we have Ny O Ng.;. Hence at the k-th level the partitioning
Ni\Nr—1 (new nodes) and Ni_1 (old nodes) of the nodes in Nj can be used. Cor-
responding to this ordering A®) takes the following block two by two form

o= [4 4].
AR 4

where . 5
A( ) = {a(S«’S 2Py ))}Z,] Zi,xj € Nk\Nk—-l

A(k) = {a((p(k)’so] ))}Z J Z; S Nk\Nk 1,-’13] € Nk 1 (2.2)
AR = {a(p?, {0, : 21,25 € Nie.
As Vi_1 C Vi we may alternatively use the so-called hierarchical two-level basis
functions (see [9], [8] and [2])
{Lpgk), z; € Ni\Ng—; and gagk'_l),a:,- € N¢—1}.

Then any function v € V}, can be expanded by using either of these two basis, i.e.,

ng
oe) = 3 v,

i=1

we have

where v; = v(z;) and

2 k-1
v(z) = z ’v,tps ) 4 Z v,(ps ),
i:z;ENk\Nk..l 2:2; €N
This expression defines a mapping J = Ji, which transforms any coefficient vector
V= [;\1] of the representation of a function v € Vj, with respect to the hierarchical
2

two-level basis to the coefficient vector v of the representation of v in the nodal basis
of Vg, i.e.,
v=JV.
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In matrix notation J has the form

J= [(’; "}2]. (2.3)

We assume here that the nodes from N;\Ni_; are ordered first and then the
nodes from Nj_4.

We may compute also the two-level stiffness matrices a® for the hierarchical
two-level basis functions and let X(k) be partitioned in the same manner as A®) into
the two by two block structure {Zfz)},z, j =1,2. For A® and A® we have the
following exact factorizations

< _ {Xﬁ) 0 ] [I Zﬁlj)-lﬁﬁ)] ’

w0 o M

’

k -
A(k>=[A§1) 0] [I Aﬁ’i’;Aﬁ’é’]

where 5 and S) are the Schur complements

F® _7® _gBgh-i5)

21 411
2.4)
k E) 4(k)—~1 4(k (
50 = A% — A A4
Note that these are positive definite. Based on the identity
A0 = A g
a straightforward computation (see [8]) shows that
—(k) k 3 ~=(k) k 3
Ay = Agz) +A§1)J12, Ay = A£1) + JltZAgl)
and i
5P = 5@, (2.5)

Note further that Zﬁ';’ = A®-D and that Zﬁ'{) = Ag’{). Consider now the

Tollowing strengthened C.-B.-S. inequality:
There exists v = g, 0 < v < 1 such that

a(u,v) < y(a(u, u))% (an('u,v))sz all u € Vi\Vi—y, all v € Vi_y. (2.6)

Here 7 is the constant in the hierarchical two-level method studied in [1], [4].
With the hierarchical two-level basis functions, (2.6) takes the form

V§Z§§)V2 < 'y(viAg’;)vl)%(véA(k‘l)vz)% all vi € R™* 71 vy ¢ R™-1 (2.7)
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The constant y can be computed locally from each local finite element matrix
(see [7] and [1], for instance). Therefore, 7 is independent of the jumps in the
diffusion coefficients a; ; in (2.1). In [4] and [1] it has further been shown that the
spectral condition number of Ag’{) is bounded above by a constant independent of
the level k of the mesh, if we construct the finer mesh triangles so that they are
congruent with the original, parent triangle.

The following results will be used for the analysis of the method.

Lemma 2.1. (see [1], [2] and [8]).
Let v be the constant in the strengthened C.-B.-S. inequality. Then
a) 1—72 < viSFEv, /vi Ak-Dy, <1 all vy € R™-2

g A(E) Py ~ v
b) 914, < = VATV, all Ve [V;] € R™+.

3. THE AUXILIARY MATRIX SEQUENCE

The recursive construction of the preconditioner to the matrix sequence {A(k)}
shall be based on a to {A®)} spectrally equivalent sequence. We present this first
for the fully hierarchical sequence A or for a rth level hierarchical sequence Alkr)
where A2 = Z(k), the two-level hierarchical matrix and A% = Z(k), the fully
hierarchical basisfunction matrix.

The rth level hierarchical set of basis functions is defined by

1’}(1:,1-) = {tpsk),x,- € Nk\Nk—l} u {(p(fk‘l),a:; € Nk_l\Nk_z} U...

U{e®* ™ 2 € Np_pp1},r =2, k.
Similarly, the vectors can be represented by a direct sum,
30 P otV g @I vV p o Lk (31)

Let A% be the matrix corresponding to the rth level set of basisfunctions. Then,
by the definitions of matrices Zg; in section 2, we have

AP &,
—(&) k—1)  ={k-1)
A21 Ai(ll Y A12

~(k-1)
A21

o =2,..,k (3.2)

A(k-r-t-l)
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Note that this matrix is not block tridiagonal in general.
Similarly, let B*") be defined as A" , but where Ag’i—’) has been approxi-
mated with Bﬁc—’),s =0,...,7 — 2 so that

T R A kea)T — ) (k—s ol b T
VAR <9 BTN < (14 8,)90 0" 4G 0900, (39)

all ng—’), and where b, > 0,8=0,...,r — 2. Then

) 3k
By e
—1 -

A2l B§1 ) A12

(k1)
A21

Bl -

Ak—r+1)

Let B® be the corresponding fully hierarchical matrix, and ’B{k) = ﬁ(kﬂ), ie.

k
3R - Bgllc) Zgz) )
Iy AGD

Under some further assumptions on the size of b,, we shall show that A% and B®
are spectrally equivalent,
To this end we need the following lemma.

Lemma 3.1. Let ¥(7) be represented by (3.1). Then

FENT ZENGE > (1 2)r5k-0.D) Flk—0.2)5(k-2.2) (3.5)
all Vb7 s =1, ..., — 1.
Proof. (2.4) shows that

DT ZEDF(HED > YE-DT GRY,(HE-D),

Lemma 2.1a now shows that
kDT DGR > (1 — f2)y kDT 4Dy k=1)

=(1- 72)6(1:—1)?2-(1:—1)17(»-1) =(1- 72)9&-:,2)? A-1,25(-1,2)

By recursion, we find

?(E,E)T;i{kﬂ}?(k,?) Z (1 — 72)36(-&"’5:2)2’ E{k—’:2)§{k*’u2)

with equality if and only if (3.5) holds.



170 AXELSSON AND VASSILEVSKI

Since
52" 2k2)5(k,2) . x0T FENIGE,)

if ¥(67) is the corresponding transformation of ¥(¥:2), the proof is complete.

“Theorem 3.1. Let A®") and B®*") be defined by (3.2) and (3.4), respectively and

-let (3.3) hold with
bs S qsbﬂ

for some positive by and ¢ < 1 — v2. Then

(3.6)

0 S G(k,T)T (ﬁ(kyr) _— A‘(k,r))g(k,r) S __Lv(k,r)q‘ E(k:r)-’v\(kﬂ'), all ’v\(kar). (3_7)

1-72—g¢
Proof. Using (3.3) we find
~kDT /B n -~ ~®T ok E)\~(k
FEDT(BE2) _ A®2))G(k2) = vg ) (Bgl) _ A(u))vg )
T
< 59" AW,

Lemma 2.1b now shows that

DT (B _ DY) < D0 _gwaT GGk o 52,

1-9
Similarly, by (3.2), (3.3) and (3.4),
r—2 .
{;(k,r)'—" (ﬁ(k,r) _ E(k,r) )v(k,r) — ngk—S)T(BS—S) _ A(lli—-s))vgk-—s)
s=0
SO

r—2

V(k,r)'-" ( B _ A‘(k,r))v(k,r) < Z bs$§k—-s)1' Ag};—s){;&k-s)
=0
r—2

< b /(1 = A2)elk oD e g=s)

s=0
r—2
< Z bs /(1 — 42) F1GENT ZknIGRT)

s=0
where we have used Lemma 3.1. (3.6) now shows that

r—2

(3.8)

;(k,r)’—"( B _ Z(k,r))v(k,r) < bo Z( q > - 12)_1‘7(k,r)?‘ Ak Gk

— 2
=0 1 7
<Y ST GG,

1-92—¢q
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The left side inequality follows by (3.8) using (3.3). ' |

Remark 3.1. Since there exists a transformation J(*:7) (on upper block triangular
form with unit matrix diagonal blocks and with J®*?2) = J in (2.3)) taking ¥(*)
into v(¥), the spectral equivalence is valid also between the standard basis function

matrices A®7 and B®*" where A% and B*") are defined as A% and ﬁ(k”'),
. . (k—s) (k—s) . ~(k—3) —(k—3s) .
respectively but with Aj5 ' and A3,  replacing A;, ~ and A,; ', respectively

and where the last matrix block is Ag’;—"”) instead of A(k—7+1)

4. THE ALGEBRAIC MULTILEVEL ITERATIVE METHOD AND ITS
OPTIMALITY

We shall now construct a séquence of preconditioners {M )} to {A®} using
the spectrally equivalent sequence {B(*)}. This will be done as in the authors first
report [2]. Let then B® = J-TB® J-1 and

M = By 0 1 BYTA,) (41)
2{1’;) B 0 I
where B(®) is defined by
B®™ = [[ - p,(M*V pl=Dy g-n" (4.2)

and P, is defined as a scaled and normalized Chebyshev polynomial

l+a—2t l+a

Put) = L2 1 )T +1

where
T,,(:L') — %[(m + (mz _ 1)1/2)v + (:I: _ (xZ . 1)1/2)v]_

The parameter « is a lower eigenvalue bound of M (x=17" B(:=1) and shall be deter-

mined later on. We let

Qu-1(t) = (1 - P(t)) /1.

Then Q,_; is a polynomial of degree v — 1,

Qu-1(t) = go + @1t + o+ gpat” (4.3)
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v=1then P(t)=1-—1and

B = ppk—-1)
This latter is the method studied previously by the second author [8].
Note that P, is nonnegative in the interval [@,1], 0 < & < 1 and has the smallest
local maximum of all polynomials of degree v in this interval.
As can be seen from the definition (4.1), (4.2) of the preconditioner it is defined
recursively from one level to the previous coarser level. At every level when applying
this preconditioner we need to solve two linear eystems with B{f) , and a linear system

with B*=1), or multiplying a vector with Bm and B9 respectively.
For the latter computation we use (4.3), i.e. for a given vector v, we find

y2 = By, = @,y (MG-D T BE-Dypk-0" g,
or
2 =lgol + @M VT B 4y g (MEDT BNy, (g

which can be implemented recursively by the well known Horners algorithm (see [2]).
The matrix Bﬁ“} can be constructed in many ways. Here we use the method
presented in the previous publication of the authors [3], namely we let

—3)~* (ke k)"t
BT = (1~ (YA
where B8, = m(s+ 1), m > 1 an integer.
Further
M(k"‘) =J— c(k“") A{k-")
and, when A% is an M-matrix, we let

CED = diag (A%,

Note that, similar to the case for B*~#), the factor I~ M;; (5= ontains the factor
-y ~,

I- M“*') C{k*') A k“'),, so the inverse of An is cancelled out.

Since ,@(fvi'gf ’}} < 1, we have

B(k '}"Vl > VIA“' '>v1, all Vi. (45)
Further, since A%~ is diagonally dominant,

e o -~
MY )<<,
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for some ¢ which does not depend on k (see [1]), we find

k—s 1 k—s
ViBI Vi S e vidl Y (4.6)

or, by (4.5) and (4.6),

"Qﬂ
ViAg s)vl < VlB(k s)vl <@ + — 5% JviA; (k—a) Vi,

so (3.3) is valid with
by =G /(1= ).

Hence, if
P <1—47 (4.7)

then (3.6) is satisfied with by = 1_q,q = g™

Note that there exists always an m, independent of the level k, such that (4.7)
is satisfied.

The computation of Bﬁ—’)—lv for some vector v can be implemented in the
same way as the computation of y; above (for details, see [1]). The algorithm AMLI
to implement one preconditioning step can also be found in [3], together with the
formulas for the polynomial coefficients g; in (4.3), for various polynomial degrees
v. Likewise the relative spectral condition numbers follow readily from the previous

results.

Based on the results in [2] and the fact that B®) and A®) are spectrally equiv-
alent the following main result follows.

Theorem 4.1. The algebraic multilevel preconditioners M{¥) based on the auxiliary
matrix sequence {B(*)} and matrix blocks B§1) satisfying (3.3), (3.6), are spectrally
equivalent to the hierarchical basis stiffness matrices AB®) i =1 < (/1 —~% and
then the following inequalities hold,

TAWG < T UMD < [1 + %}AMA %, all ¥ € R™,

where \;, is the largest eigenvalue of BW T M® and satisfies

1
Ak<—'a
[5'4

and @ € (0,1), the parameter in the definition of the polynomials P,(%), (4.2), is the
smallest positive root of the equation

s _ (VO (V)
T S S V-V 8
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Proof. We need only to show that the matrices Bz» satisfy the strengthened C.-
B.-S. inequality
- ~ - -
W ve S/ OT B0 (B v,
all ¥4 € R™ " -1 v, € R™"1.
This is readily seen as A®) satisfies such an inequality, namely,
VA va < 1T AP0 F A% vy
<A BY V) H(vi AC v,
by (3.3), s =0,
<17 B9 H(vi B Do),
_ by Theorem 3.1.
The remainder of the proof follows the proof of theorem 3.3 in [2]. |

5. A PRACTICAL TEST

The test problem was as in [3], that is, —Au = 0 in Q, the model L-shaped
region shown on Fig. 6.1 with boundary conditions

92 =0onTy={(2:,0),0< 2y <1}

on
U {(0,22),0 < z2 < 1}

and v = 1 on 9O\I'y. That is « = 1 in Q is the exact solution.

M Xe

1

17X

Figure 5.1. Domain
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The AMLI-preconditioner M is defined by

M1 = [I- P,(MO-14®)] 401

and M® is the matrix defined in (4.1). The blocks Bﬁc), the approximations to
Ag’;), are obtained as follows:

‘k _ o~ (E)2—k+1) E)—
B§1) t= [I‘M§1) ] Agl) 17
where
=k E)—1 ,(k k . k
7 = 1 DP14®, DE _ diaga®.

Note that p(ﬁl(f)) < V/% < 1independent of k. Actually, based on the analysis
in Maitre, Musy [7] one can show that p(A)) < 5, hence go < 3. Then the
required inequality go < 1 —~? is valid since 1 —4% > —;— > go (however y? approaches
-;- with £ — o).

The solution method was the preconditioned conjugate gradient method with
preconditioning matrix M further refered to as AMLI-CG method.

‘We solved the problem

Ax=b, A=A4Y

and the initial approximation was chosen as
xo = M~ 1b.
The corresponding initial residual was
ro = b — Axy,
and we let r be the current one.

Ap = y/rfrg, A= VrTr,

the stopping criterion was chosen

Setting

A<e=10"%,

On the tables 1,2 we report the number of iterations, iter, required to satisfy the

stopping criterion, with the average reduction factor p equal to

Al
(Zx_g)” ,
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the cpu times in seconds, and the number of unknowns N = n, for various number
of levels £ = 3,4,5,6,7.

The test clearly indicates that the AMLI-CG method is of optimal order, has
a fixed number of iterations and bounded corresponding average reduction factors.
Due to the fact that we have chosen very rough approximations Bgf) to Aﬁ), that
is the constant g, (p2(1/\/[\1(f)) < gp), is not small enough, the performance of the
method for » = 2 and v = 3 is about the same (say, in terms of the number of
iterations).

This is clearly seen as for

c ]
—_ — (2)< P
v=2A=) _[1+1_72_q0_(1+52),e2<1
and
_ (3
v=3,A—A“[51+mz—:;o_(1+63),63<1

(A is the extreme eigenvalue of M1 A see theorem 4.1). Hence we see that the
term T—_—_S—_E)- dominates. Also since the constant m}j—_qo is not uniformly bounded
in £ we see, by our numerical test, that the restriction go < 1 — +? is not actually
necessary.

Thus since the amount of work per iteration step is the smallest in the case where
v = 2 with about the same rate of convergence, this case is preferable.

The test was run on a Bulgarian computer EC 1037 (about 1.2 Mflops peak
performance).

=2
H iter P cpgefga}ne N
3 14 0.201 31.31 176
4 15 0.209 121.72 736
5 15 0.209 431.93 3008
6 15 0.209 1624.61 12160
7 15 0.209 6001.36 48896
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v=3
1 iter P cp/uS:é;ne N
3 12 0.165 69.40 176
4 13 0.169 339.67 736
5 13 0.168 1433.19 3008
6 13 0.168 5987.46 12160
7 13 0.169 24638.55 48896

Tables 1.-2. Iterative convergence results for solving the test problem with the
AMLI-CG method, »=2, 3.
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