CHAPTER 8

Domain Decomposition Method in Partial Symmetric

Eigenvalue Problem

A. L. Skorokhodov*

Abstract. Domain decomposition method algorithms are described for solving the
partial generalized symmetric eigenvalue problem with 2x2 block operators. A
practical approach is suggested to computing initial guess and the results of
numerical experiments are given for model problems.

1. Introduction. Modified iterative methods in subspace were presented in [1] for
solving ordinary spectral problems which in a specific situation can be regarded
as domain decomposition methods. Thus, for problems with the grid Laplace
operator in domains composed of rectangles and parallelepipeds the iterations in
these methods are performed at common boundaries of subdomains, and their
convergence rate does not decrease with the grid becoming finer.

This paper describes a very simple iterative method in subspace for the
generalized eigenvalue problem, suggests a practical approach to choosing initial
guess and gives the results of numerical experiments for model problems.

Let us formulate the problem in the abstract form.

Let H be an Euclidean space (i.e. real, finite-dimensional) with the scalar
product (*, X ) and the norm | - [ =(-,- )2 Consider in H the eigenvalue
problem

Mu=ALu, M=M', L=L">0, ueH (1.1)

and number the eigenvalues of problem (1.1) in the non-increasing order:

A =4, =..=4 . The Rayleigh quotient for problem (1.1) will be denoted by
AC-)=M-,-)/(L-,")
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Present H in the form of an orthogonal sum of subspaces H, and H,:
H=H, ® H,. Such partition of the space H is associated with unique represen-
tatlons of the vectors u€e H: u = (ul,uz)T u; +uy, u; = H; and the operators M
and L

M M, Ly Ly M;,L;: H — H,
M= , L= s
My M, Ly L, M;,L;: B~ H; .

The partition of the operators M and L is assumed to be such that the
estimate from above A, A >0, is known for the maximal eigenvalue of the
problem

Mu, =ALyw,, w<€H,. (1.2)

It is also assumed that the strict inequality 4, > 4 is valid.

2. Computation of maximal eigenvalue. Let 4 be a parameter, 4 > A. Then the
condition A > 2 is assumed to be always satisfied and that is why it is not
mentioned. Then we have M; — AL, <0.

Denote by S; the Schur supplernent to the block AL, -M, >0 of the
operator AL — M:

S = ALy - M, - (AL, - M,)(AL, - Ml)—l(A‘L12 - Mp,).

Let us introduce into consideration an auxiliary self-adjoint operator
Sp= S > 0 acting from H, into H, and satisfying the following two conditions.
(a) The operator SB is spectrally equivalent to the operator
=L, - l’z , Wwhich is the Schur supplement to the block L, of the
operator L,ie. there exist positive constants £, and B, such that

0<BySg <3S < B,Sg

(b) The system of equations with the operator Sz can be ‘cost-effectively’
solved.
For some classes of grid problems such operators are known (see, for example,

[2,3]). Define the functional }L( ) of u, € H,\0:

(Sup1t) 2.1)

Aw)=4-
t) (Lyiyity)

where
Ly =Ly = 2Ly Cip + CplyCip
Cyp = (ALy ~ M;)~ YAL,, - M)



84 SKOROKHODOV

which has the sense of the Rayleigh quotient A( - ) on the vector
= (~(ALy - M) ALy, - Mypuyu)T.

Let ,(4) be a quantity from the inequality ."")."I% < 61(}.)||u2||§5. As shown in
[1], for the grid problems for M =1 the quantity J,(4) is bounded from above
by a constant independent of the grid step size.

Similarly to Method 2 from Section 4 in [1], to compute A, we can suggest

Method 2.1. (Modified one-step method in subspace).
(1) Choose u # 0 and the parameter A0 > 1.
(2) For k=0,1,...:

(a) compute the vector

u = (=85 S+ g

where y, = 8,(AY(A* -2 _.); A
(b) compute A(u,*1) by formula (2.1) with A = A¥ and set A¥+1= Ayt
The convergence of Method 2.1. for M =1, A min = 0> 1S established by
Theorem 4.3 in [1].

3. Numerical experiments. This section contains the results of computation of the
maximal eigenvalue 4, of problem (1.1) for some model problems. This section
therefore can be regarded as a supplement to Section 5 in [1].

Let us describe a practical approach to computing the initial guess 1 in the
methods from Section 4 in [1]. It is based on the following idea. Let the vector
4y €H; be the eigenvector of problem (1.2) corresponding to 4, and also |
ul= (ﬁIO)T. Choose m — 1 vectors u'= (uju3), i =2,..,m, and form a subspace
W =span{ul..u™}. Assume that dimW=m and using the Rayleigh-Ritz
procedure find the maximum of A(-) on W, the maximal Ritz number A(W),
and the corresponding Ritz vector w = (w ,wz)T:).(w) = A(W). Since @, € W, then
A(w) = 4 and (if vectors u' are chosen well) A(w) > 1. In this case, we can set
ul=w (uzO = wzo) and 10 = A(w).

Consider the problem (in the generalized sense)

-Adu=u in Q

@By
u=0 on 02

where the model domains 2 cR2 Q= VR U are given in Fig. 1, and 4
is the Laplace operator. Cover the domains £ with an h-step grid uniform in
both variables. To problem (3.1) put into correspondence problem (1.1), where
L is an ordinary five-point approximation of the operator -4 and M =1 and
single out the nodes lying on I In this case, the matrix I assumes the 2 X2
block structure, where L1 is the 2x2 block-diagonal matrix, and also
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L,=h ~Ztridiag{~1,4, —1}. A transition from problem (3.1) to problem (1.1) is
described in more detail in Section5 in [1]. Note only that for S in all
experiments we chose the matrix [1,3]

Sg=(A+AY)2, A =tridiag{-1,2,-1}.

Describe now the way how the initial guess was found in the numerical
experiments. The quantity A is the largest one out of the two maximal
eigenvalues of subblocks of the 2 X2 block-diagonal matrix L;. Denote by A the
least of these eigenvalues. Let iz, |l ||=1 and &, || =1 be eigenvalues
known in the explicit form which correspond to 4 and A. Choose
ul= (iil,O)TEH1 and u’= (ﬁl,O)TEHl. Then, (ulu?) =(Lulu?=0. For u3

we choose wu3=( ~-L 1L12v2,v2)T, where (O,vz)T €eH, v{ = \/2k sin mjh,

j=1,.,-71-1, and form a subspace W =span{u 14243}, The projection of
problem (1.1) onto W is of the form

Ma=3ila , a= (al,az,a3)T (3.2)
where
10 my (11 o 0
M={o0o 1 my,|, L=| o I 0
_m13 my; my | ] 0 0 (SecV2r¥%n) |

myy= ~ALyiyvy), My = ~ALyilyvy),  my=(Uy+ Lyly L.

The relations given above imply that the entries of the matrices M and L are
computed by using only vectors from the subspace H,. The maximal eigenvalue
of problem (3.2) equal to A(w) can be found by using a subroutine, and also
W2 = 1120 = V2. ) )

The numerical experiments were carried out for domains (see Fig.1)
composed of unit squares. Then, n =h ~1_1 js the number of grid nodes on I

Table 1 describes the qualitative feature of the computation of A%=4iw) by
the scheme proposed above. To make comparisons, we give also the value of
A1 for n = 8191

Table 2 shows the results of computation of A.l‘l for a certain n. Method 5
from Section 4 in [1] was realized with J =2 for all k (the Lanczos method with
one internal iteration). In all cases, to attain the accuracy indicated in Table 2, it
required 6-7 iterations by this method. Note that in these model cases the cost of
one iteration is &nlnn) arithmetic operations which is considerably less than the
estimate in [1] suitable for more complicated cases (for example, for ‘red-black’
partitioning). The experiments were carried out on HP-3000 computer with
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double precision. For the case of Fig.1a it took 140sec. of computer time to
perform one iteration for n = 8191.

Q
: /1" F\B. 92 T )
[} ]
‘Ql : 'Qz Q1 r— :
(a) (b) (<)

Figure 1. Model domains composed of unit squares.

11 l—l(w) Al—l

Fig. la 123 9.92 9.64
Fig. 1b 123 9.03 8.67
Fig. 1c 123 9.03 8.37

Table 1. Quality of computation of initial guess.

n Fig. 1a Fig. 1b Fig. 1c
511 9.64024031896 8.66848350440 8.376559847
1023 9.63993175185 8.66805911949 8.373947877
2047 9.63980708831 8.66788899168 8.372639568
4095 9.63975706352 8.66782104893 8.371984833
8191 9.63973707318 8.66779397895 8.371657320

Table 2. Valuesof /l]_ ! for certain n for model cases.
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