CHAPTER 1

Domain Decomposition Method: Some Results
of Theory and Applications

V. 1. Agoshkov*

Abstract. The paper suggests the application of special basis functions to
approximating an abstract variational problem. To solve the problem, domain
decomposition algorithms are formulated. It is proved that with special basis
functions used, the convergence rate of these algorithms does not depend on the
grid step size and a number of other parameters of the problem. The application
of the algorithms to specific problems of mathematical physics is considered.

1. Basic assumptions and problem formulation. Let D be a bounded domain in
R"™ with the boundary aD. Denote by Wi(D) = (W}(D))" a Hilbert space of
vector functions u = (,..,14y) With components u(x) € Wl(D) x = (X5 X,) €D
(below we consider only real functions, vectors and numbers) The scalar product
and norm in W%(D) are of the form

N
(u’v)Wé(D) = ; (u,'yv,')Wg(D)’ "u"wl(D) = (u,u)%%(l)).

Let WI(D) be either “Nl(D)1 (Wl(D))N or WI(D) Wl(D) Assume that on
(D) x Wl (D) we have defined the bilinear form a(uy) sansfymg the relations

1"“"w1(D) <a(wu) YueW! »(D)

la@y)| < cz"”"wé(p)' "V"wé(p) Vuy e W%(D) (1.1)

CpsC, = const > 0.
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Formulate the following problem: find a function u € Wl 7(D) satisfying the
equality

a(uy) =f(v) WweWl >(D) (1.2)

where f(v) is the linear functional over W1 (D), and also |[ﬂ|w 1p) < - It is not
difficult to show that under the constraints made this problem I)las the unique
solution u € WI(D) We will formulate domain decomposition algorithms as
applied to problem (1.2) (or to its particular cases).

Let us introduce partitioning of D into subdomains and formulate additional
constraints on the form a(u,v).

Let D be partitioned by a set y < R"~! into subdomains Dy, k=1,.,K< o.
Assume that the boundary 6D of the subdomain D k=1,. ,K, is a Lipschitz
one and D =D v aD = (yX k=1 k) v y. Assume that a(u v) satisfies the following
relations: . .

(1) for VueWiD,) = Wi O, WweWiD,), k+k’

a(uy)=0 (1.3)

(here and henceforth, we assume the functions from Wl( )» k=1,..K, to be
continued with zeroes on D\D >
(2) for Yuy € Wi(D, 2Dy

K
p0k§1 [u],% < a(uu), Py = const >0

(1.4)
K 1/2 K 1/2
la@y)| <p, [ 21 [u],%] [ 21 [v],%] ,  Py=conmst<
where
L,(D) = LMD, L,(3D,) = (L,(3D )N
2 _
Wl = sqk"VW"iz(Dk) + ’k"W"iz(Dk) + mk"W"%_Z(ODk)
€,q,n,m =const, O<eg<l, q,>0 (1.5)

m,r. 20, m.+n>0, k=1.K

aw 2

191 09 = 2, I 0y = 3 3
2 2

Lz(Dk)
In what follows we assume constraints (1.3) and (1.4) to be satisfied.
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2. Approximation of the problem. Cases of basis functions. For each subdomain
D, (k=1,.,K) let us introduce a system of linearly independent functions
{w(k)} w(k) EWl( )» i=1...N, (each function w(k) is assumed to be
contmued w1th zeroes on D\D, ),)- This system is assumed to be dense in W D,):

where

o N ®
weWz(Dk), wN=i§1biwi , bi=const.

Introduce also a system of linearly independent functions {W(")}NVP
(7) € Wl(D) i=1,. ,N which we will call the system corresponding to y v @D
if W1(D) WD) and fo y if W,(D)= Wl(D) Assume that the system

{wi(l)}f\ill, o {Wi(K)}ﬁKl’ {[,Vl(?)}l[&l (2.1)

also consists of linearly independent functions and the following density condition
is satisfied in W%(D):

inf v - =¢Npy)—-0, N-— 22
by v = vnllwapy = eVv) © (22)
where
N N
= & 0,04 % o
nok=1i=1 ' ! j=1 4}
2.3)
b = 6 ,.bE), b= (b by )

N = min(Ny,.. NN, ) -
An approximate solution to problem (1.2) will be sought in the form

z z a(k)w(k)+ z aWO’)
k=1i=1 (24)

n

a® = @®,..a%),  a=(a,-ay)-

The unknowns {ai(k)} and {a} will be found from the equation

a(upvy) = flvy) (25)

where v, is an arbitrary function of form (2.3). This equations is equivalents to
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the system
A, v, | [a® F0 7
. . = . (2.6)
0 Ay Uy a® f(k)
_Ll . e LK Ay 1L a i —f(}’) ]

By virtue of constraints imposed on a(u,v) and functions (2.1), system (2.6) has a
unique solution which uniquely defines the approximate solution u,, and
additionally

floe — u~|‘w§(p) < Cs(ﬁ,u) -0, N-o

where ¢ = const > 0.

Let us outline some cases of choosing functions (2.1) which satisfy the
conditions of linear independence and density introduced above. (The arguments
concerning the verification of these conditions in the cases to be considered
below are simple and therefore they are not given).

Case 1. Prescribe on yvdD a system of linearly independent functions
{wi(y)}f\’:r1 such that w,.(r)ewzl/?-(az)k), k=1,.,K, and also wi(")laD=0 for

WXD) = WAD),i = 1,.,N,. It is assumed that for all w € WX(D) we have
N

where
N)'
Wy =2 biwi(y)'
i=1
Take for functions {VZ(")}?';VI the generalized solutions to the problems
&g A m(r) + ,ku?(r) =0 in D,
u§(7) = w‘.(V) on 3D, n Supp wi(") (2.7)
Wi(’) =0 on 3D \(dD, n Supp wi("))

k=1..K.

(The ways of constructive derivation of W;(") for some subdomains {D,} will be
considered below),
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Case 2. Let the form a(uyv) satisfy (1.3) and (14) for ¢=1 and =0,
k = 1,..,K. Assume that for {wi(”)}f\j1 we choose the same functions as in Case 1.
Then for VK(") we can take the solutions to problems of the form

AWM =0 in D,
m(?) = Wi()') on aDk n Suppwi()’) (2.8)
W =0 on 3D,\@D, n Suppw®)

k=1..K.

Case 3. For simplicity, consider this case and the others for R” =R 2

Let on Dk, k=1,.,K, a certain system of nodal points xi(k) = (xl(f),xz(”i‘)) be
introduced and the partitioning of D, into finite elements {D, .} be carried out,
and also max, ;diam(D, ;) < h = const (h is the parameter of the introduced
grid). Assume that if DL and D,, are tangible along a certain line, then the
grid nodes on this line are common for D, and D,. (Fig. 1).

Figure 1. Partitioning of D into D,k = 1,...X.

Associate the nodes {xi(k)} with one of the possible bases made up of finite
piecewise-polynomial functions {wi(k)}?g‘l, {wi(y)}fﬁ'l, k=1,.,K, where {wi(k)}f.\gfl
correspond to nodes from Dy, and the functions {wi(y)}firl correspond to all
nodes on 8D v y if Wzl(D) = WZI(D) and to the nodes on y if Wzl(D) = Wzl(D).
For example, if {D, ,i} are triangles, these functions are piecewise-linear and if
{D, J} are rectangles, these functions are bilinear. Assume that ‘v'wi(k) = Wzl(Dk)

and also Vwi(y) e Wzl(D). It is assumed that the functions {wi(k)}f\ltl, {wi()')}fﬁ'l,



8 AGOSHKOV

k =1,..K, are linearly independent and obey estimates of the form

inf lu - : 3 c<")w<")— < chllullyz )

{ci(k)},{c.} k=1i=1"'

Vu e (WD) n WA(D)).
If we set
I/Vl(y) = wi(}')’ i= 1,...,Ny (29)

we obtain system (2.1) which in this case coincides with the ‘ordinary’ system of
basis functions.

Case 4. Let Wzl(D) = ﬁ’l(D) and D cR? be composed of rectangles (Fig.2).
Take for {w(k)}Nk =L..K {w ()’)}N the bilinear (or piecewise-linear)
functions mentloned in Case 3. We choose functions { W(}’)} as solutions to
problems (2.7). To construct them, we can make use of fundamental functions of
Poincaré-Steklov operators of problems of the form
—&qA4® +rd=0 in D,
(2.10)
olr0. iel, -0,

where ¢&,q,r = const >0, n is the unit vector of the external normal, and D r
and y are shown in Fig. 3.

1)
If
]

=

Y

Figure 2. Domain composed of rectangles.
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& vl

af ‘rf

4

Figure 3. Domain D), in which fundamental functions are computed.

These fundamental functions {@,} and the eigenvalues {4} corresponding to
them are of the form

_mna(, -b
@, (1) = shih, (@ - xl))sm—b%bi)
1 2
2.2 -1/2
h, = [L"_z + L] 2.11)
(bl - b2) &q
_ ) 1

If on y we now prescribe a function wi(") with the support on ¥, the solution to

_eg u?(y) + ,Wi(}’) =0 in D,
W® =0 on aD)\@D,  Suppw®)

can be presented in the form of a series

© . 2.13
W= 3 aD e, (xx) =

where

() = ()] 2
%n ap,n S!lppwi(y) Wi ¢m ar/ " ¢ml|L2(3D0) :
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The functions {%(7)} are constructed in a similar way in the case where {wl.(”)}
are given on y = {(x;,x):x; = a;,b; <x, <b,} [here, we have to make use of‘ the
functions  w, (x;,x,) = sh(h x)sin(mn(x, - b,)/(b; - b,))]. The above-outlined
arguments imply the process of construction of {Wi(y)} for the domain D shown
in Fig.2. These functions in each subdomain D, can be presented, for example,
in the form of a series in appropriate fundamental functions (of types {2,} and

{¥,}) and they satisfy (2.7).
L,
I ¥

V' )

2 |4
-Q

Figure 4. A caseofagridin D.

Case 5. Let Wi(D) = Wi(D) and the domain D = (Uf_,D,) v y be shown in
Fig.4. Assume that in (1.3) and (1.4) we have ¢=1, my =r_= 0. Introduce on D
a grid and associate its internal nodes with the piecewise-linear functions
{wi(k)}fﬁfl, {wi(")}?irl, k =1,2,3,4. Consider the subdomain D, and the following
problem of finding fundamental functions of Poincaré-Steklov operators:

AP =0 in D,

@=0 on aD,\y (2.14)

A 0% oD
— on ny.
on 17

These functions and the eigenvalues A in this problem are of the form
Pox,%) = (a - x)(a - x,)
2 093) = shiu,,(@ - x)))sin(u, (a - )
(2.15)
B D3,,) = sh(u,(a ~ xy)sin(u, (a - x,))

h=a, A, =(gw,a)/u,, m=12,.
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and u, are solutions to the equation
tg(u,a) = th(u,_a).

Using these functions we can construct Wi(}') in Dy

W('.V) = o, @, + Z ( 1)45(1) + "‘,;(;2,,')¢;7(12))
(2.16)

1) —
%3 ™ 3p, ashopi o /1N o
By using the symmetric reflection with respect to the coordiante axes we can
easily find the form of fundamental functions in other subdomains and exploiting
them we can find the form {W()')}Nr in D, k =2,3,4.

Note that the algorithm outhned here for constructing {W(")} can be
extended to the case where each of the subdomains {D,} is a rectangle (as the

fundamental functions given here are also known).

Case 6. Let e=q =m =1, =0, and the domain D cR? be composed of
rectangles (Fig.5). Assume that {w(k)}Nk = 1,..K, {w(y)}N p are piecewise-
linear functions, and for {WO')} we take the solutions to mode] problems (2.8).
It can be easily seen that the construction of {W(”)} in this case can be reduced
to the algorithm of construction of { W(")} Wthh is outlined in Case 5.

.y... —DK
—

Figure 5. Domain with internal points of intersection y.
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3. Equation on y. Properties of matrices.
3.1. Removing in (2.6) the vectors
a® = -4 Wa+47Y0, k=1.K 3.0
we obtain the ‘equation on ¥
Aa=F 32

where
= £ -1 F=f)_ % LA~ F®
A -Ay - kzlL"Ak /B =f k§1 ,(Ak .

Let us formulate propositions on the properties of the matrices A, A and 4,

Proposition 3.1. Under an arbitrary choice of functions {w(k)}l p k=1..K,
{W(y)}Nr satisfying the conditions of linear independence and density

(1) the matrices A » A, k=1,..K and 4 are positive definite;

(2) the following estlmates are valid

b, > || > bW

Iw1/2(aD ) < (“bb),

(33)

i

Wb, > ” > o, wo|?

W1/2(aD,) < (A}'b’b)Z

VO = (B ki), i= 1N,
where B = minf; % and ﬂl % is a constant in the inequality
””” w(Dy) = ﬁl,k”””W;}/’(aD) Vu € WD ( )
(3) if the form a(uv) is symmetric on W1 2(D) x Wl 2(D), the matrices A, A4,

and A are symmetric, and also (L k) =U,. The sufficient condmon of
51mmetr1c1ty of the matrices A, is the requlrement of simmetricity of a(u,v) on

Wi, )><\W 2D, k=1,..K.
Lct b= (bl, by, ) [for b, = (b; el ,N)] be an arbitrary vector. By using this
vector construct vectors of the form

p®) = A7WUb, k=1.K (34)

and then using b, b®) k = L,...K, define a function of the form

K
W= 2 v 4y @) (3.5)
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where
Nk Ny
vlsk) =3 bi(k)wi(k)’ v =3 bim(}')_ (3.6)
i=1 i=1
In what follows, if not specified otherwise, by Vpn ]g‘) and v we mean the

functions defined by expressions (3.4)-(3.6).

Proposition 3.2. The equalities a(vyw,) =0, k=1,..K, are valid for arbitrary

linear combinations W, = Z?Zfl ci(k)wi(k).
Proposition 3.3. For an arbitrary vector b the following equality is valid:

(Abb), = a(pwy) - (3.7)

If additionally the form a(u,v) is symmetric, we have

K
(Ab,b)2 = (Aybrb)z - k§1 (l]kb’Ak_ ll]kb)z

X (3.8)
=a(® )y - kgl aW, 15")"’ Isk))_

Corollary. If the form a(u,v) is symmetric, then

n S| Emo

Wy/2(aD,) < (Abb), < (Apb),=a(vNy @) vb. (39)

3.2. In this subsection we assume that the form a(uv) is symmetric and no
additional constraints (i.e. in addition to those introduced at the beginning of this
paper) are imposed on the partitioning of D into {D,} if not specified
otherwise.

Proposition 3.4. Let system (2.1) correspond to Case 1. Then,
(4b,b),
Py < (A an o), sp Vb#0 (3.10)

where the matrix Ay(l) is defined by the relation
AMb.c), = z o], Vo= z WD), vy = >: W)

(3.11)
[o:¥] = 29 (VoYW py *+ UMy + M@ oD,y -
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Proposition 3.5. Assume that in (1.3) and (1.4) we have ¢=1,n, =0,k =1,.K
If system (2.1) correponds to Case 2, then

Ab,b (3.12)
“bh o pp Vb#O

PyS <
(4Pb,b),

where the matrix Ay(z) is defined by the relation

K
(A},(z)b,c)z = k§1 (qk(v¢aVW)|]_2(Dk) + mk((/’,'//)ﬂ_z(apk)) (3.13)

for all ¢ and w from (3.11).

Proposition 3.6. Let (1) WyD)=WLD); (2) mes(dD n3D,) #0, k=1,.K;
(3)e=1, n=m =0, k=1,.K If system (2.1) corresponds to Case 2, then
estimates (3.12) are valid.

Let B, be a constant in the inequality

2 2 2 1 4
Dik | Ve |“dx + asDk lu|“dlr = ﬂ2,k”u”W§/2(6Dk) Yue VVz(Dk) (3.14)

and the constant d is determined as follows:
- . . 2 2 2
4= n}(m H};n(”(p"W’zi/z(aDk)/(“V(p”LZ(éDk) + ”(p”Lz(aDk))) (3.15)
N

N
where ¢ = Zy biwi("), 0D, =D, n ( J Supp wi()')).
i=1 i=1

Proposition 3.7. Let € = G =m =1, h= 0, k=1,.,K, and an ‘ordinary’ system
of functions (Case 3) be chosen for system (2.1). Then,

ing, < (A4b,b), - Vb % 0 (3.16)
min € —5—2-<
PA in fox (AF)b,b)z Py
where the matrix A)S3) is defined by the relation

APbc), = 5 (Vov

( y ,C)2 = k§1 ((Veo, W)Lz(stk) + (¢’W)Lz(3Dk))
N, N (3.17)
i=1 i=1'"!

Remark 3.1. Specifying the form of subdomains and assuming the grids
introduced to be quasi-uniform we can estimate from below the quantity d by a

constant (which may prove independent of grid step sizes). A number of
estimates for d was also obtained in [6].
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3.3. Assume now that the form a(u,v) is not symmetric. Introduce the matrix
Ay(“) by the following relation:

K
V), =

¥ ») ¥ ¢))
V4 4
R i§1biwi > 2 M : (3.18)

Wi/2(aDy)

Proposition 3.8. If system (2.1) corresponds to Case 1, it is possible to indicate
positive constants &, and &, independent of the grid parameters, which are such
that

o2y (AIb,b), < pO(Ay(l)b,b)z < (4b,b),

2
-1 P
(4b, 4D 4b), < L (4b b), (3.19)

0

2
(b, AP 4b), < 2, (b p),.
(4]

Remark 3.2. The statement similar to that formulated in Proposition 3.8 is also
valid for the functions {I'KO’)} defined by (2.8) in the case where, for example,
n =0, m >0 k=1,.K

4. Iterative algorithms. Estimates of convergence rate. Let us formulate some
iterative algorithms for solving equation (3.2).

Method of steepest descent:
wsz—lém’ pm = Aw™

m+1

a =aq m

- Tm+1w

(4.1)
§m+1 — gm _ tm+IAém

Tm+1 = (ém’wm)z/(pm’wm)Z’ m= 0’1’-..
where ¢™ =A4a™ - F.

Theorem 4.1. Let (1) the form a(u,y) be symmetric (2) system (2.1)
correspond to Case 1; (3) B =A}fl). Then the following estimate is valid:

m
Py =D
la —a™|,, < [ : 0] la —a®l,,. (42)

ptp

If we write down the stages of realization of process (4.1), we obtain the
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generally accepted form of the domain decomposition algorithm.
Conjugate correction method:
Ba™*1= o, (B-1, Aa"+(1- am+1)Ba'"+1 ta, T F, m=12.
Bal=B-1A)a+ o F

T 1= AW w™),/(B T AW™, Aw™),
(4.3)

- [1_Tm+1 Aw™w™), L] o
%+ T, (Awm—l,wm_l)zam

wh=B "™, M=da™-F, o=1.

Using the theory of iterative processes and the estimates from Section 3 we
conclude that the domain decomposition algorithm based on the conjugate
correction method obeys

Theorem 4.2. Let the hypotheses of Theorem 4.1 be satisfied. Then,

1/2 _ 1/2

m
P 0
la —a™|l, <2 [W] la - a®,. (44)
1

Minimal correction method:
m_pg -1gm
w’h = 4

m+1 m

—_—
a 1W

a T T+

(4.5)

Tr1 = (Awm,w’")z/(B'lAwm,Aw"') , m=12

yeos

where &™ =Aa™ ~ F, B =BT is a positive definite matrix.

Theorem 4.3. Let conditions (1.3) and (1.4) be satisfied for the form a(uy)

(which can be nonsymmetric) and system (2.1) correspond to Case 1. Then for
B =Ay(4) the following estimate is valid:

2 2 m

@y = D&

la - a™p < [”———12 20 o), (46)
Dy&y + pyz,

where |la||, = (Ba,a)%/ 2, 2, and @, are constants from (3.19).
It is obvious that it is not difficult to formulate a number of other iterative

algorithms and estimate their convergence rate using the estimates obtained
before.
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5. Application for certain problems. For the purpose of illustrating the
above-outlined algorithms based on using special basis functions {VK()')} consider
their application to certain specific problems.

5.1, Assume that in the domain given in Fig.4 we solve the problem of finding
ue Wl(D) which satisfies the equality

u dv o
= it 1
a(u,y) §p(x)l§ o o dx = (f’v)Lz(D) Vv € W, (D) 5.1
where p(x) = Dy = const > 0 in Dk’ k=1234.

To solve this problem, let us make use of the system corresponding to Case 5.
It can be easily seen that in this case we have U, =0, L, =0 and the solution of

system (2.6) reduces to the solution of systems A4 a(k) f(k) and the system
A A= f(y) with the ‘one-dimensional’ matrix A whlch can be easily carried out
by appropriate methods.

5.2, In the domain D shown in Fig.2 let us consider the problem

du 3% % % du N
— | —+— |+ Sv—tAu=
a H ez ez | A T (52)
=0
“lap=0 #|ico™H0

where u =const>0; {v;} are bounded functions, and additionally Vil an=0
dv,/0x, + dv,/0x, =0; A =const=0. Using the approximation (du/dr)(x, t.) =

(u(x, t) u(xtj D/ 6= jt we obtain a sequence of problems (in the generalized
formulatlon)

a(iw) =f(w) ¥we WAD), j=12,.. (5.3)
where
w=1 |us 2 3 yow | @
V)= —_— —v+ + .
a\uy ) ”j=1axi ax; ,:]_Vlaxlv Ty

For the form a(u,v) we can take

e=pu, q=1, n=i+1l/z

7|v|?
p0=1, p1=max 2,1+m

|2 = supvrai (v1 + v2)

where |v
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Assume that for solving problems (5.3) we use system (2.1) corresponding to
Case 4 and the domain decomposition algorithm based on the minimal
correction method for B =Ay(1). Then the algorithm convergence rate is
characterized with the estimate

0 0
la.-amlg< | 23— | la-a’l,
;7 'B p12+p02 ;o

(where the coefficients a determine the behaviour of the solution to the

problem on y). Note that if, for example, 7< u/|v|? the convergence rate is
independent of 7, 4 and |v|. But if in (5.2) we have v, =0, the algorithm
convergence rate without any constraints on 7 is independent of this parameter.

Remark. The paper [7] considered also algorithms based on the use of special
basis functions as applied to a number of other problems of mathematical
physics.
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