CHAPTER 33

Distributed Computing and Adaptive Solution to
Nonlinear PDES*

Jeffrey S. Scroggst
Joel Saltzt

Abstract. A parallel algorithm for the efficient solution of nonlinear time dependent convection
diffusion equations with small parameter on the diffusion term will be presented. Implementation
aspects are emphasized. The method is based on a physically motivated domain decomposition that
is dictated by singular perturbation analysis. The analysis is used to determine regions where certain
reduced equations may be solved in place of the full equation. The analysis also motivates the adaptive.
aspects of the algorithm, dictating the appropriate scales for a coarse grid and a fine grid ueed to
adaptively refine in a region where there is a singularity. Both the coarse grid and the fine grid are
distributed across processors.

It is well known that very substantial amounts of computational time can be required to solve
nonlinear time-dependent convection diffusion equations. The motivation consequently exists o solve
such problems on high performance distributed memory multiprocessors such as the iPSC-2/860. In
this paper we present methods and tools we have developed for implementing such adaptive codes on
distributed memory multiprocessors.

1. Introduction. In this paper, an algorithm that is appropriate for solving non-
linear convection-diffusion equations in multiple dimensions is presented and demon-
strated on a distributed memory parallel computer. Implementation utilized primitives
that allow a single global coordinate system to access arrays defined in the local memo-
ries of a machine’s processors. This method is a combination of the parallel processing
techniques discussed in [15], [13] with a modification of the adaptive numerical method
discussed in [16], and is an extension of the algorithm presented in [20},[19] to two

dimensions.
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We will refer to the collection of subarrays indexed by this global coordinate system
as a distributed array. For instance, we might partition a n x n distributed array into
four n/2 x n/2 subarrays. Each of these subarrays would be placed on one of the four
processors. Global array reference (n/2+1,n/2+1) would then actually refer to (1, 1)iocat
in the local memory of one of the processors. The PARTI (Parallel Automated Runtime
Toolkit at ICASE) package of primitives allows users to define distributed arrays during
program execution and then to use a global coordinate system to gather and scatter
data elements to and from those distributed arrays.

There are two varieties of domain decomposition utilized here-a physical domain
decomposition motivated by asymptotic analysis, and a computational domain decom-
position used to distribute the work across processors. The computational domain
decomposition increases the efficiency of implementation.

The physical domain decomposition is accomplished using a symbiosis of numerics
and asymptotics. The asymptotic analysis identifies the regions where diffusion is neg-
ligible, where a reduced equation is solved in place of the full equation. Solving this
reduced equation significantly reduces the work in the numerical method. The numer-
ics provides a means of solution in the subdomains, and also a feedback mechanism.
As a feedback mechanism, the numerical scheme can expose regions of unexpected be-
havior, confirming or correcting the asymptotics-induced subdomain boundaries. This
decomposition permits the use of locally refined meshes, allowing the concentration of
computational effort in the regions where it is needed most. Since the computational
requirements are reduced, both the domain decomposition and the use of the reduced
equation are preconditionings for this problem. Identification of subdomain boundaries
is accomplished during the computation-no a priori knowledge of the shock location is
assumed.

The physical domain decomposition is appropriate for equations that exhibit strong
nonlinearities, such as the equations that arise when modeling fluids. The method is
particularly well-suited in situations that require resolution of one or more of the small
scales. Such situations arise, for example in hypersonic fluid dynamics and combustion
problems where the chemistry depends on the viscous profiles.

2. Problem. The example here will be taken from Computational Fluid Dynamics
(CFD) in the transonic regime. The gasdynamic equations, including viscous effects,
are used as a model in these settings. Except for very simple geometries and boundary
conditions there is no analytic solution to these gasdynamic equations, and a numerical
solution is difficult to obtain. For these reasons new algorithms are usually developed
and tested on a more tractable canonical equation, such as

(1) Plu] := u, + wu, + ou, — eAu = 0.

This equation contains many of the properties that make the gasdynamic equations

difficult to solve; namely, it is capable of modeling rapid variations such as shocks and
boundary layers.
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The method will be described and demonstrated by solving (1) on the spatial do-
main

(2) M= {(z,y)|0<2z<1,0<y <1},

where the temporal variable is restricted to 0 < ¢ < 7. Thus the entire computational
domain is D := [0,T] x II. The solution satisfies

(3) u(0,z,y) = ¥(z,y), for (z,y)€ll, and

(4) u(t7$1 y) = a(t,:z:,y)

for the inflow portion of 0D. The boundary data are continuous and sufficiently smooth
so that the solution to (1) is uniquely defined (for example, see [3]).

3. Physical Domain Decomposition. When the equation is nondimensional-
ized as in [5], the diffusion coefficient € is inversely proportional to the Reynolds num-
ber. Based on free-stream conditions in transonic flow, the Reynolds number for this
problem is large; thus, € is a small parameter in this setting. Asymptotic analysis ex-
ploits the smallness of the positive parameter ¢ and involves study of the solution as €
tends to zero (e | 0).

Asymptotic analysis provides analytic tools to identify and utilize the various phys-
ical scales. The scales for Equation (1) are for the convection terms wu, and ou,, and
for the diffusion term eAu. Competition between convection and diffusion is crucial to
the understanding of fluid flow, and the determining which of these is dominant can
be made by examining the relationship between their scales. When modeling transonic
flow, except in regions of rapid variation such as in shocks and boundary-layers, convec-
tion dominates diffusion. Thus, it is natural to first study the solution of the reduced
equation

(5) Po|U] := Uy + UU, + oU, =0,

obtained by setting € = 0 in Equation (1). Weak solutions U are sought for (5) with
data (3-4). In order that U be uniquely defined, we assume that an appropriate entropy
condition is satisfied [11]. Suppose that U has a single shock. That is, suppose U is
the solution to (5) subject to (3-4) that is discontinuous only along a curve (%,z,y) =
(#,T1(1),T'2(t)). For small ¢, this curve lies in the shock-layer region of the solution to
the full problem. The size of this region tends to zero as € | 0 [10].

Equation (5) is not a good model where the convection and diffusion are both
important, such as in a shock-layer. In this region, the transformation defined by the

scaling

(6) ¢==zle, 1= 1y/e T = tfe,

is applied and computations are performed in this new siretched coordinate system.
The motivation of this transformation is to capture the smallest-scale behavior of the
solution to (1). It may not be necessary to scale all of the variables. For example,

if the profile of the shock is slowly varying, it may be possible to drop the temporal
derivatives from the shock-layer solution [6].
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The internal layer is the following neighborhood of I':
(7) D, = {(z,9,t)|(=, 9, t) € D, (= — T7")* + (y — T3"'1* < A(B)}-

Here A(t) is the width of the internal layer at time ¢. In one dimension, the width of the
shock-layer is O(e| In(e)|) [18]. We can expect similar results to hold in two dimensions;
hence, the number of points in Dyy, should not be too large. The outer region is the
complement of Dy, with respect to D, that is,

(8) Dor = {(z,4,1)|(z,9,%) € D, [(= = I'7")* + (y = I3 'I"* > A(®)}-

The solution in the outer region is used to provide boundary data for the problem in
the internal layer.

Asymptotics identified two subdomains and provided preconditioners for the prob-
lems within the subdomains. The preconditioner for the full equation in Dyy, is the use
of the local transformation (6). The preconditioning in the outer-region subdomain Dor
is to solve (5) in place of (1). Thus, the numerical method for Dor may be chosen from
the wide variety of methods designed for hyperbolic equations [7],[12],[21],[14]. Other
asymptotic-induced preconditionings are possible. For examples of these, see [2],[8]. In
the next section, the domain decomposition and preconditionings are combined with a
functional iteration to form the computational method.

4. Boundary Detection. This boundary detection scheme in a neighborhood of
a shock is based on the size of the second partials of the solution with respect to the
spatial variables. The physical and analytic motivation were discussed in [17], and will
not be discussed here.

The subdomains used in the numerical method are determined by comparing |u..|+
|uyy| with the user-supplied quantity TOL. Heuristics, based on both accuracy and
efficiency, can be used to choose TOL. Accuracy will suffer when TOL is too small. If
TOL is too large, the internal-layer subdomain will be too large, and the computational
mesh will be refined in regions where the solution is smooth, creating excess work.

It is important to be able to identify if the asymptotics has been done correctly, and
to be able to recover from the errors. The iteration described in [16] provides just such
a mechanism. The solution on the coarse mesh may be unreliable; thus, a refinement
based on the coarse-mesh solution may result in errors in the location of the subdomain
boundaries. The iteration coupled with the adaptive refinement would then allow the
correction of the location of the refined region.

5. Computational Details. In this section the choice of the numerical schemes
and some of the computer-science related issues are discussed. Both the numerical
schemes and the choice of data structures allows the exploitation of parallelism.

The solution in Dgp is obtained using a strictly upwind explicit finite difference
scheme on a tensor-product grid (e.g. equally spaced in = and y). Once a grid point
has been identified as needing refinement by measuring the derivatives of the solution
there, then each of the four grid rectangles adjacent to the grid point are included
in the refined region surrounding the shock. These grid squares are refined based on
the scaled coordinates; hence, the spacing within each of the coarse grid rectangles is
A¢ = An = .1. This spacing was chosen as a maximal size for accuracy. The temporal
variable is also stretched, so Ar = eAt.
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The sub-problem in the internal-layer subdomain requires the solution of a parabolic
PDE subject to boundary data provided by the solution in the outer region. The
computational domain in Dy; has an irregular boundary, but is composed of many
non-overlapping rectangular regions, each of which is composed of a tensor product
grid. The mesh for these rectangles has been scaled; therefore, there are no large
gradients in the solution on the refined mesh; hence, the computations are not sensitive
to the particular difference scheme used to solve the partial differential equation. An
explicit finite difference method was chosen to solve the equation. The scheme used was
a combination of explicit strictly upwind discretization for the convection terms with a
centered discretization for the diffusion in Dyz. Other methods could be employed to
obtain the solution in the subdomains [4],{9].

The data structures for Dy;, are a rectangle adjacency list plus the rectangular
regions with some buffer regions. The domain changes as the solution is marched in
time. Using a list of refined rectangles allows for simple creation and deletion of sections
of the refined domain. Bi-linear interpolation is used to initialize refined regions. Values
computed on the refined mesh are injected into the coarse mesh.

PARTI is utilized to implement the numerical method described in the previous
sections. The primitives in PARTT combine the ability to control partitioning of data
with the ability to reuse certain data. In addition, these primitives will support irregular
distribution of data. PARTI is designed to be compiler-compatible; thus, all of the
optimization techniques supported by PARTI can be implemented into a compiler.

6. Implementation. The PARTI primitives currently consist of two levels. The
most fundamental of the primitives consist of routines to gather and/or scatter (read
and write) values to elements of one dimensional arrays. These routines are described
in 1], and will not be discussed here.

The higher level routines in PARTI are the user interface between an application
code and the more fundamental primitives. These are the Level 1 PARTI Primitives (we
will refer to these as PARTI or as the primitives for the remainder of the paper). PARTI
allows the dynamic allocation of distributed multi-dimensional arrays and supports
data transfer between these arrays. The primitives consist of declaration procedures
and of communication procedures. The declaration procedures allow declaration of a
dynamically allocated distributed array such that the partitioning of the array across
processors is specified. Coupled to these declarations are the level gather and scatter
procedures. These procedures are designed to allow users to fetch or store array elements
from the distributed memory in a way that does not require the user to keep track of
where array elements are stored. This makes it relatively straightforward to write codes
that allow data structures to be repartitioned during program execution. Application
programs will consist of

1. code written to execute on individual processors

2. communications calls that consist of gathers or scatters to distributed arrays
3. communication calls that consist of lower level 0 gathers or scatiers

4. send and receive message passing calls

The Level 1 Gather Exchanger and Scatter Exchanger routines allow communi-
cation of user data based on the global index set. The Scatter Exchanger inputs lists of
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distributed array indices and values. It places the values in the distributed memory lo-
cations specified by the indices (and the initially supplied array mapping). The Gather
Exchanger inputs lists of distributed array indices along with a pointer to a memory
buffer in the calling processor. Data values from the appropriate distributed memory
Jocations are obtained and placed in the calling processor’s buffer. An initialization or
Scheduler procedure call is required for Gather exchanger or Scatter exchanger. The
initialization procedure precomputes the locations of the data that will to be sent and
received by each processor. This initialization is needed only once-it may be reused any
number of times.

6.1. Adaptive Mesh Partial Differential Equation Solver. As described al-
ready, the structure of this computation changes with time and there is a complicated
(potentially non-uniform) communication pattern required by the sharing of data be-
tween grids.

The method initially computes the solution on a coarse mesh. An error estimator
is then applied to determine the regions that will be covered by a refined mesh. An
example mesh from this two-level refinement is shown in Figure 6.1.

F16. 1. Two-mesh refinement.

The solution is time-dependent. Time-marching on the refined mesh is performed
by taking many (e.g. 100) time steps on the refined mesh for a single coarse-grid time
step. Let U represent the solution, k be the temporal step-counter, and (%, j) represent
the discrete location on a spatial grid. The subscripts ¢ and r are used to refer to the
coarse and refined meshes, respectively, “The data structure used for the coarse mesh is
a two-dimensional array. The solution on the refined mesh is represented by a three-
dimensional data structure in which the third index represents a block of the refined
mesh (each block corresponds to a single coarse grid square), and first two indices
represent the spatial location within the block. The general structure of the kernel is
outlined in Algorithm 1. In general, a shock moves and changes shape. Thus, the refined
mesh will be dynamic - its location, shape, and size all change. This means that both
the communication pattern within a distributed mesh and the relationship of the two
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meshes will change during the execution of the program. Classes of computations that
require inter-processor communication in a distributed computing environment are; (1)
coarse mesh sweeps (Step 1.A.), (2) fine mesh sweeps (Step I1.C.1.), (3) sharing of values
between the coarse and fine meshes (Steps I1.B. and IL.D.), and (4) modification of the

Fork.,=1to K
I. Sweep over the coarse mesh
A. Compute U..
B. Flag region that should be refined.
IL. If flagged region is not empty.
A. Modify shape of refined region
B. Interpolate boundary values for U, from U..
C.Fork, =1 to K,
1. Sweep over the refined mesh
2. Share values between blocks in U,
D. Inject values of refined region into coarse grid

Avcoritam 1 Two-mesh algorithm.

shape of the refined region (Step ILA.). In our implementation of Algorithm 1, the
PARTI primitives are used in all but the fourth set of communications.

7. Experiments. Unless otherwise noted, the experiments described in this paper
used either the 32 processor iPSC-2/860 machine located at ICASE, NASA Langley Re-
search Center or the 128 processor iPSC-2/860 machine located at Oak Ridge National
Laboratories. Each processor had 8 megabytes of memory.

7.1. Primitives Benchmark Timings. We first measure the time required for
the higher level Scheduler, Gather Exchanger and Scatter Exchanger procedure calls.
We use the Level 1 initialization primitive to declare a 128 x 128 element distributed
array of single precision numbers. We allocate four processors configured in a 2 X 2 grid
G and allocate an array block to each processor.

We repeatedly exchange information between two processors in the grid by first
scattering and then gathering n x n sub-blocks of array elements between opposite
corners of the grid. In Table 1 we present the results of this experiment. We first

TaBLE 1
Overkeads for Level 0 and Level 1 Primitives

Number of Send Level1 | Levell
Data Receive | Gather | Scheduler

Elements | Time(ms) | (ratio) | (ratio)

100 0.5 1.2 7.0

400 1.0 1.3 9.2

900 1.8 1.5 10.7

' 1600 2.9 1.6 11.2
‘ 2500 4.3 1.6 11.1

3600 6.0 1.6 11.2
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note that the cost of a Level 1 Gather or Scatter Exchange takes 1.6 as much time as
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TABLE 2

Adaptive Mesh Solver- Timings (seconds)

Number of Total Total Inspector | Gather/Scatter
Processors Time Time Time
Time(ms) (seconds) seconds
8 794 4 65
16 417 6 40
32 248 10 27

it would take for two processors to exchange data using send/receive procedure calls.
This ratio increases gradually as the size of the messages send increase; the ratio is only
1.3 when n is equal to one. The cost of performing the Level 1 Scheduler is roughly 7
times the costs of a Level 1 Gather or Scatter Exchange.

7.2. Computational Results for Domain Decomposition Algorithm. We
present computational results for the parallelized domain decomposition algorithm in
Table 2. This table depicts the computation time in seconds required to solve the
fine-grid problem. The coarse-grid problem required no more than an additional 3%
of execution time. The example problem that we ran had the tolerance for the second
derivative test set to TOL = 21, and was run until ¢ = .88, for a total of 440 coarse-grid
time steps. Due to memory constraints, we we unable to run this problem on fewer
than eight processors. The 16 and 32 processor runs had speedups of 1.8 and 3.0 over
the 8 processor run. This is a good speedup, especially considering locality was not
considered in the distribution of fine-grid work.

We also measure the total time required by all Level 1 schedule procedure calls.
The scheduling took very little time; the overhead for scheduling ranged from 0.5 %
of the total time to 4.0 % of the total time. Finally we measured the time required
for gather/scatter procedure calls. The time required for the gather/scatter procedure
calls ranged from 8 % to 11 % of the execution time.

8. Concluding Remarks. Asymptotics and numerics have been blended to form
a new computational method suitable for a variety of difficult simulations arising in
fluid dynamics and chemistry. The method has potential to exploit a large amount
of parallelism and provides high accuracy. Asymptotic analysis provided a theoretical
basis for the domain decomposition, identifying two types of subdomains: smooth outer
regions, and an internal-layer subdomain with a shock. In the context of this driving
problem, we present methods and tools we have developed for implementing adaptive
codes on distributed memory multiprocessors.
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