CHAPTER 22

Application of Domain Decompostion to Elliptic Problems
With Discontinuous Coeflicients

S. V. Nepomnyaschikh*

Abstract. This paper suggests a technique for constructing the preconditioner for
iterative solution of systems of grid equations approximating elliptic boundary
value problems in domains with piecewise-smooth boundaries. The tecnique
suggested is based on decomposition of the original domain into subdomains in
which the coefficients of equations inconsiderably vary and on construction of
preconditioners for these subdomains. In addition, the paper determines the
preconditioner which corresponds to grid functions defined at the subdomain
boundaries. The resultant preconditioner is obtained by summing up the
preconditioners constructed. The convergence rate of the iterative process which
uses the preconditioner suggested is independent of both the grid step size and
the equation coefficients. The number of arithmetic operations required for
multiplication of the preconditioner by the vector is proportional to the number
of nodes of the grid domain.

1. Introduction. This paper suggests a techmique for construction of the
preconditioner for solving systems of grid equations approximating boundary
value problems for second-order elliptic equations with discontinuous
coefficients. The technique suggested is based on decomposition of the original
energy space into a vector sum of subspaces and on determination of
preconditioners in these subspaces. The splitting into subspaces involves
partitioning of the original domain into non-overlapping subdomains inside which
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the equation coefficients inconsiderably vary. The subspace corresponding to
values of grid functions at the subdomain boundaries is constructed in a special
way. In this case, we mainly follow the publications [1-3]. To construct
preconditioners corresponding to subspaces of grid functions which are nonzero
only inside subdomains, these subdomains are agian partitioned into
non-overlapping subdomains and their number can depend on the grid step size.
A similar technique for overlapping domains was suggested in [4].

2. Problem formulation. Let ©2 be a bounded domain on the plane with the
piecewise-smooth boundary I' of class C2, which satisfies the Lipschitz
condition. In the domain € let us consider the boundary value problem
2 0
a

ou
"R 0 TS, xeq

u(x)=0, xel @1

0u +o(xu=0 I
—+0o(xu=0, =xe
aN !
where du/dN is the derivative in the conormal. Let the domain £ be a union of
n non-overlapping subdomains Q=U7 2, 2N .Q] = @, i #j. Assume that
subdomains @ also have piecewise-smooth boundaries.

Denote by S = U:.'=189i a union of boundaries of the subdomains .Ql Let
W;(2) be a Sobolev space with the norm Iy qy and WHQI) be its
subspace

WHRIy) = {v e Wy (2)| v(x) =0, x €T}

Let a(uy) be a bilinear form corresponding to problem (2.1) Assume that
a(u,y) is a symmetric form and the following inequalities are valid:

aa(vy) < ‘5) pE)(|W|? +v))dx < aga(vy) W e WH (D).

Here, p(x) = p, = const > 0, x € £, o, ; are positive constants. Y

Let %=, 0" be a triangulation of 2 [5], and also 5" =Uf ;30"
Assume that the side lengths of triangles of the triangulation are order 4 and the
areas of triangles are of order 12 For simplicity, assume that th = Q. At the
points where the type of boundary condition changes there are nodes of the
triangulation, I is the part of aQ" which approximates I, and also
r*=egh=rpurs.

Denote by W2,(2") a space of real-valued contimuous functions linear on
triangles of the triangulation 2" and by W its subspace:
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W= {Vh c Wzl,h(gh)l Vh(X) =0,xe I'g’} .

Using the finite element method pass on from problem (2.1) to the linear
alebraic system

Au=f.

This paper is aimed at the construction of the preconditioner B such that the
following inequalities should be valid:

E(Buu) < (Auu) < EBuyu) VYueRN

where the positive constants ¢ and ¢ are independent of # and p, and the
multiplication of B ~1 by the vector can be cost-effectively realized.

3. Construction of preconditioner, The construction of the preconditioner will be
realized on the basis of the space splitting method [2,3,6]. To this end, construct
the decomposition W =W, + W,. Set

W, ={u" e W|uh(x)=0, x 5"}

(3.1)
Wo; =l eWilut() =0, 2 0%, i=12.1.

Assume that we can determine symmetric operators B j such that ImB, R A 7

¢AB, ,iv,v) <" %Vzlﬂz" < C,(B,, }.v,v) WweW,, (32)

where the positive constants ¢, and ¢, are independent of A (here and
henceforth, the subspaces of vectors from RV are identified with subspaces of
their p1ecew1se-lmear prolongations). Set B =p;; 01-}- .+ pnB It is obvious
that B, = (p,B, o) T+ @B, )+ The operator B, defines norms in the
subspace W,

Now deﬁne subspace W, and the operator B;. The dimension of this subspace
is equal to the number of nodes of the tnangulatmn 2% which lie on S”\I‘”
and the subspace W, ,, itself can be defined in the followmg way. First, deﬁne

w; /2 Which is a space of traces of functions from W on S

1/2={¢ lo"=u ]Sh,u sW}.

Let T be the operator of continuation of grid functions from the set $* onto
Q% whose structure was defined in [7,8] and therefore we omit it in this paper.
Note that the operator T performs norm-preserving continuation, and the
multiplication of T and T~ by the vector is realized in 6(h2) arithmetic
operations; here 7T~ is an operator adjoint to 7T for the Euclidean scalar
product. Set W, =TW, 0 - It is obvious that W= W), + W,. To define the operator
B,, define the norms in the space W, /2 Associate each function p e W, P with
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functions @, i =12,..,n, whose values are equal to the values of ¢ at the nodes
lying on B.Qih. Assume that on 6.(21.” there are m; nodes. Define the following
matrices. Let Z; be a symmetric tri-diagonal matrix with the periodic conditions
[1]

Y — Trid; . 2, —(3¥\1/2
Z, = Tridiag{-1;2+ 1/m?; -1}, 3, =(E)Y/
Zow) =P1(Zl¢1s '/’1) t e +pn(z‘n¢n’wn)

Do.w) =p(op¥y) + - +B,@,¥,) Yow eW, .
It is obvious that

&(De.9) < (Zo.0) < &5 (Dp.9) VoW, ),

y _ 1 Al _ 2 \1/2
C3—m, C3-—(4+ 1/mmm)/

where m_. and m_,  are correspondingly minimal and maximal numbers from
m, i=12,.n.

The operator X' generates norms in the space of traces W, ,,. However, the
explicit inversion of the operator 2 on the vector, i.e. the solution of the system
of equations

o=y (3.3)

is a complicated problem. Instead of solving system (3.3) exactly consider for its
solution, for example, with accuracy &=05 the iterative process with the
Tchebyshev set of iteration parameters 7, [9]:

0°=0
(34)

Pl gk =~ ‘tkD”I(Z’qpk -¥).
Set
n{e)
By=U- il (I-zp'Zpz~!
In(2/2) _er-&r
n(e) >m, q ————————631/2 n &,31/2 .
Then, ¢"() =B 1y

%(Bl/zgpa@) < (‘2¢7¢) = %(Bl /2¢,¢) Ype ;;Vl /2
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Set B = TB, /ZT and B™1 =B + B/" . The following theorem is valid.

Theorem 3.1. There exist positive constants ¢, and ¢,, independent of 4 and
p such that

E(Bvy) < (Avy) < EfBvy) YveW.

Remark 3.1. If the discrete fast Fourier transform algorithm is used for
multiplication by the matrix X in (3.4), the multiplication by 1‘ can be
performed in €(h~ 3/21nh - 1) arithmetic operations and the multlp{lcatlon by
B~ 1 can be performed in &(h ~2) arithmetic operations.

4. Construction of operator B i For operators B j satisfying condition (3.2) we
could choose, for example, the grid counterpart of the operator —A4, where 4 is
the Laplace operator in the subdomain €2, and continue this operator with zero
outside 9 The inversion of the grid counterpart of the Laplace operator for
complex subdomams Qh is however a labour-consuming problem. It is thus
necessary to construct a.n easily invertible operator which could be spectrally
equivalent [9] to the grid counterpart of the Laplace operator in .ch In this
section we suggest the construction of such operator by decomposing the
subdomain £ into non-overlapping subdomains. The particular feature is the
fact that the number of subdomains into which @ is partitioned can depend on
the grid step size. Henceforth, the subscript i will be omitted.
Let 2 be a union of m non-overlapping subdomains Q= UL

D;n D = @, i #j. We make the following assumption on the subdomains D Let
6‘ be a positive parameter. Then the subdomains with the change of vanables
x; = ¢&s; and x, = s, are transformed into subdomains D with piecewise-smooth
boundaries of class c? satisfying the Lipschitz condmon, and the characteristics
of D are independent of & This assumption in particular implies that
dlamD 0(¢), meas(dD) = 6(¢). Denote by S,=UJ” 8D, a union of

boundaries D, Let QF = i Dh be a triangulation of €, and also

S” U’” GD" Assume that Sh approximates S, with the second order in 4.

Denote by W a space of real-valued contmuous functions linear on triangles
of the triangulation and vanishing on 892”. As in the previous section, split the
space W into a vector sum of subspaces W= Wg + Wy. Set

W = {u" e Wluh@) =0, x < Shy
W= " e Weluhx) =0, x£DMy, i=12,..m.
Denote by Wf/2 a space of traces of the functions from W on S;‘:

Wip=1{9"| 0" =ul| g, ut < W}
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Now define the operator T, which is the operator of continuation of grid
functions from the set Sh onto Q" Let a function ¢”* be | given on S” Set

o) = — [,0") dx

eas (AD}) aD;
%ﬁ@)=¢h@)=@0@L x<aDk.
The continuation of the function rp 0 inside of Dh is constructed in the trivial

way u; 0(x) ¢i0, x t—:—Dih, and the construction of ui1 which is the continuation

of ¢.h is carried out as in the previous section following [7,8]. Deﬁne
Tho” =u.h0(x) +uihl(x) x €D}, 1t is obvious that T,p"|cn = o”. Set WE =T, i

To construct norms in the subspaces W"’, we make use of the techmque

contained in [8]. As a result, define the symmetnc operators Be such that

Be — W8
0,

c5(B08’i uu) < "uh”%Vg(D[') < ES(BOE,i uu) Vue W(fi

where the positive constants & and 65 are independent of 4, and the main
operation in multiplying (B‘*)+ by the vector is an inversion of two Laplace
operators (for simply connected subdomains Dh) in the rectangular domain on
the uniform grid or an inversion of any operators spectrally equivalent to them.
Define Bf = B(fl +.. +B's Then (Bf)* = (B“’I)Jr + ot (B“fm)+ To construct
norms in the space W con51der W1 > According to [1-3] partition the set
I h = Sh\B.Qh into parts in the following way. Let p, i = 1,2,...,m,, be branching
pomts of Fé’ (the branching points are points belonging simultaneously to
boundaries of three subdomains Dh i=12,..m). Set K= I"h N B(p,7),
i=12,. .y, where B(p,r;) is a ball of radms r, with the centre at p,. In this case,
choose radii 7, of order ¢ in such a way that the spacing between K and
i #j, should equal at least @(g). Between each two branching points put
curvilinear segments L, i=12,.m, of length of order & and such that the
spacing between L, and Ig equals at least @(g). And finally, let >
j=m+1,. 3, be curvﬂmear segments such that any point of the set
together w1th its neighbourhood of order & belongs to a set K, i = 1,2,....m. Spht
the space W, /2 into a vector sum of subspaces

(-4 (3 -3
W1/2 V+V+ +V

={pfe Wf/zj oPx)=0,x¢K}, i=12,.my
and the subspace % consists of functions which take constant values on Ig

=12,. ,ml, and L j=12,..,m, and are linearly continued onto the remaining

part of F
Assoc1ate each function ¢”e Vg with the vector @ ER’”'* m, =my +m,,
whose components are equal to the values of the function ¢” on K; and L and
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vice versa, associate each vector @ € R™ with ¢ € V" which takes given values
; and L. The last correspondence will be denoted by T3
Followmg [1-3] in subspaces V.e i = 1,2,..;m;, define the symmetric operators
Z? such that InZ? = V%,

VPN (@"() - 0"())* A ye
6% 9.9) < j§1 [8 § (0" @) ds + ! D a,! x| dxdy] < Cs(Z;0.9)
V?’EV-B i=12...,m3.

‘To multiply (ZP)T by the vector using the discrete fast Fourier transform
algorithm, it is sufﬁclent to perform #(£Inf) arithmetic operations [if & = O(r),
it is sufficient to perform (1) operatlons] Note also that m, = 6(1/€2). Now
define the norms in the space V?Z. To this end, associate each vector @ € R™
with vectors @, = (¢ o, ,c("*))T i =1,2,...,m, whose components correspond to the
values of ¢ on aDh If Rk n aDh =@, ie. Dh is an internal subdomain,
define the symmetrlc matrix § ® in the followmg way

k,
P0) = 2, %607+ G0 - Ty @)
Ci(o) = ci(ki) .

If 392" n aD,.h # @, it is necessary to add summands with ci(o) = ci("'i”) =0 to
(4.1). Set

5P0w) = SOvpu) + . + (5{Me,w,) Vou <R™
@O =TEHSH @D’
T =D+ EDH (3
= -1p*
B)* =127,
and finally,
Tl=BH* +BH*.
The following theorem is valid.

Theorem 4.1. There exist positive constants ¢, and ¢, independent of 2 and
€ such that we have

E‘yuuhll%g(gh) < (Bpu) < 67““"“%;}3(9% YueW.

Proof. The proof is based on the theory of the space splitting method [1-3] and
makes use of the following lemma and its corollary.
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Lemma 4.1. There exist positive constants &g and &g independent of & such
that we have

y (90) - 9())?
s [3};¢2(x)dx+ a;)ia;)i—-—l;—:;‘—i——dxdy] < Hu"%;g(p,.)

2 _ 2
cg[[y(x)dx] b ;dedy] < Il

., |x-y|?

for any function u € Wl(D ), where ¢ is the trace of u on aD And vice versa,
for any @ there exists u € W (D)

u@) = ox), xe€abh;
5 (9(x) — 0())?
el < & [8}-¢2(x)dx a;)iasbinxdy]

) (o(x) - ()
||u||%V21(Di) <y [ [};¢(x)dXJ a;) b Jr- T x—yZ dxdy]

i=12..m.
Here, I, © aD,, measl; = 6(¢).

Corollary 4.1. Let WOI/ 2(6Di) be a subspace of traces of functions from Wzl(Di)
on 3D, such that we have

IU:(x) dc=0 VoeWl/2aD).

Then there exist positive constants ¢, and C; independent of & such that we
have :

_ 2
%, [% jrw | | @_—_—“’I%’)-dxdy] < 150

DD, |x

where ¢ € Wl/ %(aD,) is the trace of u & W;(D;) on I}’ And vice versa, for any
pe Wl/ 2(c')D) there exists u € W Dy):

u(x) = ox), x<aD,

X (0(x) - 0))?
g0y < & [% Lo*mde+ ag,i BL“W dy:]

i=12,..,m.

Here, I'Y<dD, measI; = o(e).
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Remark 4.1. Under the assumptions made on the triangulation Dlh there is a
finite element counterpart of this lemma and its corollary.
An important fact in analysing the splitting of W) s into a vector sum of

subspaces is the use of the Steklov-averaging operation for projection from a fine
grid to a coarser one (in this case for determining values on K and L;). Such
construction as applied to domain decomposition methods seems to have been
first used in [10] for the case of the space WI(Q). In this paper, it is used and
analysed in the space of traces.

Note also that the sets K in defining 2, have been used only for the sake of
simplicity. It is sufficient that at the boundary of each subdomain Dh only one
set L, lie and a constructive technique be indicated for continuation of constants
with L onto the entire norm-preserving set Sh

Let us now briefly consider how to reahze the multiplication of B, -1 by the
vector. Let £=h%, 0< a< 1. The multiplication of (Z?)¥, i=1,. ,n13, by the
vector has already been discussed. The structure and properties of the matrix %,
are the same as those of the original system of grid equations. Therefore, for Z‘O
as well as for B, 0,17 By m W can use the operators suggested in [8] replacing the
grid counterpart "of the Laplace operator in the rectangle with the rectangular
uniform grid with the operator suggested in [11]. If a = 1/2, we obtain a series of
identical problems of the same dimension (m order). Then to multiply B, 1 by
the vector, it is sufficient to perform €(h~ 2) arithmetic operations. We can
suggest also a somewhat different approach, i.e. the use of the techmque of [11]
for constructing operators spectrally equivalent to the operators B, 0,17 -By ,m’

on the basis of splitting of appropriate grid spaces as it has been done for .Qh
and use inner Tchebysev iterative processes. In this case, unlike [11] the total
cost of multiplication by BO'1 is @(h~2) arithmetic operations for any finite
number of inner iterations. The last fact is important for solving problems of the
elasticity theory [12].

This technique is also applicable in the three-dimensional case.
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