CHAPTER 10

An Application of the Probing Technique to the Vertex
Space Method in Domain Decomposition

Tony F. C. Chan*
Tarek P. Mathew™*

Abstract. We present a probing technique for constructing a modified preconditioner based on
the vertex space preconditioner of Smith in R?. The vertex space method is an optimal domain
decomposition method based on many non-overlapping subdomains to solve self-adjoint 2nd order
elliptic problems. This application of the probing technique significantly reduces the cost of the
vertex space method and numerical tests indicate that the modified preconditioner retains the optimal
convergence properties of the vertex space method.

1. Introduction. In this paper, we present a modified version of a domain de-
composition method known as the vertex space (VS) method, due to Smith [7]). The
VS method is an extension of the Bramble, Pasciak and Schatz (BPS) algorithm [2],
and of iterative substructuring algorithms described in Widlund [8], and it is known
to have a rate of convergence which is independent of the mesh size. The VS method
corresponds to a block Jacobi type preconditioner (additive Schwarz [5]) for a reduced
problem (Schur complement system) on the interface which separates the subdomains.
The blocks correspond to nodes on the edges, the coarse grid, and certain cross-shaped
subregions centered at the vertices (vertex subregions), which together constitute the
interface. In order to apply the VS preconditioner, the corresponding submatrices
of the Schur complement need to be computed exactly. The cost of compating the
submatrices corresponding to the vertex subregions alone, is proportional to the cost
of solving as many local problems on each subdomain as there are nodes in the vertex
subregions lying on the boundary of the subdomain. This can, in many instances,
form a significant part of the total cost of computing the solution.

Our primary motivation in modifying the VS method is to reduce this overhead
cost without altering its optimal convergence properties. We obtain a modified pre-
conditioner by replacing the submatrices by approximations. The approximations we
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use on the coarse grid and edges are standard and have been used in many domain
decomposition algorithms [2], [8]. They require no subdomain solves. The approxima-
tions we use on the vertex subregions are constructed by using the boundary probing
technique of Chan and Resasco {3] and Keyes and Gropp [6]. In the case of quadri-
lateral subdomains, these approximations can be computed at a cost of solving about
5 local problems on each subdomain, independent of the mesh size and other VS pa-
rameters. Numerical tests of the modified preconditioner on a model problem indicate
that it retains the optimal convergence of the VS preconditioner.

In the next section, we describe the elliptic problem and the Schur complement
system. In Section 3, we describe the VS method in R2. Then in Section 4, we describe
the probing technique and its application to modifying the VS preconditioner. In
Section 5, we present numerical results comparing the rates of convergence of various
preconditioners for a model problem.

2. The elliptic problem. We consider a scalar, second order, self-adjoint elliptic
equation with Dirichlet boundary conditions in a polygonal domain Q in R?:

1) Lu=-V.-(a{z)Vu)= f(z)inQ, u=0o0ndR,

where a(z) is a uniformly positive definite symmetric matrix function.

The domain §} is triangulated by a coarse mesh 7H# which consists of triangular
or quadrilateral nonoverlapping elements Qy,..., Qx. We refer to the coarse elements
as subdomains and assume that they have diameter O(H). The coarse grid nodes
will be denoted by {zff}. We let 7* denote a fine grid having elements of diameter
O(h) which are obtained by refinement of the subdomains. The fine grid nodes will
be denoted {z}}.

To obtain a discretisation of I, we use either finite elements or finite differences
on 7. A, will denote the stiffness matrix on the fine grid 7» and Ay will denote the
restriction of Ay to 7. The interface I' is defined to be the union of the subdomain
boundaries in the interior of the domain Q: T = uU;(89;)n Q.

Ordering the unknowns in the interior of Q; in u,, followed by those in the interior
of 5 in ug, and so on till we group the unknowns on I' in ur, we obtain the following
(N 4+ 1) x (¥ + 1) block structure for Ap, in the discretisation of (1):

A 0 A Uy S

@) : : A
0 Ann AnT uN In
Al - ALr Arr up fr

Eliminating the unknowns in the interior of the subdomains, i.e., 43, ..., 4N, We obtain
the reduced system for ur:

N
(3) Sup = fr - 3 ALAG S,

i=1

where the Schur complement S is defined by § = Arr — N, ATAZ'A;r. In this
paper we focus on solving problem (3) on the interface T by using the preconditioned
conjugate gradient method, with preconditioner M. We note that we may construct
a preconditioner for the entire matrix A, based on a preconditioner for the Schur
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complement §, see [2]. Once ur is determined, the complete solution in the interior
of the subdomains is obtained from:

ui=AEI(f,'—A,'rur), fori=1,...,N.

Remark. The Schur complement 5 is seldom computed since it is quite expensive
to compute, involving the inversion of A;; on each subdomain n; times, where n; is
the number of nodes on the boundary of ;. One of the well known advantages of
using the preconditioned conjugate gradient method is that with a choice of efficient

F1Gg. 1. The verter space partitioning of the interface.
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preconditioner it is possible to compute the solution to (3) at a cost proportional to
a small number m <€ n; of matrix vector products involving § (each product of S
involves the inversion once of each A;).

3. The Vertex Space Method. The vertex space method (VS) of Smith [7]
provides a preconditioner M, for the Schur complement system (3). It is based on
the BPS algorithm [2], and iterative substructuring algorithms [8]. However, the VS
preconditioner is known to have x(M;;15) = O(1) independent of H and h, which is
an improvement over the BPS algorithm which has k(M7 S) = O(1 + log?(H/h)).

Each iteration of the preconditioned conjugate gradient method to solve (3) in-
volves a matrix vector product with S (and each product of § involves one solve on
each subdomain) as well as a matrix vector product with M. The VS preconditioner
M, ; is never formed explicitly. Rather, given a grid function gr, the action of M} on
this grid function is defined as a sum of three components, each of which depends on
gr. The basic idea in constructing each component of M;; gr is to restrict the forcing
term gr to certain subregions of the interface I' and to solve local problems on these
subregions with submatrices of the Schur complement & as coefficient matrices. The
choice of subregions is important, and the VS method provides a particular choice of
subregions which leads to an optimal algorithm.
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The subregions of T used in the VS method in R? are the following, see Figure 1:
1. The coarse grid consisting of the vertices {z{T}.
2. The edges { E;;}, where E;; forms the common boundary to £); and €; without
including the endpoints.
3. The vertez subregions, {Vi}, where each V}, is a star-shaped piece centered at
coarse grid vertex a:f and consists of the vertex z}! and segments of length
O(H) of all edges E;; emanating from zf. In the case of quadrilateral subdo-
mains, each vertex segment Vj is cross-shaped and can be partitioned into the
following 5 disjoint pieces: one coarse grid node zf and four edge segments
(two horizontal and two vertical segments of edges E;; emanating from zf;
we agsume that none of the edge segments contain the coarse grid vertex zf!).
The following restriction and interpolation (extension) maps are defined for grid func-
tions on T and its subregions.
1. Coarse grid interpolation and restriction map. Based on the coarse grid, we let R},
denote the standard interpolation map which maps coarse grid functions on I into fine
grid nodes on T'. For instance, if piecewise linear finite element functions are used in
the coarse mesh 79, then RY, consists of linear interpolation on the edges E;; of the
coarse grid values on {zf'}. We let Ry denote the transpose of R}, and it corresponds
to the restriction of fine grid functions defined on I’ to the coarse grid nodes on T'.
2. Edge restriction and eztension maps. Given a grid function gr on I, we let Rg;;gr
denote the restriction of the nodal values of gr to the nodes on the interior of the edge
E;;. Thus:

h . h . . 0 . ..
my — J gr(zf) if zj is an interior node in Ej;
(Rgi;ov)(ei) = { 0 if 2% is not an interior node in E;;

Its transpose RE,.J. denotes the extension of nodal values in the interior of Ey; to the
rest of ' such that it is zero outside Ej;.

3. Vertex sibregion restriction and extension maps. Given a grid function gr, we let
Ry, gr denote the restriction of nodal values of gr to the nodes in the vertex segment
Vi:

my— ) gr(z}) if 2} is anodein Vi
(Bv,gr)(zg) = { h if 3;2 is not a node in V}

Its transpose R% denotes the extension of nodal values in V) to the rest of T, such
that it is zero outside V.

For the three subregions, we define the following coefficient matrices:
Ap = RHA),R}}, Sg,; = RE‘jSREij, Sy, = RV,,SR;G,,a

where Ay is a coarse grid operator, and Sg;; and Sy, are submatrices of S obtained
by picking off elements of § corresponding to the nodes in E;; and Vj respectively.
The action of the inverse of the VS preconditioner M, can now be defined:

4 M;lgr= (RgA;,lRH +D RE StiRe;+y, R$kS;:RVk) ar.
ij k

Of course, the inverses of the submatrices Ay, § E;; and Sy, need never be formed,
only their actions need be computed. This is often done by using direct solvers.
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Remark. The matrix Ay can be shown to equal Sz = RHSR%'_,, for some model
problems, and in those cases, the VS preconditioner exactly corresponds to the additive
Schwarz preconditioner [5] based on the subregions of T

The VS preconditioner is known to have an optimal rate of convergence under
certain conditions:

THEOREM 3.1. If the overlap between Vi and the edges is O(H), then
k(M ;18) = O(1), independent of H and h.

Proof. See {7]. D

4. Probed Vertex Space method. In this section, we replace the VS precon-
ditioner M, . by an approximation My, to solve equation (3). M, . is obtained
by replacing the submatrices Ag, Sg;; and Sy, used in the VS preconditioner (4) by
approximations Ag, § E,;; and S'Vk respectively:

(5) M;‘}sgr = (R%A.'I}l Ry + Z R%u S'E‘_ljRE,-j + Z RﬁS;:RVk) gr.
- A

1

The resulting probed preconditioner M, will cost about the same to invert per
iteration as the vertex space preconditioner M, .. However, the overhead cost of
setting up M, ¢ will be less than for M, , i.e., the cost of computing Ay, S E;; and
S'Vk will be significantly less than for computing Ay, Sg;; and Sy,.

A desirable property we look for in the approximations Ay, S, ; and S'V,; is that
they be spectrally equivalent to Ag, Sg,; and Sy, respectively, with respect to varia-
tions in mesh size, since then it can be easily shown that the modified preconditioner
M, ; would be spectrally equivalent to M, ;. In this section, we will primarily focus
on finding approximations to the verfez submatrices Sy,, since there are many well
known ways of approximating Ay and Sg;; [2], [8]. However, for completeness, we
briefly describe the approximations Ay and S'E'.J. we used in our numerical tests.

4.1. Approximation of the coarse grid operator Ay. A simple choice would
be to replace the coarse grid operator by the coarse grid Laplacian, Ayy = —Ag. For
variable coefficient problems, we define Ay to be the coarse grid discretisation of L,
if finite difference methods are used. In case a finite element method is used, we let
A be the coarse grid stiffness matrix computed using numerical integration on the
coarse mesh elements.

4.2. Approximation of the edge matrices 5g,;. The entries of Sg,; represent
the coupling in § between nodes on the edge E;;. Approximation of the edge matrices
SE,; have received much attention, especially for the case of two subdomains [4], [3].
In our tests, as in the BPS algorithm [2], we define each n X n matrix S'E,.j to be:

ijT

) _ 2
Smi; = iy WDW™!,  where W;; = msm(n+ 1)’

and where D is a diagonal matrix with entries D;; = 2sin(ir/2(n + 1)). The positive
scalar coeflicient

a; ‘; Q; , where o; = Amin(a(2:)) ‘*2' ’\mas(a(mi))’

Q;; =

for some point z; € Q;. Here A(a{z)) represents the eigenvalues of the 2 X 2 coefficient
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matrix a(z) at z. Note that W is a discrete sine transform, and so 5z, ; can be inverted
in O(nlog(n)) operations using FFT’s. It can be shown that the resulting matrix 5g,;
is spectrally equivalent to Sg;; for large n, see [2], [1].

4.3. Approximation of the vertex submatrices Sy,. The entries of Sy, rep-
resent the coupling in S between the nodes in V. Our approach in computing approx-
imations to these vertex submatrices is based on the principles used in the probing
technique of Chan and Resasco [3] and Keyes and Gropp [6]. We briefly sketch the
basic idea, and then illustrate the procedure in matrix terms.

It is known that the entries of § decay rapidly in magnitude with increasing
distance between nodes. When constructing gv,, = Sv,, we would like to define the
entries of S'Vk to be zero corresponding to “small” entries in Sv,. However, since Sy,
is not explicitly known, we will assume a sparsity pattern for Sy, . Then, to determine
the nonzero entries of Sy, , which are to approximate the corresponding entries in Sy,,
we multiply a few carefully chosen probe vectors ps,. . ., pn, (defined locally on V}, with
m < dim(Sy,)) by both Sy, and Sv,, and equate the products. In other words, we
look for an approximation S'Vk with a given sparsity pattern such that

(6) Sypi = Svipi, fori=1,...,m.

In this paper we choose m = 5. We will discuss the construction of Sy, later in al-
gorithm 2 of Section 4.3.3. But at this point, we would like to summarise the overall
procedure for computing all the vertex submatrices. This will be done concurrently
on all the vertex subregions as follows:

Algorithm 1. (To compute all Sy,)
1. Define v1,...,v5 on I' by v; = p; on each Vi, with v; = 0 outside UxVj.
2. ¥orm the products Svy,...,Svs.
3. Find the restriction of Sv; to each vertex subregion Vi, namely, Ry, Sv;.
4. For each V;, determine Sy, using algorithm 2 with data ¢i,...,¢5, where
q = RVk 5 Vi.

In the following subsections, we discuss the detalils of step 4.

4.3.1. Assumptions on the sparsity pattern of Sv,. As mentioned before,
the procedure to compute Sy, will depend on its sparsity pattern and on the choice of
the probe vectors. Our assumptions about the decay of elements in Sy, (and hence
the sparsity pattern of each Sy, ) are:

1. Within each edge segment of Vi, we assume that the coupling is strong only
between adjacent nodes. This assumption leads us to choose the submatrices of
Sy, corresponding to the couplings within each edge segment to have at most
three nonzero entries in each row. (In the natural ordering, this corresponds
to a tridiagonal matrix.)

2. We assume that the couplings between the different edge segments is not strong
ezxcept between the nodes which are closest (adjacent) to the verter node zH.
This assumption leads us to choose the submatrices of ng corresponding to
the coupling between different edge segments to have zero entries, except for

the entries corresponding to the coupling between the nodes closest to the
vertex.
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Given an ordering of the nodes on each vertex subregion Vi, the precise sparsity
pattern of Sy, can be easily determined from the above assumptions.

In order to illustrate this procedure, we will show the construction explicitly in
matrix terms for cross-shaped vertex subregions Vj. We assume the following ordering

of nodes within each Vi having N,, nodes on each of its edge segments (with a total
of (4N, + 1) nodes on Vi ):

F1G. 2. Ordering of unknowns within each vertex subregion Vi

Block partitioning of nodes Numbering of nodes
@
8
7
©"—Q> % L 93 %

@ 5
6

Vi Vi with N, = 2

1. The nodes on the left horizontal edge segment are numbered 1,..., N,,, with
the numbers increasing in the direction away from the vertex zfI.
2. Similarly, the nodes on the right horizontal edge segment are numbered from
Nys+1,...,2N,,, increasing in the direction away from zf.
3. The nodes on the bottom vertical edge segment are numbered 2NV,,+1,...,3Ny,.
4. The nodes on the top vertical edge segment are numbered 3N,,+1,...,4N,,.
5. Finally, the vertex node zff is numbered 4N, + 1.
This ordering is illustrated in Figure 2 for the case of a vertex segment Vi containing
2 nodes on each edge segment (i.e., Ny, = 2), and a total of 9 nodes. The arrow
indicates the direction in which the node numbers increase.
Corresponding to each of the 5 pieces constituting V%, we partition the nodes on
Vi into 5 blocks. This results in a 5 X 5 block structure for each S'Vk:

Su 0 513 5:14 515
0 53 Sy 524 Sas

Sv=| 55 5% 8 0 S35 |,
é'lT; 5_‘;%’; 0 Sy Sas
ST §L ST ST Sss

where each §;; is 2 submatrix corresponding to the coupling in § of nodes in block i
and block j. Note that the submatrices 572 and S34 and their transposes are zero, since
it can be easily shown that there is no coupling between edges 1 and 2 and between
edges 3 and 4 in Sv,. Moreover, based on assumption 1 on the sparsity of entries, the
first four diagonal blocks Sy, ..., 8y, are chosen to be tridiagonal. Similarly, based on
assumption 2, we choose the submatrices Sy3, 514, So3 and 554 and their transposes
to have zero entries everywhere except in location {1,1):
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(Sij)n 0
S'ij= 0 0 - |, fori=1,2; j=3,4.

Since we have not assumed any sparsity pattern for the coupling between the vertex
zH and the remaining nodes on V;, the submatrices Sj5 and ST, fori=1,...,5, wil
be assumed to be dense.

4.3.2. Choice of local probe vectors. Wenow describe our local probe vectors
p1,...,ps on each V in terms of ey = (1,0,1,0,...)T and eg1 = (0,1,0,1,...)T, which
are each vectors of length N,, (the number of nodes per edge segment). Then, for the
block partitioning of nodes on Vi, we define:

€10 €p1 0 0 0

€o1 €10 0 0 0

(M) m={ 0 |,;2=]| 0 |,p3=| €0 |,Pa=| €m |,ps=| O
0 0 €01 €10 0

0 0 0 0 1

4.3.3. Construction of Sy,. Given five vectors gy, ..., ¢s of length 4N, +1, we
wish to construct a matrix ng of size 4N,s+1 having the the assumed sparsity pattern
and satisfying Sy, p; = ¢; for i = 1,...,5. In matrix form, Sy, [pi,...,ps] = [a1,- - -, ¢s5]
yeilds:

5'11810 5’116‘01 5’13610 514610 «52'15
Spseor Saer0 Sasern Suer0 Sis
(8 SLewo S%ew Sasero Saseor S | =las---. 00
Sfie10 5%ie10 Sisenn Swern Sus
5'2!5610 S'ngem 5‘:{5910 5’:{3810 5'55

where the entries of Svkp; have been simplified using the fact that 5',-j601 are zero for
i=1,2and j = 3,4.

Corresponding to each of the 5(4N,, + 1) entries in (8), there is one equation
for the 12N,, + 1 nonzero unknowns in the upper triangle of Sy,. This results in an
overdetermined system. If each column g; in (8) satisfies ¢; = Sy, p; for a matrix Sy,
having the same sparsity pattern as S'Vk, then these equations are easily shown to be
consistent, and Sy, can easily be reconstructed. For general right hand side [¢1, - .., gs],
equation (8) does not lead to a consistent system and so we specify a procedure for
computing an approximate solution to (8), which equals the unique solution when it
exists and which and also guarantees the symmetry of Sy,.

This construction of 3y, is based on three observations. One is that for tridiagonal
matrices M (in our application M = §j;, for i = 1,...,4), all its nonzero entries, and
hence M can be determined from Me;o and Meg;. The algorithm we use to determine
such tridiagonal M was first proposed in [6], and we refer to it as the Symmetric-probe
algorithm. It is based on the following illustration:

Mn M12 10 M]l MIZ
My My Mas 01 My + Ma3 Mo
9) Moy Mzz My 10

= Mas Moz 4+ My |
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from which it is clear that the elements M;; can be recovered from the matrix vector
products. The second observation is that since for i = 1,2 and j = 3,4 the submatrices
S,J contain only one element in the (1,1) entry, this is easily found to be (§;;)11 =
(S,Jem)l The third observation is that the entries in the last column of Sy, , namely
.2’,5 for i = 1,...,5, are exactly equal to .S'Vk ps. This completes the upper triangle of
Sv,. The rest of the submatrices are obtained by symmetry.

Note that all the quantities we have used, such as Sjejo, Sieo; for i = 1,...,4,
Sijero fori=1,2 and j = 3,4 and §;5 for i = 1,...,5 are present in equation (8). We
summarise the algorithm in the following;:

Algorithm 2. (To construct Sy, from ¢1,...,¢s in step 4 of algorithm 1)

1. Fori =1,...,4, determine a tridiagonal §;; from §;e10 and 5;;e0; (available
from @, ..., q4, see equation (8)) using the Symmetric-probe algorithm.

2. For ¢ = 1,2 and j = 3,4, obtain the only nonzero entry in the submatrices
Sij» namely (8i;)n = (8ije10)1 (available in g3, g4)

3. The last column of Sy, is equal to gs.

4. The entries in the lower triangular part of Sy, are obtained by taking the
transpose of the blocks in the upper triangular part.

Computing all the vertex submatrix approximations Sy, using algorithm 1 re-
quires 5 solves on each subdomain. In contrast, computing the vertex submatrices
Sv, requires 8N, + 4 solves on each subdomain (for quadrilateral subdomains), since
there are 8N,; + 4 nodes on the boundary of each subdomain which Yie on the vertex
subregions. Thus the probed VS method can cost substantially less if N,, is large.

Remark. For 5 point difference schemes on quadrilateral subdomains, the last
row and column of Sy, is exactly equal to the last row and column of the matrix
Ay, (= RV,‘AhR%), i.e., the matrix A restricted to the nodes on Vi. This can be
derived from the fact that for such discretisations, the corner nodes in the quadrilateral
domains do not influence the solution. In such cases, the fifth probe p; is not required.

Remark. If N,, = 1 or 2, then the Symmetric-probe algorithm is not required in
the construction of each S'V,‘. For instance, if N, = 1, then the blocks 5;; are scalars.
If N,, = 2, then §;; are 2 X 2 matrices, for i = 1,...,4 and Sj;e;p and Sj;ep; form the
first and second columns of 5;;. Experiments conducted in [7], as well by us indicate
that N,, = 1 or 2 is usually sufficient.

5. Numerical Results. We present here the results of tests done using three
preconditioners to solve the Schur complement system (3). In these preliminary tests,
we consider only the 5-point Laplacian on a square uniform grid with mesh width
h = 1/N. The domain was divided into equally sized subdomains of length H = 1/N,,
and the vertex subregions Vi were chosen to have N,, nodes on each edge segment.

The three preconditioners we consider are the BPS preconditioner [2]:

(10) M— sgl" = (RHAHIRH + ZREQSE:;REU) gr,

the VS preconditioner [7] and the PVS preconditioner, which we have described in
this paper. In all three preconditioners, we used Ay = Ag, the coarse grid Laplacian.
In addition, we used S'E,.j to be the Dryja preconditioner, W DW -1 described earlier.
Note that a;; = 1for L = —A. For the VS preconditioner, the vertex submatrices Sy,
were computed exactly. For the PVS preconditioner, the matrices S'Vk were computed
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TABLE 1
PROBING THE VERTEX SPACE MATRICES.

FINE GRID | SUBDOMAINS | VERTEX | BPS VS PVS
N x N N, x N, SIZE N,, | ITER. | ITER. | ITER.
16 x 16 2x2 2 10 14 11
32 x 32 2x%x2 2 12 13 12
32 x 32 4x4 2 20 13 12
64 x 64 2x2 2 13 14 12
64 x 64 4x4 2 22 16 13
64 x 64 8x8 2 21 14 13

128 x 128 4x4 2 24 17 14
128 x 128 8x 8 2 23 16 13
128 x 128 16 X 168 2 21 14 13
16 x 16 2x2 1 10 12 11
32 %32 2x2 1 12 13 11
32 x 32 4x4 1 20 13 12
64 x 64 2x2 1 13 14 13
64 x 64 4x4 1 22 16 14
64 x 64 8x8 1 21 14 12
128 x 128 4x4 1 24 17 16
128 x 128 8x8 1 23 16 14
128 x 128 16 X 16 1 21 14 12

using the probing technique we have described. In table 1 we list the number of
iterations required to reduce the 2-norm of the residual by a factor of 10~% for various
grid sizes h, subdomain sizes H and vertex sizes N,s. The initial guess was chosen to
be a vector of all 1’s, and the right hand side in (2) was chosen to be 0.

We note that the iteration count for both the VS method and the PVS method are
nearly the same, showing that the probing approximation does not destroy the optimal
convergence rates of the VS method. Both have asymptotically better convergence
rates than the BPS algorithm, and these results agree with the theoretical results for
the convergence rates of the BPS and VS methods. However, the VS and PVS method
involve additional overhead cost, which costs about 5 additional iterations for the PVS
version, and about 8N,; more iterations for the VS method. The cost per iteration
of the VS and PVS methods are the same since we have not used sparse solvers for
the S'Vk, but both are slightly more expensive than BPS due to the inversion of the
vertex matrices Sy,. Thus, unless the iteration count of the BPS algorithm exceeds
the iteration count of the PVS method by 5 or more, the BPS method may be more
efficient. However, since asymptotically the BPS algorithm has a logarithmic growth in
its condition number, there is a cross-over point after which the VS and PVS methods
are more efficient.
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