CHAPTER 11

Analysis and Test of a Local Domain-Decomposition
Preconditioner

Yann-Hervé De Roeck*
Patrick LeTallect

Abstract
We study in this paper a local domain decomposition preconditioner which has been de-
scribed by Glowinski et al. (1987) in the framework of unstructured meshes and arbitrary
geometries. We derive a theoretical upper bound on the rate of convergence of the corre-
sponding method as a function of the discretization step and of the size of the subdomains.
We also describe practical results which were obtained on parallel computers with shared and
distributed memory architecture and which confirm the theoretical estimates.

1 Imtroduction:

Among the various Domain-Decomposition methods which can solve large scale finite-element
problems, the one that processes the Schur complement at the interface by a Preconditioned
Conjugate Gradient is particularly interesting because it can handle unstructured meshes and
arbitrary geometries. Because of the large scale and of the ill-conditioning of the original problem,
it is then advantageous to keep the implicit character of the interface problem and to build a
local preconditioner for its iterative solution. In this framework, we have selected the approach
proposed by Glowinski et al. [5]. This method is recalled in §2 and its convergence is analysed
in §3. It is finally tested in the three-dimensional calculation of a2 composiie material beam made
of anisotropic strongly heterogeneous linearly elastic materials. This last calculation was run on
parallel computers with shared and distributed memory architectures.

2 Schur Complement and Neumann Preconditioner:

2.1 Notation:

We consider the partition of a domain § into non-overlapping subdomains ;.
Let us introduce the boundaries (see Figure 1)
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00 = 0QnU8Qp, external Dirichlet and Neumann boundaries,
Qp; = dQp NI, local Dirichlet boundary,
;s = 8u\6Q, local interface,

together with the spaces

V = {veHY(QRP),v=0on 8Qp},

Vi = {veHY Q% RP),v=0 on 89p;},

Voi = {‘UGHI(Q,';RP),'U'—‘-O on 8QD;UFi}.
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Figure 1: Definition of the subdomains and of the boundaries.

Moreover, we define the space Y = }; TrVi. Ii is equal to the space of traces on T of functions of
V only if there are no cross-points in the interface. In addition, Tr; 1(/\) will represent any element
z of V; whose trace on I'; is equal to A. Finally, we introduce the elliptic form

6um v
a;(u,v) = / Apnri(z) — 7z, 6::,:’

with A € L™(Q) symmetric and satisfying the strong ellipticity condition
Am,,kl(x)Fm,,F“ > CQIFF,VF € RPxN,

Such an assumption is typically satisfied in linear elasticity problems where we have
a;(u,v) = / Ace(u) 1 e(v),
2
with A the elasticity tensor and e(u) the linearized strain tensor
1
e(u) = 3 (Vu+ (Vu)).

Under this notation, the problem to solve becomes

Find u € V such that
> ai(un) =<fv> , VoeV. (1)
i
On the discretized problem, we introduce the following notation:
-global unknown:

U= (I{ ) where { U stands for the unknowns of (U 8Qy)\T
U U stands for the unknowns of T
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-local unknown:
U: = ([_fz) where { U; stands for the unknowns of (; {J8Q: ~)\Ti
i= 7,

U; stands for the unknowns of T; .

Using the same convention, we split the local matrices into
(4 B
4i = (Bs A;
A B
A‘(B A)

2.2 Steklov-Poincaré operator and Schur complement matrix:

and the global gathered matrix into

With XA € Y we now associate z;(}, f) as the solution of
ai(zi,v) =< f,v> , Yve&Vu,
z€V; , z=X on S,
the Steklov-Poincaré operator S; given by
<Sap>= a(z(A,0), T ) , Ypey,
and the right-hand side L given by

<Lp>= =) a(z(0,f), i7'w) , YpeY.

Observe that in computing a;(z;(A,0), Tr; lu), the choice of the representative element of Tr; ! is
of no importance since, by construction, z;(},0) is orthogonal to any component of this element
in Ker (Tx;).

With this new notation, our initial variational problem classically reduces to the interface problem

(ZS,-)A =L in Y*. (2)

Once discretized, this reduction is equivalent to a Gauss block-elimination, which transforms the

linear system
A B\(U\ _ (F
B AJ\U) — \F
into A Bt q = = F. .
n 0 A-BAi—B*J\U) = \F-BAF

This system is associated with the Schur complement matrix:

S=A-BA"B' =) 5= A ~BA B} .

The main interest of this method comes from this last property of decomposition into local matrices,
allowing the parallelisation of the computations within an iferative method that only requires
computation of SU. A Conjugate Gradient method is well suited for this positive definite matrix.
In most cases, even an explicit computation of the S; would be too expensive. Then, a practical
solver for the local Dirichlet Probem consists in factorizing only A;.

Remark: In the presence of cross-points on the interface, the functions of Y = ¥~; TrV; might be
singular at these cross-points, which means that Y is not included in H¥(T'). As a consequence,
the function 2 (A, f) is not necessarily in H*(;). This difficulty disappears at the discrete level
but explains the dependence on d and h of our theoretical estimates.
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2.3 ’Neumann’ Preconditioner:

We first define a trace operator a; T from V; into ¥ satisfying

Z a;Tr(v) = Tr(v) , YveV. 3)

For example, at the continuous level, we can often set o; = 1/2. A different definition might be
used at the finite element level in order that condition (3) is still satisfied after discretization.
Following Morice [14], Agoskov [10], Glowinski and Wheeler (4], and Bourgat, Glowinski, Le Tallec
and Vidrascu [5], we now propose as preconditioner the operator

M = Z(a;Tr) Sl (e Tr) .

By definition of S;, the action of the preconditioner M on L is then given by
ML =Y aTr(ts)
i

with 9; the solution of
ai(i,v) = L{a; Trv) VYoeVi, i €V; . (4)
At the discretized level, this preconditioner can be written:

M =" D;S;*D}

where D); are local weighting matrices, such that: D; : Ty — T and 3, D; = Iip .

In the case of two domains with S; = S, then D; = %III‘;' gives the perfect preconditioner,
because M = (S + S537') = 85*

The actual matrix-vector product by S;* is also performed implicitly, since it only requires the
factorization of the complete local stiffness matrix A;. Indeed,

o
S0 = (0 Id)(‘g: g:) (;’d)v‘

Remark 1: In the absence of Dirichlet boundary conditions in the definition of V;, problem (4) is
not well-posed. In such situations, we replace a; in (4) by an equivalent symmetric bilinear form
d; which we take as positive definite on V; and such that

Zd’,—(z, z) > Za,-(z,z) >0 Zd‘;(z,z), VzeV.

For example, on the discrete level, the bilinear form d; is simply obtained by replacing, in the
factorization of the finite-element matrix of a;, all the singular pivots by an averaged strictly
positive pivot.

Remark 2:The performance of this preconditioner is not optimal, and the convergence rate that we
will show in the next section is not as good as the one proposed by Smith [18]. However, it is much
cheaper to implement, and it leads to a simpler data structure, especially in three dimensions.
Moreover, let us recall that our algorithm only requires the factorization of the local stiffness
matrices, and not the construction of any submatrix of the Schur complement {constructing a p x p
submatrix costs the equivalent of p/2 iterations of our PCG). Thus, the initialisation step, which
is included in our numerical results, remains reasonably short.
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3 Convergence Analysis:

3.1 At the continuous level:

To study the convergence of the conjugate gradient algorithm, applied to the above preconditioned
problem, we have to prove the spectral boundedness of M >, S;, that is to exhibit two positive
constants k and K such that

KOWA) < (MSAX) < K(A)) -

with ((-,-)) a given scalar product on Y and § = }_; S;. Indeed, let a; be the smallest eigenvalue
of MS, and ); the corresponding eigenvector. The same for a,,, the largest eigenvalue. Then:

((MS)‘I ) A1)) al(()‘l ’ )'1)) 2 k(()‘lr A1))

(MBra)) = on(Gmsda)) < K((dnrhn))
Thus
%'11 < -{;— = cond(MS) < %

To prove this spectral boundedness, we endow Y with the scalar product
(L) =< S\ > .
This is by construction a scalar product. Indeed,

> ai(z(2,0), T7 (V)

7

> ai(z(2,0), z(X,0) .

J

<SAN >

I

I

With this scalar product, we have, using the previous notation,

((MSA, X)) < SMSA A >

< MSX, 852 >
= Za,—(z, (A, 0), Tx; (M SN))

J
= Zaj(z.‘i(’\:o) H Tf_y_l(z aiTl'lbi))
= Y ai(z(2,0), Trj e Tr )

i

= Z L(a,- Tl'¢,)

3

= Y @) -

3

Therefore, the whole convergence analysis reduces to the verification of the inequality
Elz(, 01 < Il < Kllz(0,0)1%,

under the notation

loll = (3 ateus)
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Theorem 1 : We have
llz(0 0117 < 917 < C3ll=(A, 01,

with

G = sup N0 T O
o A

Remark: In the case of no internal cross-points and if we choose smooth weights o;, the con-
stant C, is well defined. Furthermore, in this case it does not depend on the discretization step A
when the spaces V; are replaced by conforming finite-element spaces V;3 provided that we have

'D'Vihlan‘-nanj = TrVihlen;nenj .
Indeed, in this case z is the harmonic extension of the function p defined in [;; TrV; N'TrV; by
Blaunag; = aiTry +aiTryy,

and this obviously depends continuously on #; and ;.
In the case of internal cross points, p# does not belong any more to H-#(T'). Theorem 2 will then
give the dependency of C2 on h and d.

Proof of the theorem: From the Cauchy-Schwarz inequality, we first have by construction,

(E [ACS ¢i)) v (E d;(2;(X,0), z; (A, 0)))
i i

1/2

Il 1=(2, 0)ll

> Zd,»(l/u,zn'(/\,()))

= 'X:L(a;’h-z;(z\,O))

> EZaJ (z(2,0), Try*(es Tr (3, 0)))
> Zaj-(z_;(/\,O), 1&;1(2‘: a; Tr (3, 0)))
> iaj(Zj(A,O),ﬁfl(*))

= ia,-(zj(x,o),zju,o))

> ciIIZ(/\,O)Hz-

On the other hand, we have

Yo aWng) = 3 Le:Tryy)

‘ ZZ a; (2(1,0), Trj (e Troh)
> a0, 75 (et

M

> ai(z(2,0), % (Z @ Tr¢;,0))

7

20 Ol |2 (3 s Tr v, 0)
< Call=, 0l 9l

IA

A
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By combining the two inequalities, we finally obtain

edllz, 07 < [I#li? < CEll=(2, 0|12

Corollary of Theorem 1:
Our preconditioned conjugate gradient algorithm converges at least linearly with asymptotic constant

Cz / i — 1
Cafer +1 :
Proof: From Theorem 1, we have seen that the spectrum of the operator M.S was bounded
above by C2 and bounded below by ¢Z. Hence, the condition number of M S is bounded above by

(C2/c1)? which ensures that the associated preconditioned conjugate gradient algorithm converges
as announced (see Golub and Van Loan [11] for more details). =

Actually, this convergence result is rather conservative. Indeed, our numerical results show that
the larger eigenvalues of M.S are well separated, which accelerates the convergence of the conjugate
gradient algorithm.

3.2 Within the Finite Element Discretisation:

Theorem 2 : As a function of the discretization step h and of the diameter d of the subdomains,
and for conforming finite elements of 1°° order (i.e. continuous piecewise linear), one has:

02 = sup ”2(2;0’; m‘:o)nl,?’ﬂ < g
PENMVin llellizn d

Remark: Thus, the condition number of MS grows like ;. As Widlund [20) stated, this is a
classical dependency for elliptic operators, when preconditioned by local operators (at scale d).

(1+1n %) . )

Proof of the theorem: Recall that z(},0) is the discrete harmonic extension of X given at the
internal interface I'. We first prove in Lemma 3 that any extension ugy of XA in Vj; has an H® norm
that bounds that of z,

22 Ollsz0 £ Clluoslliee - (6)
We then construct a function ugp whose trace is equal to A? = }; a;Try; on the interface T', such
that its extension on € is bounded by ||¢||. For simplicity, we can assume that the subdomains £;
are cubes with edges of length d and we have the following notations (see Figure 2):
o T'; = 8Q; NT the local interface,
o Fy; = 0Q; N 9Q; is a face,

o= =T \U; i‘,-,- the wire basket composed of the edges and the vertices of the local interface.

f:/_

|

1

‘ -

bl =T

Figure 2: Definition of the local inierface.
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We construct uoy in several steps:
o &;; € CO(Fy;) is built as the continuous extension of a; on F;;. Indeed, oy belongs to L2(T;) but it

- . . . 4 .
can only be continuous in the interior of the faces F;;, because we impose 3_; a; = 1 on T, thus also
on E;. As weighting factors a;, and therefore &;;, are positive and are such that 15 ]lo,00e;; < 1.

Let us also recall that in H¥(T"), one has:

(u,v) € H*(I‘) X Cgﬂ(I‘) = w=u-v € H}()and IIwH*,,,r < Hu”%,,,r”v”,,r
where C},,(F)={v€C'(), e=olor st. |o(e)—v(®)| < clz—yl3*, ¥(z,p) €T}
and [|ol%, = olZ . + ol e -
As we define f;; = a;;Try; + @;; Trp;, we require that &;; belongs to C‘i te (T), in order for f;; to
belong to the space H¥(F;;). This is not restrictive, for in usual cases, @;; belongs to C*(T").

o With f;; given as above, we call f;3 its discretization on F;j, and we build g;;5, the function
that is equal to f;5 in Fo‘;j and vanishes on OF;;. As is shown in the Lemma 4.3 of Dryja [9], we

can construct an extension u;j to gij on ; vanishing on T;\ i?,‘,-j such that:
d
[iinhae, < CL+In Slifijallyae, - (7

In 3D, we take the following definition of a weighted H¥-norm of v on a face F:

N T S W
loll} e = /F [ P drdy+ /F (=) dz . o ®

On the one hand, as u;;, has an homogeneous Dirichlet boundary condition on T\ f‘,-j, we can
use the Poincaré inequality, see Dautray and Lions [7]:

Hussnlliae, < Clugnlias, - 9)
On the other hand:

Ifisllyory; < (@jlleelleillzoe; + a5l lleillzoe,,)
< Clleillyae; +lleillyar,) - (10

Moreover, the continuity of the trace operator on ; for ¢; yields:
C
lgill e, < Fllwillioe,  (resp. for ¢ on Q) . (11)

Indeed, the norm of the trace operator in L{H*, H#) grows like ;715 as a function of the diameter,
if we use the standard non-weighted H¥ norm. Therefore, it varies in % for our choice of weighted
norm. Such an estimate is sharp, as it can be reached by constant functions.
Then, from (7),(9),(10) and (11), one gets the expected bound for u;jp
C d
lussalline, < Z1+In5) ;() leill2 s, - (12)
Jev(i

where V(i) is the set of indices of the subdomains neighboring Q;.

¢ On the wire-basket =, we discretize A¥ = }; a;Try; into f§.

Inside each domain €, we construct the extension uf;, of ff which vanishes at all the nodes of
Q;\E;. For this function uf;, which is piecewise linear on tetrahedra and vanishes at all the interior
nodes, we show in Lemma 4 that:

leiallzn, < Clifilloss, - (13)
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Then we prove the reverse inequality in Lemma 5, that is, for any edge E in E;:

C d
Yoi € Vin, [leills o < 2+ Dlleillaa, - (14)

As [|tille,0,5; are bounded by 1, we have: [|fflloas; < C3; |@illo.a.sss
and it easily follows from (13) and (14) that:

C d
46 0Rac, < |G0+10 D] Slhesine, - (15)
i

¢ By gathering all these uf;, we obtain uj, which belongs to V = IIV;;, and satisfies: uf = A® on[.
o Thus, uop = uf + z-# Uijp is piecewise linear. It is an extension of A¥ in Q, and it satisfies,
according to (12) and (15):

c d C d1?
olna < [G0+10 D] lelEaa+ [Sa+1n D] ol

As we wrote above, this inequality also holds for the harmonic extension z of \?. If we want
to highlight the behaviour of this bound when d and especially h tend to 0, we obtain for z the
expected relation that proves (5):

[12(32; @ Trps, 0)llsn0 < %(1"'111 %)”‘P”l,a,n . .

Lemma 3 : Let a be a bilinear, symmetric, elliptic form on Q, A be a function in H*(I‘) and z
be the harmonic extension of A on Q, i.e. the solution of:

a(z,v)=0 inQ, Yv € H}(Q),
z =X onT, ze H'(Q) .

Then, we have:
llize < Clludllize, Yuo € H(Q) with Trr(ug) = X .

Proof: Given ug in H*(Q) with Trp(ug) = A, let us introduce the following problem:

a(w,v) = —a(up,v) in,
{ Vo € HY(Q), weHHQ) .

Since a is elliptic and v — —a(up, v) is linear, w exists and

J(w) = 06%21(10) J(v)

where J(v) = %a(u, v) + a(uo,v) .
Then z = ug + w is such that Tr(z) = A on I and satisfies
Vv € Hy(Q), a(z,v) = a(ug,v) + a(w,v) =0 .
Thus z is the harmonic extension of A and
a(z, 2) = a(ug + w, uo + w) = a(uo, uo) + 2J(w) .
Since the null function belongs to H}(Q2), and J(w) is minimal, then J(w) < 0 and we have
a(z,2) < a(ug,uo) -

Since a is elliptic, there exist @ and A such that: allvf|2,, < a(v,v) < Allvli?, o -
This finally implies that
”z”?.a,n S %”u(’”iz,n -
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Corollary of Lemma 3: The lemma still holds at the discrete level.

Proof: One may obviously replace in the proof the spaces H'(Q) by V4, H¥(T') by Trr(Vs) and
obtain the same results for the discrete functions, as needed in (6).

Lemma 4 : Working with piecewise linear finite elements on tetrahedra, let up be a discretized
function defined on =, the wire-basket (or a part of it) of a domain Q. We extend uy into Q by
making it vanish at all the other nodes of Q. Then:

[luallsze < Clluallosz - (13)

Proof: Let us call Qg the set of all tetrahedra T having an edge or a vertex on E. Since €2z is the
support of uj, we have

"uhux.z,n = |Iuh”l,2,ﬂg .
We assume that the mesh is such that no tetrahedron will touch 2 different edges E; and E; except
possibly at the vertices of Z. Therefore, (see Figure 3) we can partition Qz into Qz = Y Qg,, with:

V edge E;, E;C g,
Vitk, QpnQ =0.

By dissecting each edge E of the wire basket into segments £, that are edges of the finite-element
mesh, we subpartition Qg into subregions ;. For a given segment £, the tetrahedra belonging

Figure 3: Support of up.

to Qg either own £ among their edges (T type), or share only one vertex with £ (T; type)(see
Figure 4). Then we have:

luall nae = D D lunliaa,

E€Z LeE

) Z(Z sl + 3 nuhnf,,,w,) :

F€E LeE \TeQ, T1€0

Nunll?..a

Because of the regularity of the mesh, we can associate a fixed maximum number 7 of tetrahedra
of the T type and 7 of tetrahedra of the T; type around the segment £.

Figure 4: Definition of 2 types of teirahedra.
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Now, on the reference tetrahedron, all the norms [|#4]|2, 1, |@s]?, 1 and [|24]|2, , are equivalent for
the set of functions @, that have nonzero values on the vertices of the edge £ and zero at all other
vertices.

Indeed, one can always consider that i only has values on the edge £ = [0, 1,] and that 95 (0,0,0) =
a and @4(1,0,0) = b, thus:

ip(z,y,2) = a(l—z—y—2)+bz
b—a
Vap(z,y,2) = —a
—a
#3(2,0,0) = a(l—=)+bz .

This implies that [|J@a||2 , 4, [6s]2, 4 and [|@4]]2, ; correspond to formulae of the kind:
IltTt;.Hf,,,R = aa? + Bb% 4+ yab .
Thus, they are all equivalent to (a2 + b%) and there exist C such that:

lanl2se < Cllunllss, and flanli3e < Cllunlll,, -

Now, let us call 9, the function that has the value a at O and null at all other nodes. All its norms
will only depend on a, thus we also have:

Iﬁhlf,;,vr < Cllanflo,s,e and |‘f’h||§,z,-r < Cllasllo,ae - (16)

On the other hand, general results of approximations given in Raviart-Thomas [16] p.101 hold and
show that, if * = B# + b is a linear transformation from the reference element K to the current
element K, then we have

Bl < 7||B||'|det(B)|’%|v|,,,,K,
< B |det(B) ¥ ohaz -

Ivlz,a,x

This yields in our case:

funlzr < 7’h%lﬁh|1,z,r )
lluallor < 7’}‘%"'&’1”0.2,'1' ’
<

Hanllo,ze Th™ %“"’l”!m.t .

As we can assume that h < 1 (it tends to 0) on each tetrahedron sharing an edge with E, we finally
have

< 7’h%(lﬁh'1,2,'r + Clﬁh!u,z,'r)
FRTN
< Chiflinllos,e
< Cliwallos,e -
Another property of regular conforming finite elements forces the internal radius and the internal

angles to be bounded in each tetrahedron. This implies that for each T; type, an integral along
one of its edges or along £ have the same order. So, as a result of (16), we can also bound:

”'ﬂhul,z,'r

“"h||1,a,1‘1 < Clluallo,ze -
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Then we have, by summation of the squares:

”uh”iz,n = Z Z E ”uhnx 2,T

E€E teE Teq,

< Y o+ m)lluallZs,
E€Z LeE
< O(r+m)lualll,s - .

Lemma 5 : Let E be an edge of a cube . Then for tetrahedric piecewise linear finite elements,
one has:

Vo eVA(®),  lollas < a,(l+11f1 )llvllun .

Proof: We are interested in an edge E belonging to the interface between subdomains. Thus, it
is not restrictive to consider E at the border of a face F belonging to the interface. In turn, let E
be the Oz, axis of coordinates (z; € [0,d]), and let F be defined by:

(z1,22),0< z; <d,Vie 1,2 .

Let v be a piecewise linear finite-element function, defined in 2, on F and on E. Then:

/ lo()Pdt

lloll? e

S oéna)éd ”v( ,372)“3 2,8
2
< [t ool
z3

Let u(z3) = |[v(., 22)|lo,2,5, then the inequality above can be written:

”v"ia,m > "u”o»m:g .

From Lemma 4.1 of Dryja [9], we have the following relation in one dimension:

d
ellooms < CCL+In ) ¥l 00, -

Let us estimate this last norm. The definition of |{ul{,5,0., in one dimension, is given by:
lu(za) — u(w)? 1! 2
T / o) =ML gz, a4 [ o) e
The following triangular inequality: | |la]] — ||b]l |° < [la —b}|*> , applied in the Hilbert space
L2(E), can then be written:
Hv( 22)lose — llo( y2llloas I < 10 22) = o, 32) e

and it implies:
2 d -
/ OO P / / loCa2) = o )ae g, g,
oJo ezl Iz - 3l

The weighted H¥-norm for 3D that we have chosen in (8), is equivalent on a square to the following
norm, see Negas [15]:

d ‘U:B, — WY1, g?,z
i, = / f flo(z1 (1I2)N, o g ds

|1’1 — ¥

o 22) = o, 1)
o [ [ Cmlins g iy g,

Je2 — w2 [2
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Thus, a rough estimate gives finally:
Ml o, < el e -
On the other hand, there exists an extension theorem between H¥(F) and H*(Q):
lollyae < Sliollso -
The whole set of inequalities justified above leads to:
lolfse < lullfwo.,

d
C(t+1n Dllull o,

IA

C d
(1 +1n K)”v”i:'n .

IA

4 Numerical results:

Our tests were performed on a stiff structural analysis problem, namely a beam consisting of
composite parallel pencils. Each of them is composed of a central carbon fibre wrapped in a very
soft elastomere (see Figure 6). The ratio between the elasticity moduli of the two materials is
very high, and locally the carbon has high orthotropic coefficients in the main direction of the
beam. Furthermore, in order to simulate the incompressibility of the elastomere, we use a very
high Poisson coefficient (v close to 0.5). The effect of these parameters on the ill-conditioning of
the problem, and on the relative efficiency of the preconditioner have been shown in [8] and [12].
In that last report, the implementation on a distributed memory machine is described in detail,
along with considerations about the data structure.

In these reports, we have also shown the impressive effect of a full reorthogonalisation during the
PCG, see also Roux [17]. This operation is still cheap because only the interface vectors are stored.

4.1 Test over d:

The beam, consisting here of one pencil, is sliced along its leading dimension, see Figure 5. Com-
puting on a hypercube, the Intel iPSC/2 32 SX, we show results on a fixed-size problem. Namely,
we have kept constant the total number of degrees of freedom, and using 2 processors per subdo-
main (one for the Dirichlet subproblem, one for the Neumann subproblem), we show the effect of
lowering d (increasing the number of subdomains).

e g e
1000

3 E ol ™ dom. | nodes | dof in Q [ dofon T [ iter.

§ - 2 4 9675 75 9

4 8 9675 225 25

£ 400 8 16 9675 525 | 49

g - 16 32 9675 1125 | 98

Figure 5: Test over d.

As expected, the convergence of the conjugate gradient becomes worse linearly with n, the number
of subdomains. However, as the size of the local problems decreases (both for the factorization
and for the iterations), an actual speed-up is obtained by using more nodes.

Let us recall that in this practical case, where the domain is heterogeneous and anisotropic, we
cannot use any coarser grid for coarse grid smoothing in the preconditioner, which would have
freed the algorithm from its dependency on d.



LOCAL DD PRECONDITIONER 125

4.2 Test over h:

step | dof in Q | dofon T' | iterl | iter2

h 975 225 24 15

1D z 6375 765 32 18
2 46011 2817 36 20

step | dof in Q | dof on I | iterl | iter2

h 3315 507 26 16

1D

> 23475 1875 26 18
2 176547 7203 | n.a. | n.a.
step | dof in | dofon T | iterl | iter2

h 3315 507 16 30
2D 3 23475 1875 20 32
> 176547 7203 24 34
step | dofin @ | dofon I | iterl | iter2
3D h 3315 507 34 52

4 23475 1875| 58| 58
176547 7203 69 | n.a.

Figure 6: Test over h.

We have tested the dependency over h with 3 types of interface:

-One-dimensional slicing, thus no cross-points.

-Two-dimensional slicing, with edges as cross-points.

-Three-dimensional slicing, with vertices and edges as cross-points.

Tests were performed on a CRAY-2 because up to 180 Megawords of memory were needed. The
aspect ratio of the finite elements is kept identical throughout these tests, i.e. for the different
slicings and when h decreases. The iteration counts iterl and iter2 correpond respectively to
heterogeneous and homogeneous materials.

Memory space problems occur for the very large test cases, because our local direct solvers are
very sensitive to the band-width of the structure of the matrices. The dependency over h, which is
in(14+mn %), can be detected: it yields to an affine increase of the number of iterations versus the
exponential refinement of h. However, it works better for homogeneous material, because for an
heterogeneous material, a finer discretization contributes to a better conditioning of the problem.
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4.3 Same problem, same cube, different splittings:

case: 1b48 case: 244 case: 1b44
5067 dofonT 4257 dof onT 3357 dof onT
32 domains 32 domains 16 domains
5000 "513 Her.t =
4000 = - fact

3000 =

*160 v 429 lter.
156 Wor.  o45 ter.
2000 =

elapsed time in seconds.

1000

case:242
3465 dof on T 0
16 domains

Figure 7: Different splitting strategies.

In our implementation on the hypercube, a domain can be allocated to two computing nodes.
Each node computes and stores the factorization, and then performs the forward and backward
substitutions for the Dirichlet or the Neumann subproblem respectively. During the initialisation
process, the potential for parallelism is thus doubled. During the PCG iterations, the Dirichlet and
the Neumann solvers cannot run simultaneously, but we still benefit from the data for one domain
being divided between two nodes. This is, however, a fruitful approach because it overcomes the
limits due to the small size of the local memories (4 Megabytes).

The global dot-products and the reorthogonalisation procedure are performed on all nodes in
parallel, with some redundancy in order to minimize the number of communications.

The test is performed with 16137 degrees of freedom, on the 32 nodes of the iPSC/2. Thus, we
split the domain into 32 subdomains with a two-dimensional slicing in the case 1b48, and a three-
dimensional slicing in the case 244. Then, using 2 nodes per subdomain, we partition into 16
subdomains, with a two-dimensional slicing in the case 1b44, and a three-dimensional slicing in
the case 242.

In terms of iteration count, we can again remark that: the simpler the interface, the faster the PCG
convergence. Indeed, a two-dimensional splitting must be preferred to a three-dimensional one,
and having half the number of subdomains lead to twice as fast convergence. However, one must
pay attention to the local solvers. For instance, in case 1b48, the storage requirement becomes
so large that only 160 interface vectors can be saved for reorthogonalisation. As we have shown
in [8], a complete reorthogonalisation is needed, therefore, the 613 iterations could decrease to a
lower number if there were enough space for more interface vectors.
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The influence of the local solvers is also highlighted by the best performance obtained in case 242.
Namely, although the number of iterations is 1.5 times that of case 1b44, the local geometry allows
a smaller fill-in for the solver, leading to faster factorization and quicker subsequent solutions.
Notice again that the best performance is obtained by an implementation that divides the data
over 32 nodes, but has a parallelism of only 16 for the time-consuming parts of the computations
(forward and backward substitutions with the Dirichlet and the Neumann solvers).

Conclusion:

We want to point out again that this preconditioner is based upon the idea of the locality of the
data. For this reason, it leads to a simple data structure, even with three-dimensional unstructured
finite-elements. For instance, the initialisation procedure does not exceed the time for the iterations
of the PCG. It is also well suited to computers with a distributed memory architecture, except if
there are very many computing nodes. And finally, even in the case of a very stiff problem, the
singular term in (1 + In %) in the condition number has no practical effect on the convergence
behavior when the mesh is refined.
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