CHAPTER 17

An Analysis of Convergence of the Multigrid Method
for Stiff Problems

V. Kucherenko*

Abstract. If on tetrahedrons o, with vertices at ‘coarse’ nodes the variations of
values of coefficients of the elliptic operator are uniformly bounded by quantity
S, the convergence rate of the two-grid method suggested in the paper is
dependent only on the quantity S, i.e. independent of the value of a coefficient
jump at the boundary of ‘coarse’ tetrahedrons w,.

1. Introduction. Let 2 be a bounded domain in R3 with the piecewise-
differentiable boundary.
Let then functions a; be piecewise-continuous and for the quadratic form

a(éx) = Zl =1 lJ(x)éléj a piecewise-continuous function A(x) > 0 exists such that
a Alx) > 0; su a Ax) < . 1.1
red AEIN@ >0 s aE0/A6) (1)
Let then b(x) =0, b eL,(3R2) on a set of positive measure. Introduce on

Wl(Q) a scalar product
a,—— dx + | buvdZ. 1.2
[u] = gm 1,,8 I (12)
For fe L,(Q), v € L,(32) consider the func‘uonal minimum problem

S(u) = [uu] - Z}Jufdx - Zajguwdz. (1.3)
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In this paper we will analyse the multigrid iterative method of computation of
the minimum of the functional @(u) on finite element spaces of functions.

Let ©Q, be a partition of the domain € into tetrahedrons 4 ,2. Denote by a,
a set of vertices of tetrahedrons of the partition €. Assume that the nodes of
@, which are not internal points of the domain £ belong to its boundary <.
Then again partition the tetrahedrons 42 into finer tetrahedrons 4 nl. Denote by
£, a set of tetrahedrons of fine partition and by @, a set of their vertices. By
|@y |, k= 0,1, denote the number of nodes in @y

Let R, k = 0,1, be linear spaces of grid functions on the nodes ,, and let x,;"
be a node from . Denote by st(x") the star of the node ", i.e. the set of
tetrahedrons of the partition £ which have the node x™ as their vertex. Then
introduce the basis function ¢,"*(x) equal to unity at the node x”,to zero at the
other nodes of the star st(y") and linear on each tetrahedron of the star.
Outside st(x") the function 9, is assumed to be equal to zero. Then functions
(pé" are said to be ‘coarse-basis’, and ¢ are said to be ‘fine-basis’. Now
construct finite element spaces Hk, k=0,1:

H:v= 3 vl ®). (1.4)
Y SO

This formula defines isomorphism J;: R~ H,. It is obvious that Hy < H,. Denote
this inclusion by / and define the inclusion £ of R, into R;:

i =17, (15)

It is not difficult to verify that (fu)(q") = (Up)(x"). Obviously, 7, extends
definition of grid functions from R, given at coarse nodes of @, to fine nodes of
w,\w, by interpolation defined by the mapping J,.

Let us introduce on R, the scalar products

(o.w) = ))(ka)-@")dx, [0V < 0,]¥] "

= m my
<@y>, &méwktp(xk 17764

2. Projector P of space R, onto iR, The finite element approximation of the
elliptic operator L corresponding to problem (1.4) is the linear operator L, on
the space R, satisfying the relation <Luyv> &= [wv] Yuy eR. As well known,
minimization problem (1.3) on the space H, can be reduced to the solution of
the linear equation

Ly =t =R, @D

where the right-hand side f can be computed by standard procedures using f
and ¥ [1]
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In the multigrid iterative process contained in [2,3] for solving the equation
Lu, =f, the fundamental part is played by the projector P of orthogonal
projection with respect to the scalar product [ , ] of the space R, onto 4R

The function (1-Pu is obviously orthogonal to iR, To compute this
function, it is convenient to pass to the space H,. Then,

|,
J A -Pu=Ju+ mZ=1vm¢6"

and the condition [/;(1-Pugf]1=0, n=1,..,|e,|, leads to the system of
equations

[yl
m2=1vm[¢5”,¢5’] = -[u.e5]. 22)

As known, the matrix [|{g).¢f']ll coincides with the matrix L;. To compute the
function (1 - P)u, it is therefore necessary to solve equation (2.2) on the coarse
grid @,

3. Iterative process. For the case where the estimating function A(x) from
condition (1.1) is continuous on tetrahedrons of the coarse partition £, in [3] we
suggested an iterative process whose convergence rate is independent of the
value of A(x).

Thus, denote by D, a diagonal matrix equal to the diagonal of the operator
L,, and let u, be the solution to equation (2.1) on the coarse grid, i.e. for k=0.
Let us consider the iterative process

Yn__.(l_P)Xn+i1u0, X0=O, n=0 (3.1)
x#tl=y" — DY LY -f), n=0. (32)

Here, the step size 7, is determined by the gradient descent method for the
operator D; 1L (1 - P):
T, = <Dy88,>1/<L(1-P)5,8)>y
(33)
én dngf 1(L1Y” “f1) :
Thus, to start iterative process (3.1), (3.2), it is first necessary to solve equation

(2.1) on the coarse grid and then to successively perform computations by
formulae (3.1), (3.2). It was proved in [2] that

Pu, = ipy. (349

Hence, iterative process (3.1), (3.2) fixes the projection of ¥” onto LRy
The modifications of iterative process (3.1), (3.2) without justification of its
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convergence for stiff problems can be found in publications by various authors
(see, for example, [4]). Another approach to the multigrid method in case of the
coefficients being continuous on the tetrahedrons £, was suggested in [S].

Below, we impose constraints on the function A(x) under which in the
estimate

<L 1”1 S Q@<L r>, rn=§/"—u1 (3.5)

the contraction coefficient g is independent of the step size of grid nodes and
the spread in values of A(x), i.e. of the ‘stiffness’ of problem.

To prove it, we will suggest another technique making it possible to avoid the
use of the second main inequality for elliptic equations.

Let us analyse the algebraic structure of the formulae of process (3.1), (3.2).
Denote by P" an operator adjoint to P with respect to the scalar product
<, >;, and let D, be an arbitrary symmetric, positive definite operator in R,.

Introduce the linear space Ry, %'D; %1 - P*)R, and set

m(L) = vien1fq <L,(1-Pywy>,/<Dyy>,
D

ML) = Sélg <L(1-Pyy>,/<Dyy>, (3.6)
q(L) = [M(L) ~ m(L)}/IM(L) + m(L)].

Lemma 3.1. Tterative process (3.1), (3.2) for n = 0 satisfies estimate (3.5) wit.
g=q(L).

Proof. The space R1 can be decomposed into the direct sum R, =R, PR,
orthogonal to <D, - . Indeed, assume that <D;-D~ Yi-p )v w>, =0
Vv € R,. It means that (1 P)w 0 ie. wePR,. Denote by QO the prqector R,
onto R;, orthogonal to <D, -

Then the equality L,P = P L1 proved in [2] implies the equality

D 'L(1-Py=D11-P")L,. (3.7
Hence, we have D 1L1(1 —P)R, cR;, and the operator D 'L(1-P) is
self-adjoint to <D, -, .
Formula (3.1) implies the equality

-y = (1-P)YX" -uy). (3.8)

Since for the introduced projector Q we have (1 - P) = (1 - P)Q, then by virtue
of (3.7) we obtain

<L =) —w)> = <Ly - PYE - (1 - YA - ),

= <L(1 - P)QX™*1 - u),(1 - QX" ~ 1) > . 39
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Then determine Q(X"*+1 - w) from (3.2) and substitute it into (3.9). Equality
(3.8) implies that PY” = Pu,. Therefore,

LY -fi=L(X"-u)=L(1-P)(Y" -u).
Hence, by virtue of (3.2) we have

X+l - w =Y"-u - 1nD1'1L1(Y" o)
(3.10)
=Y"-u -7 D L,(1-P)Y¥" -u).
Formula (3.7) implies that the second term in the right-hand side of (3.10)

belongs to R;,. Make the operator Q act on equality (3.10). Then taking into
account that 1 — P = (1 — P)Q we obtain

Q™! ~) = Q" ~w) ~ 5D Ly(1=PIQE" ~uy).  (311)

The right-hand side in (3.11) defines the iterative process on R, for the
self-adjoint operator D1"1L1(1 —P) whose step ¢, in the gradient descent
method is computed by formula (3.3). Substitute (3.11) into (3.9). Taking into
account the convergence rate estimates for the steepest descent method [6] and
the estimate

<L,(1-Pw,(1-Pw>, =[(1-Pwy] < [vpy] = <Lyy>,
we obtain

<Ly(1-P)OX™* 1 — 1), 0" —uy)>

<(1-gL)<L(1-PQ" -w),(1-P)OX" -u)>, (312

= (1 -q@)<Ly(1 - P)Y" —1),(1 - P)(Y" —uy)>;.

Equality (3.8) implies that Y” —u; = (1~ P)(Y" —u,). Hence, (3.9), (3.12) imply
estimate (3.5) for g = g(L). This completes the proof of the lemma.

4. Estimates for m(L), M(L). Let us introduce the value d;:

g, = nilnax (Vra;i (r)nax}. / Vra;i (ij’n;l) 4.1
and similarly define J, [the function b(x) is contained in (1.2)]. Let it be known
that in the partitions £, on each of the tetrahedrons A;‘l the ratio of the length
of the maximal edge to that of the minimal one does not exceed y, and each of
the tetrahedrons A9 contains, at most, v fine tetrahedrons AL The following
theorem is valid.
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Theorem 4.1. A constant C dependent on y, v and the boundary 42 exists
such that

m(L) = C/[max(3,,5,)]. (4.2
For arbitrary integrated values a; and b we have

i
ML) <4. (43)

Auxiliary manipulations. Introduce the notation

3 du dv
IDE | S a—aZar | bwds. (44)
Qndij=1"Y o ax, @D n4

Let w(A,il) be a set of numbers of vertices of the tetrahedron A,‘;z. Set

<Dy>(4y) = (A1 lof. 014, )uv,
4.5)

<Duy>,(4 <Duy> (AY).

uy>,(4%) = AmEAk v >4(4,,)

Then for each function v € R, construct a coarse-basis function ¢ coinciding
with v at coarse nodes of @y

Lo, |

¢=II* z V) (4.6)

It is obvious that I7? = IT. Denote the linear space (1 — IDR, by R,/R,
To estimate m(L) from below, we will make use of the values

Cio "-—qfvsggl [12v,11v] /[v] 7)
d=ef. . - 0 0
T jlof v Elgf ” lw.wl4,)/<Dyw,p>,(4,). (4.8)

The proof of the estimate from below.
Lemma 4.1. The following estimate is valid:
m(L) = myo/2(1+ C,). (49)

Proof. Set ¢ = II(u — Pu). By virtue of orthogonality of the subspaces R, and
PR1 10 <D1 +,* > we have

<D u,u>1 = Dl(u - Pu - ¢)3(u —Pu - ¢)>1
(4.10)
= <Duu>, + <Di(Pu + ¢),(Pu + 9)>,.
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Then (4.7) imiplies the inequality
<L, ~Pu - ¢),(u —Pu-9)>; <21+ C)<L(1-Puu>,. (411
Inequalities (4.10) and (4.11) on R;, imply the estimate
<L,(u —Pu - @), - Pu—-9¢)>, <L(1-Puu>,

<s2(1+C 4.12
<Dy(u — Pu - 9),(u ~ Pu — 9)>, (1+Gg <Dpu>, (4.12)
Set w =u — Pu — @. It is obvious that y belongs to Rl/R0
Below we will show that
<Duy>., = <Duy>.(49). 4.13
UV > A‘% o “Di 1(4r) (4.13)

k=0
Therefore, the left-hand side of (4.12) can be presented in the form of fraction

[ A’ZZE QO[W,W](A,E),)] / [Aﬂég <D1W,l//>1(4?,):] . (4.14)

m 0

Now make use of the elementary inequality for positive values &, and b;

min (4/b) < (34)/(Sh;) < max (a/b). (4.15)

Hence, by virtue of (4.15) and the definition of m,, from (4.12), (4.14) we obtain
estimate (4.9).

The proof of relation (4.13). Let st(x') be stars of nodes x’, n=1..[w,].
Obviously, we have

leo, | |, |
<Dpy>y= 3 [0} .02 = z 241 [¢1 o7NA). (4.16)
Rearrange the terms in sum (4.16). Note that the tetrahedron 4 L is contained in
those stars st(x;') whose nodes x;' are its vertices: 1’ € o(4,). Hence, if we
group all summands relating to simplexes 4, Lom=1,. .| @ |, we obtain formula
(4.13). This completes the proof of the lemma
The new technique suggested for estimating m(L) consists in exploiting values
(4.7) and (4.8) and in estimating them via &,, d,, v and 7. In this way we
manage to avoid using the second main inequality for the elliptic equation.

The proof of Theorem 4.1. Estimate from above (4.3). The following string of
equalitites is valid

lo
<Lyy>,=[y,Jyv] = z PANAY (0 )—A 2 e [¢1,<of](A Ly, (4.17)
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Then exploiting the estimate
|lebof Ay, | <27 o ofl(A 0 + 27 o ol KA, v
by virtue of (4.17) we find

<Lyy>,<4 <Dyy>.(41). 4.18
Y71 A»%“l vv>1(4,,) (4.18)

Inequality (4.3) is implied by relations (4.13), (4.5) and inequality (4.18).
Estimate from below. Estimate first C,,. Show that if
(49 =0, then [IIv,IIv)(42)=0. (4.19)

Formula (1.2) implies that if [v,v](A’g) = (, then almost everywhere on 392 N 491
we have b(x) = 0. Then the expression [v,v](A’g) is a quadratic form of values of
the function v at nodes of U, le a9 w(Anl), and the expression [Hv,IIv](Atg) is
a quadratic form of values of the function v at nodes of co(A,g). The form
[ITv Iv])(4 ,2) vanishes in the linear subspace

vOed) = o=v0dt), B = w(4) (4.20)
and the form [v,v](Arg) vanishes on the linear subspace
» _ _ » s » _ ) 1
v = =vp), {1 = 4 nlléJA o (4,). (4.21)

Since a)(A,g) cUj1e40 a)(Anl), null space (4.21) is contained in null space
n m
(4.20) and, hence, relation (4.19) is valid. Thus,

sggl [Tv,ITv]/[v,v] < max’ sggl v, I} A0) /v y1(42) . 4.22)

Here, max’ is taken for those m for which we have [v,v](A,g) # 0. For such m
we have

[ IV@IW) P+ | (pIIv)*dZ

4 4%n 30
[, I1v)/[vy] < max(J,,d,) max—= L
m

. (4.23)
fIVUWPac+ | @p)?az
A,g A"‘:nan

The quadratic forms

[ V)2
4,

| V)|,
AO

have null spaces (4.20) and (4.21), respectively. Consider their relation on the
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subspace orthogonal to null space (4.21) and using standard arguments we obtain

§ VI |2 dx < C(y,v,092) | |V(I)|2dr. 4.24)
4° 4°

Likewise, we find

| I < C(yv9Q) | (p)?dz. (4.25)
4°n00 42000

Estimates (4.24) and (4.25) imply the estimate for C,,.
By virtue of (4.20) the estimate for m, is obtained similarly to that for Cy,
This completes the proof of the theorem.

Application to computing real problems. If on the tetrahedrons of the coarse
partition £, the variations of values of the functions 4 and b are great, it is
necessary to modify the coarse partition £, by adding to it, instead of some
coarse tetrahedrons with large values J, and J,, tetrahedrons of fine partition
which make part of coarse tetrahedrons. For new ‘coarse nodes’ ¥j” which are
vertices of the newly included (formerly fine) tetrahedrons we take old fine-basis
functions for new ‘coarse-basis’ functions. The partition £, and the basis
functions corresponding to it are taken without any modifications.
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