CHAPTER 20

Algorithms of Box Domain Decomposition for Solution
of 3-D Elliptic Problems

B. N. Khoromskij*
G. E. Mazurkevich*
E. P. Zhidkov*

Abstract. Three-dimensional elliptic finite element and finite difference problems
are solved using the preconditioned conjugate gradient method (PCG).
Preconditioners are constructed on the basis of box domain decomposition
(decomposition with cross-points) using Poincaré-Steklov operators. The space of
traces on subdomain boundaries is split into a sum of subspaces on which the
preconditioners are easily invertible. The results of numerical experiments for
linear and nonlinear problems are presented.

1. Introduction. The domian decomposition method for solving 2-D and 3-D
elliptic problems has been considerably developed in recent years.
Decomposition algorithms for ‘strips’-type partitions were analysed in [1-4]. A
family of preconditioners was constructed in [5-7] for 2-D finite element
problems for decomposition by crossing boundaries. The first results for the
three-dimensional case were obtained in [8].

Note that domain decomposition multigrid methods were analysed in [9,10]
and the preconditioning technique with local grid refinement was developed in
[11-12].

In Section2 we have constructed a family of preconditioners for box
decomposition in the three-dimensional case. The construction is based on
splitting the original space of finite element basis functions into a direct sum of
three subspaces of the sufficiently general form [13,14]. In Section 3 we have
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constructed preconditioners for 3-D finite difference problems. In Section 4 we
use the box domain decomposition technique for solving three-dimensional
quasi-linear equations in incomplete nonlinear formulation [13] for which the
approximation of nonlinear effects is carried out on the coarse grid, which
defines the decomposition of the domain Q2 = Ui .Ql

2, Preconditioners for finite element elliptic systems. Let us consider the
partitioning 2 =U,2, i= (i), of the parallelepiped Q={0< x<a
j =123} by using m -1, k=123, planes parallel to the planes x,0x;, x, 03
and x,Ox, respectively, where 1< p<m, k=123 Construct the box
decomposition of the domain 2 = Q5 U Qp, where subdomains 2, and €, are
defined as

%=UQ2, @-Ug 2.1)

i€l iEIW

w

where Ip={i: i +i,+1i; iseven} and I, ={i: § +i,+i; is odd}. Assume that
the partitioning satisfies the condition

(A.1) There exists a constant ;>0 such that for all i it satisfies the
inequality d/r, < G, where d =max,(diam£2), and r, are radii of balls inscribed
in Q.

Introduce  the notation I, =0Q, I =02 = U,f:ll';k, 61"1." = Uf;1=11';.]"",
I=(U;¢ IBI;.)\I"O, where I';.k are sides, l';km are edges of parallelepipeds £ and
I' is a set of internal boundaries. Define a finite-dimensional space Y. of
functions continuous on I"V I} and equal to zero on I}, as a direct sum of

subspaces V=X, @ X, @ X,.

Definition 2.1. Denote by ‘?1 cH Y(2) a family of first-order serendipity finite
elements corresponding to the partitioning of the domain @ = U; 2. In this case,
we have dimX, = l‘l,%ﬂ(nk — 1). For X; we choose a space of traces of functions
from X, on I

The space X, is used for the global information transfer among substructures

lLet us consider the simplest case of choice of subspaces X, and X,, which
however reflects the main details of the approach. The general case was
considered in [13,14]. Assume that we have prescribed compatible regular
triangulations [17] *Fikm, Flf‘h and Q n of all edges, sides and subdomains,
respectively, defined by the step size 2 > 0.

Consider the spaces V(I;.,’Z”) of piecewise-linear elements and the spaces

V(Fl.’,‘h) and V(2 ,h) of linear elements, which correspond to these triangulations.
The elements of these spaces have zero traces on Iy, and the inclusions
200 c HYX(r}m) and (@, 1) [ i S H'(I}) are valid. Define the space X,.
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Definition 2.2. Associate an arbitrary function u € V(I“i’;t”) with four functions
i, j =123, defined on the four sides having the common edge 1';"’” Assume
that u(x) =u, x € Fikm, j=1234, and also u; =0 on the remaining three edges
of the sides. Consider then, for example, a group of edges parallel to the axis
Ox;. Define i at internal points of the sides parallel to the plane x,0x; as a
linear continuation of the function u on I”l.k, and for a pair of orthogonal sides
define i as an ki -harmonic continuation of # onto the domain 1;-"’. We pursue
the same arguments for the other two groups of edges parallel to the axes Ox, or
Ox,. Set Y% =0 on the remaining part of I". The space of such functions will be
denoted by Xlkm Then set

X, =eX™ (22)
where the sum is extended to all internal sides I';km er.

Definition 2.3. Denote by G(l';.k) a subspace of functions from V(I’;’;) which
have zero traces on BI;.k. Then define

X,=eGUIF), Ifnl=o 23)

where the sum is extended to all edges I;k.

Define the set of functions Y,.=X; @ X, @ X; given on I'. Additionally
assume that the elements from X, and X; are h-harmonically continued inside
subdomains £ ,. Moreover, denote by X, a set of finite elements on the grid
Q. N which have traces on I' belonging to X, and also set X; = mne, ,h)‘ Denote
by Y, =X, © X, ® X; the corresponding space of finite elements defined on the
entire grid domain U; 2 ,. »

Denote by Vil/ 2cHY 2(I“i) a space of traces of the functions u €Y on I
Consider two techniques for ordering elements from Y. Each function u €Y.
can be presented as a direct sum ug = @ y; of components u, € Vlfll 2 iely, and
similarly for subscripts iely Denote by Yp and Y, the corresponding
regresentations for Y, and define the permutation operator T such that
T'T=E,TY, =Yy, :

1/27 defi iricaré — -1 ing the function

On V/* define the Poincaré—Steklov operator S, j mapping t
ue Vll/ 2 onto the trace of the normal derivative of the function A-harmonic on

Q h and having the value u on I}. The element v = Sy 14 belongs to H -1/ 2(l’l.)

and satisfies the condition (v,1),=0 for all intemail subdomains. Here and

henceforth, (-, ) is a scalar product in L,. Define on Yy and Yy, the operators
- - - - . s _ ¢4

Sz ,Al =@ IBS 4 ,1.1 and SW,}i =@ IWS A,il’ respectively. Denote Yz = Sy A (Yg) and

Yy, = Su‘,’z (Yyp), and define also diagonal operators
My= o uk, My= ® ukE 2.4)
B iEIB”IE’ 7 ier, i (

where E; are identity operators on thl/ 2 and #,>0 are given constants.
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Construct the boundary operator A=A, + 4,, where
= -1 = 7* -1
Al—MBSB,A, A2~TMWSW,AT. (25)

Let the function w €Yy be given which has the representation y =y, + Ty,
where y, €Yy and y, € Yy, Let us consider two problems.

Problem (A): Find a function ug € Y, such that for all # €Y, we have
N (Vuy ' Vpdx = S)n(s)ds. 2.6
iEIEUIWu,é( oV }w( n(S) (2.6)

The domain decomposition method equation in Problem (A) for decomposing
Q =2, U Q, takes the form

Problem (B). Find a function up. € Yy such that

Apupn) =), neYy. 2.7)

Note that the trace on I' of the solution u, to problem (2.6) satisfies (2.7) and
the function which is an A-harmonic continuation of u inside all subdomains
Q o satisfies (2.6). The operator Ap is symmetric, positive definite and defines
the equivalent norm in Y.

On the subspace X, present the operator S, ’il in the block form § A_,il {,S‘ik’"},
kym =1,..,6, according to the representation for ue Vil/ 2 in ‘the form

u= (ul,...,u6)T, Y s G(I';.k), k = 1,...,6. On the subspace )% define the operator

o ,s;kk] T 28)

6 '
diagd, =My o [ ® slkk] +T'My, @ [k=1

i€, Lk=1 I€L,

where I;-k NI,= . Each function ueYy can be presented in the form
u=w i +tu, X, k=123 Consider a family of preconditioners B,
u €Yp, k=1,.,5, defined by the equalities [13,14]

By = (Apu,vy) + (Api,y,) + (diagAuvs)
(Buy) = (Ap(uy +w)y; +v,) + (diagAu,v;)
Byuy) = (Apuyyy) + (diag Au,v,)
for all v €Yy, The operator B, is defined by the equality

(B4u’v) = (A]'upvl) + (A[uzavz) s WY €X1 ® IYZ
and the operator B, is defined by the equality

(Buy) = (diagAuy), vu €X,.
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Here, diag4, is the block-diagonal part of the operator Ap on X,
corresponding to the splitting of X, of form (2.2). Note that the block dimension
of A on X, is 13. It is obvious that the problem of inversion of the operators
B, k =1,..,5, on the corresponding subspace D(B,) is much easier than that for
the operator A, [13] and can be solved by special fast methods.

Denote by zk =a(B Ar) the condition number of the operator B~ AI‘ Set
N =d/n.

Lemma 2.1. The following estimates are valid:

# < C(1+NAog®N), ,<C(1+NlogN)
(2.9)
#, < C(1+NlogN), m=235

where the constant C is dependent only on the form of subdomains £ and
independent of 4, d and u,.
Estimates (2.9) imply [14]

Theorem 2.1. The solution of equation (2.7) by the PCG method with accuracy
e¢=N"" v>0, by using preconditioner B, at the first level where the solution
of aux1harly problems on the subspaces X @ and X, involves the use of
preconditioners B, and B, respectively, requlres 0(n1/ 2N5/210 N) arithmetic
operations with 0(nN2) numbers where N,=nN, n= maxknk, simultaneously
stored.

3. Preconditioner for finite difference systems. Let us consider a finite difference
problem. For the sake of simplicity, assume that @ is a cube partitioned
similarly to (2.1) into n3  subdomains Q= {(ik -Das<x <iai=1.n,

k =123}, where a is the length of the edge of the subdomain £2. Cover each
subdomain Q. with the uniform grid @, with the shift //2 with respect to the
boundaries of the subdomains, @ ={(@ -1a+ (s, —1/2)h, s5=0,. ,N+1,
k =123}, N=a/h. By the trace yw of the grid function w on any of the sides
I / of the subdomain ©Q we mean the average value of the two grid layers
Wr h)2 and wp_, 2 between which I"J is located: yw = (wp,,, ¥ Wy /2)/2
and by its external normal denvauve we mean the wvalue
Aw[An = (Wp,, 1n = Wr_,, 1)/ Then by I} we mean a grid domain on the side
of Q: {( - 1§a + (5~ 1/2) 8 =1.,N,k=12}. Consider the problem of
deﬁmng the grid function w:

wAw=0 onow

: Aw
[w]=0, [”E}] =y ool (3.0

w=0 onl,
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where I is the internal adjacent boundary of grid subdomains &;:

q
r=yr, r=ur. (32)
i€l j=1

In (3.2) g =6 if the sides of the subdomian £ do not lie at the boundary I, of

the original domain £2; otherwise g = 5,4 or 3
Let us consider a system of equations with respect to the trace ¢ = yW e X(I")
of the grid function w, which is equivalent to system (3.1) [16], X(I') is a space

of traces on I" of 4 —harmonic functions on w;:

- -1 * -1 =
Arp = ée%up‘,- o+T [i gIWu,S,- ] To=y (3-3)
where matrices Si”l{Pk’;, kl=1,.,q} are finite difference counterparts [4,16] of
the operators inverse to the Poincaré-Steklov operators. The operator A4, in
(3.3) is symmetric and positive definite in X(I") [16].

To construct the preconditioner B for the matrix Ay partition X(I') into a
sum of two spaces XO(I') and XL(I'): for all ¢ e X(I") there exists ¢ = @+ 9
@y € Xy(), ¢, € X (I'). For the preconditioner we choose the operator B such
that for all pu € X(I") we have

Bo) = Bygo) + (Ary ;)

where B, is the block-diagonal matrix

B— ® u diags;” 1+T [e p; diag S, ]T

i€l i€l

. (.4)

diagS; 1= @ P! .

£5; k=1 kk

For X(I') and X, (I') choose grid functions such that
« q _ o
X (N = {"’L = ea []elu] , W =const on FIJ}

> (35)

4 . .
X(NH=1¢=@ [jielu,’] » W,1)=0 on 1‘;’} .
The preconditioner with the choice of spaces (3.5) is called PC3. The estimate

of the condition number # of the matrix B~ IAF satisfies the following
statement.
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Lemma 3.1 [16). The PC3 preconditioner satisfies the inequality
2 < CN(1 + InN)?

where C is independent of 4, n and N.
The computation of the vector ¢ =B ~ly involves two stages:
(1) Solution of the problem

o) =Wy), v eX (I (3.6)

which is equivalent to the algebraic system A4, c = ¥, of dimension 3(n - 1)n?
whose solution by the PCG method calls for

0, = 0(n* (uJu. )?) 37)

operations.
(2) Solution of the problem

B, =f=v-Arg . 3.8)

The computation of the vector ¢, consists of 3(n - 1)n? independent problems
of definition of the function u = (¢y); at the common boundary I of each two
subdomains

B diagSil"lu + uidiag.S'i‘lu =j§" 69)
help, iely.

The solution of problems (3.9) is carried out by the FFT method and the
solution of (3.8) is thus carried out in Q,=3(n- n?(CN?1logN + O(N?))
operations.

Let the method from [18] be applied to solving partial problems in the
subdomains. Then the following theorem is valid.

Theorem 3.1. The solution of problem (3.3) by the PCG method requires
o(n/ 2N05/ 2log3N - loge™1)  arithmetic operations with 0(nN02) numbers,
N0 =nM 1is the global number of variables in one direction, simultaneously
stored.

It is worth noting that an increase in the number of subdomains n with a fixed
N, can considerably complicate problem (3.6) according to estimate (3.7). In this
case, to solve (3.6), it is necessary to use special methods [19].

Table 1 shows the results of numerical experiments illustrating Lemma 3.1.
Problem (3.1) was considered in the cube partitioned into 27 subdomains 2., ,
Lj,k=123; p, is the observed rate of convergence of the PCG method, n, is
the number of iterations needed for achieving solution accuracy 10~% The
column denoted by A shows the results for convergence for the Laplace
equation, g4 =1 for all j; the column x shows the results of coefficients u
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strongly varying in passing over the subdomain boundaries. To make comparison,
the column DD2 shows the similar results for the case u where the
preconditioner DD2 from [8] is used.

PC3 DD2
logN 4 u u
Py H Py H Py #
1 0.13 5 0.19 7 0.39 11
2 0.20 7 0.28 9 0.55 16
3 025 8 0.38 12 0.64 21

Table 1. Results of numerical experimentsillustrating Lemma 3.1.

4, Nonlinear problem, Let us consider problem (3.1) assuming that in some
subdomains y; is nonlinearly dependent on the mean gradient of the solution in
this subdomain £2. To such problem we can reduce, in particular, magnetostatics
problems (in mcomplete nonlinear formulation [13]) where we can single out the
nonlinearity domain £, UP,_ .Q}’T and the domain £, = U‘l 19{/ with the
constant coefficients u. For 51mphc1ty, Figure 1 shows the two~d1mensmna1 case:

!.?:QFUQVUI’.

Denote i = (#;,...4,) e RY where # in 2, j=1..p, is a value to be
determined. Then the nonlinear problem is equivalent to finding the steady-state

point
=M(@) 4.1)

where the nonlinear operator M(zi) is defined by the following sequence of
computations:

(a) for given #; = const, j = 1,..p, linear problem (3.1) is solved; to this end,
the algorithm from Section 3 is used;

(b) by using computed w find iij'z M@, B'= ,u{;}.);
3, = (mes )~ (g7 |Vw|?dx)"/2.

We give the results of numerical experiments [20] of solution of problem (4.1)
by the stationary Richardson method @, , , = M(@):
(1) The computations were performed on the sequence of three grids
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(12,14,14) — (24,28,28) — (48,56,56) with the partitioning of the nonlinearity
domain £, into 12 subdomains and 48 subdomains. This correspond to the
partitioning of the entire domain  into 64 subdomains (n,=ny=n,=4) and
150 subdomains (n1 =5, n, =6, n, =5).

(2) To solve (4.1) by the stationary Richardsor method, it was sufficient to
carrZ out 2 -3 iterations for obtaining the solution W with relative accuracy
10775

(3) When using the sequence of grids the time of solution on the last one is
approximately 8 minutes (IBM 370).

L,

(o /)

Figure 1. Two-dimensional case.
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