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Abstract. In this talk, we first present a flexible mesh refinement strategy for the approxima-
tion of solutions of elliptic boundary value problems in two dimensional domains. Coupled
with this approximation scheme, we shall describe preconditioners for the resulting discrete
system of algebraic equations. These techniques lead to efficient computational precedures in
serial as well as parallel computing environments. The preconditioners are based on overlap-
ping domain decomposition and involve solving (or preconditioning) subproblems on regular
subregions. These techniques are analyzed in a forthcoming paper [2]. We present the results
of numerical experiments illustrating the preconditioning algorithms.

INTRODUCTION

To provide the required accuracy in many applications involving large scale scientific
computation, it becomes necessary to use local mesh refinement techniques. These tech-
niques allow the use of finer meshes in regions of the computational domain where the
solution exhibits large gradients. This remains practical only if efficient techniques for the
solution of the resulting discrete systems are available. In this talk, we will give a flexible
scheme for refinement as well as develop effective iterative methods for the solution of the
resulting systems of discrete equations. The analysis for the methods discussed in this talk
is given in [2].
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We shall be interested in techniques for problems with refinements which are not quite
local. As an example, one might consider a front passing through a two dimensional
domain. In this case, it might be necessary to refine in the neighborhood of the front.

There are a number of ways of developing preconditioned iterative schemes for the dis-
crete systems resulting from local mesh refinement in the literature. Techniques based on
nested multilevel spaces are given in [1),[10],[11]. Techniques based on domain decomposi-
tion are given in [3],[14],[15). The analysis presented there implicitly depends on the shape
of the the refinement domain, and hence the resulting algorithms may not be as effective
with irregularly shaped refinement regions. These algorithms also require the solution of
a subproblem or preconditioner on the refinement regions. This talk will provide alterna-
tive preconditioned iterative techniques for these problems based on overlapping domain
decomposition. Our algorithms are simpler and possibly more effective when implemented
since they often lead to preconditioning subproblems defined on either regular subregions
or topologically ‘nice’ meshes. The refinement region is the union of the subregions.

The proposed mesh refinement strategy is important in that it provides a basic approach
for implementing dynamic local grid refinement. An example of a refinement strategy
involves starting with a uniform coarse-grid and refining in small subregions associated
with a selected set of coarse-grid vertices. These subregions are allowed to overlap and
there are no theoretical restrictions on the resulting refinement region (the union of the
subregions). Dynamic refinement is achieved by simply dynamically changing the selected
set of coarse-grid vertices.

In addition, the technique can be integrated into existing large scale simulators without
a complete redesign of the code. This is because most of the computation involves tasks
on either the global coarse grid or the refinement grids associated with the refinement sub-
regions. Choosing the coarse and refinement grid structure to be that already used in the
code saves considerable development costs. For example, if one uses regularly structured
meshes in the coarse and refinement grids, a substantial part of the resulting algorithm
only requires operations on regular grids even though the resulting final approximation
space is not regular.

The outline of the remainder of the talk is as follows. In Section 2, we define some
preliminaries and describe the second-order elliptic problems which will be considered.
The overlapping domain decomposition algorithms for grids with partial refinement is
defined in Section 3. The theoretical estimates for the resulting preconditioned systems
(from [2]} are also given there. Finally, computational aspects and the results of numerical
experiments using these preconditioning techniques are discussed in Section 4.

2. THE ELLIPTIC PROBLEM AND PRELIMINARIES

We shall be concerned with the efficient solution of discrete equations resulting from
approximation of second-order elliptic boundary value problems in a polygonal domain Q
contained in two dimensional Euclidean space R?. We consider the problem of approxi-

mating the solution u of
@2.1) Lu=f in Q,
u=0 on Q.

Here L is given by
2
2 v
Ly=— E —Gij 5,
=1 6m,- 3:1:_,'

and {ai;(z)} is a uniformly positive definite, bounded, piecewise smooth coefficient matrix
on . The corresponding bilinear form is denoted by A(:,-) and is given by
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(2.2) Alv,w) = Z/ aij aau g:;

£,5=1

and is defined for functions v,w € H'(2). Here H(Q) is the Sobolev space of order one
on ). We denote the L%(Q) inner product by (-,-). The weak solution u of (2.1) is the

function u € H}(Q) satisfying
A(u,0) = (f,p)  forall p € H}(D).

Here, H}(R) is the subspace of functions in H(Q) whose traces vanish on Q.

We consider the above model problem for convenience. Many extensions of the tech-
niques to be presented are possible; for example, one could consider equations with lower-
order terms and different boundary conditions.

In this talk, we shall deal with various domains. These domains will always be open.

3. THE OVERLAPPING ALGORITHMS

In this section, we shall define iterative methods for problems with partial refinement
based on overlapping domain decomposition. We start with a coarse mesh Ur}; consisting
of triangles of quasi-uniform size H. The associated finite element space M, is defined
to be the set of continuous piecewise linear functions on the coarse mesh which vanish on
Q. The interior nodes of this mesh will be denoted {z;}, fori = 1,... ,N.. The mesh
refinement is defined in terms of a number of coarse grid subdomains {Q;} fori =1,... , K.
By convention, (; is defined to be the interior of the union of the closures of the coarse
grid triangles. The refinement regions will also be referred to as “the subdomains.” We
assume that they have limited overlap in that any point of § is contained in at most a fixed
number (not depending on H) of the subdomains. We define the domain of refinement (2"
to be the union of the subdomains, Q" = UL Q;. There are no theoretical restrictions
concerning the definition of the refinement subregions except that they are defined in terms
of the coarse grid triangles and satisfy the overlap property as described above.

We provide two examples of this construction. For both examples, the subregions are
associated with coarse grid nodes. For the first example, we define the region associated
with a coarse-grid node z; as the subdomain ; which contains the coarse-grid triangles
having z; as a vertex. For the second example, we consider a mesh which is topologically
equivalent to a regular rectangular mesh (see Figure 3.1). In this case, we define ; to be
the four quadrilaterals which share the vertex z;. Some reasons for such a choice will be
explained later. In either case, an indexset I C [1,... ,N.] is selected and the domains {Q;}
with ¢ € T are used to define the refinement region. By possibly changing the numbering of
the coarse grid nodes, we assume, without loss of generality, that I = [1,2,... ,K]. There
are no additional restrictions concerning this set I and hence rather complex refinement
regions are possible. )

The composite space is defined in terms of a quasi-uniform mesh {7}} on Q of size k < I
which satisfies

UiaT}II c U,'aT;;.
The space of continuous piecewise linear functions with respect to this triangulation (which
vanish on 8Q) will be denoted by M. Note that this space is introduced for the construction
and analysis of the composite grid space. It is not used in actual computation since it has
too many degrees of freedom in §2/Q". The subspace M; associated with the subdomain
Q; is defined by



94 BRAMBLE ET AL.

(3.1) M; = {¢ € M| support ¢ C ;}.

Figure 3.1
A distorted rectangular mesh.

The composite finite element space is then defined to be

K
M=ZM.~.

=0

Note that the space M provides finer grid approximation in the refinement region Q.
An illustrative example of a mesh so generated is given in Figure 3.2, The nodes on the
boundary of the refinement region which are not coarse-grid nodes are slave nodes since,
by continuity, the values of functions in M on these points are completely determined by
their values on neighboring coarse-grid nodes. The operator A; : M; — M; is defined for
v € M; by

(Aiv, ¢) = A(v, ¢) for all ¢ € M.

Our goal is to efficiently solve the composite grid problem: Given a function f € L2(Q),
find U € M satisfying

(8.2) AU, ¢)=(f,¢) forallde M.
As above, we define A: M — M by

(Av,¢) = A(v, §) for all ¢ € M.
Problem (3.2) can then be rewritten as

(3.3) AU =F,
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X - Sclected coarse grid fodes

Figure 3.2
A composite grid.

for appropriate ' € M. We will develop preconditioners for (3.3) by using overlapping
domain decomposition.

There are basically two classes of these preconditioners, the additive and multiplicative.
The additive version defines the preconditioner B, for A of (3.3) by

K
B, = zRiQi~

=0

Here, Q; denotes the L?(2) projection operator onto M; and R; is a symmetric positive
definite operator on M;. Explicit choices for R; will be discussed later; however, we note
that it suffices to take R; to be a preconditioner for A;.

The multiplicative version is defined by applying the R; consecutively. The multiplicative
preconditioner By, applied fo a function W € M is defined as follows:

(1) Set ¥, = 0.

(2) Fori=1,... ,K+1, define ¥; by

(3.4) Y; =Y + Ric1Qi1(W — AY; ).
(8) Fori=K+2,... ,2K +2, define Y; by
(3.5) Y; =Yi_1 + Rorxv2-iQar+2-i(W — AY; ).

(4) Set BuW = Yax42.
It is not difficult to see that B, is a symmetric linear operator on M.

The operators B, and By, defined above will be effective as preconditioners A if they
satisfy the following:

(1) They are relatively inexpensive to evaluate.

(2) They lead to well conditioned linear systems.
The first criterion involves implementation issues and will be discussed later in more de-
tail. The second criterion requires that the condition numbers K{B,A) and K{B,,A) be
small. In the case of the additive algorithms, this is equivalent to the existence of positive
constants ¢y, ¢; satisfying
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(3.6) coA(v,v) < A(B,Av,v) < c14(v,v) forallv e M,

with ¢1/co small. A similar statement holds for the product algorithm.

The analysis presented in [2] requires the following hypotheses. It is assumed that there
are positive constants Cy and w which do not depend on k, H or the subdomains and
satisfy

(3.7 CoA(w,w) < A(R; Ayw, w) < wA(w,w) for all w € M;.

This means that the operators R; are spectrally good preconditioners for 4;. For the
product algorithm, we also assume that 0 < w < 2. The following theorem is proved in

2.

THEOREM 3.1. Assume that there are no isolated points on the boundary of Q7. Then
the condition numbers K(B,A) and K(BmA) remain bounded independently of h, H and
the choice of subdomains {Q;}.

REMARK 3.1: The analysis given in [2] uses techniques from both the theory of overlapping
domain decomposition [12],[13] as well as the standard domain decomposition theory [5]-
[8] to provide the result for the additive algorithms. The result for the multiplicative
version follows from that for the additive and the application of a general theory given in
[9l. :

REMARK 3.2: The hypothesis concerning isolated points on the boundary of 7 is included
to provide a uniform estimate for the preconditioned systems. If 82" contains isolated
points then it is possible to show (cf. Remark 4.2 of {2]) that the condition number grows
at most on the order of In?(H/k). This sort of decay is actually seen in the last numerical
example in Section 6.

REMARK 3.3: There is very little restriction concerning the way that the domains Q; are
defined. Note that if only one refinement domain is used, then Theorem 3.1 provides a
result for the imbedded space case proposed in [3]. Alternatively, one can consider the
.case where Q" is all of Q and hence M = M. In this case, Theorem 3.1 guarantees
uniform bounds for the condition numbers without putting restrictions on the shapes of
the subdomains {Q;}. Thus, for example, the subdomains can be taken to be strips as
long as the coarse problem is included.

4. COMPUTATIONAL ASPECTS AND NUMERICAL EXAMPLES

In this section, we discuss some of the computational properties associated with the
method. In particular, we shall consider its feasibility for use in dynamic refinement
strategies. We shall also see that with this type of method, it is possible to develop highly
vectorizable and parallelizable code. Finally, we provide the results of numerical examples
illustrating the condition numbers for the preconditioned systems described earlier.

We consider the earlier discussed examples where the domain of refinement is defined by
simply selecting coarse-grid nodes and a rule for defining the refinement region associated
with a coarse node. Specifically, we consider the example where the coarse mesh is defined
from quadrilaterals and the refinement region associated with a coarse-grid vertex is defined
to be the four quadrilaterals which share the vertex. An easy way to implement this
refinement involves using vectors of unknowns with some redundancy. Associated with
each quadrilateral, we associate a vector which contains the fine-grid unknowns in the
quadrilateral and its boundary. The program is designed to operate on a data structure
which contains a coarse-grid vector and a list of fine-grid vectors corresponding to the
quadrilaterals appearing in the refinement regions. This process is controlled by a list of
pointers which connect the location of quadrilateral fine-grid vectors in this date. structure
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to the coarse grid node refinement regions in which they appear. A simple control structure
is also developed to handle the redundancy in the data vectors. These control structures
can be easily derived from the list of coarse-grid refinement nodes and the coarse mesh
geometry. Thus, a dynamic change in the refinement region only requires a simple (and of
negligible cost) computation of some control pointers associated with the coarse grid.

An advantage of the proposed approach is that it can be used to invoke refinement with-
out the use of the general data structures associated with meshes which are not regular.
One assigns a regular mesh topology to the coarse mesh and to the meshes in the refine-
ment subregions. This means that even though the composite mesh is highly irregular,
all of the problems {on M;, i € Iy) which need to be solved or preconditioned will be on
regular rectangular meshes. Similarly, it is possible to decompose the evaluation of the
composite grid operator into pieces which involve operator evaluation on the topologically
rectangular mesh parts. For these topologically rectangular meshes, highly efficient mod-
ules for preconditioning and operator evaluation are available for both vector and parallel
computing architectures.

‘We shall consider the model problem

—~Au=f in Q,

(4.1) u=0 on 01,

where A denote the Laplacian and Q is the unit square [0,1] x [0,1]. To define the coarse
mesh, the domain Q is first partitioned into m X m square subdomains of side length
H = 1/m. Each smaller square is then divided into two triangles by one of the diagonals
(e.g. the diagonal which goes from the bottom left to the upper right hand corner of the
square). The coarse-grid approximation space My is defined to be the set of functions
which are continuous on {}, are piecewise linear with respect to the triangulation, and
vanish on 89. The space M is defined from a similar finer mesh of size h = H/I for some
integer I > 1.

For our first two examples, we consider an application where it is required to refine
along the diagonal connecting the origin with the point (1,1). Such a refinement might
be necessary if the function f has large gradients near this diagonal but is well behaved
in the remainder of . Accordingly, we select the coarse-grid nodes on the diagonal for
refinement. We define the refinement region associated with a refinement node to be the
four coarse mesh squares which have that node as a corner. Note that the refinement
region is highly irregular even though the coarse problem and the refinement subproblems
involve regular rectangular meshes.

We will illustrate the rate of convergence of preconditioned algorithms for solving (3.2)
where A(-,-) is given by the Dirichlet form. To do this, we shall numerically compute the
largest and smallest eigenvalue (A\; and Ag respectively) of the preconditioned operator
B, A. As is well known, the rate of convergence of the resulting preconditioned algorithms
can be bounded in terms of the condition number K(B,A) = A1 /A¢. We shall not report
results for preconditioning with the product operator By, although our previous experience
[9] suggests that the product version will converge somewhat faster than the additive.

Table 4.1 gives the largest and smallest eigenvalue and the condition number of the
system B,A as a function of k. In this example, we took R; = A7}; i.e., we solved
exactly on the subspaces {M;}. For Table 4.1, m = 4 and there are three refinement
subdomains (0,1/2) x (0,1/2), (1/4,3/4) x (1/4,3/4), and (1/2,1) x (1/2,1). Note that
both the upper and lower eigenvalues appear to be tending to a limit as the ratio A/H +— 0.
Similar behavior is seen in Table 4.2, which corresponds {o m = 8 and uses seven smaller
refinement subregions.
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Table 4.1
Condition numbers for § overlapping subregions
h Ay Ao K(B,A)

1/8 2.44 0.50 4.9
1/16 2.50 0.41 6.1
1/32 2.51 0.38 6.6
1/64 2.52 0.36 6.9
1/128 2.52 0.35 7.1

In almost all realistic applications, the direct solution of subproblems is much more
expensive than the evaluation of a suitable preconditioner. To illustrate the effect on the
convergence rate of the preconditioned iteration, we next consider the previous example but
with the direct solves on the subspaces replaced by multigrid preconditioners. Specifically,
we employ the V-cycle multigrid algorithm (cf. [4]) using one pre- and post-smoothing
Jacobi iteration on each grid level. This leads to a preconditioning operator R; : M; — M;
which satisfies

4.2) 0.4A(v,v) < A(R;Aiv,v) < A(v,v) for all v € M;.
Table 4.2

Condition numbers for 7 overlapping subregions

h Ay Ao K(B,A)
1/16 2.46 0.47 5.2
1/32 2.52 0.39 6.5
1/64 2.54 0.35 7.2
1/128 2.54 0.34 7.5

The constant 0.4 above was computed numerically and holds for all of the subspace prob-
lems which are required for this application, including Mp.

Tables 4.3 and 4.4 provide the eigenvalues and condition numbers for the above examples
when direct solves were replaced by multigrid preconditioners. Note that in all of the
reported runs, the condition number with multigrid preconditioners was at most 5/4 times
as large as that corresponding to exact solves. Such an increase in condition number is
negligible in a preconditioned iteration. In contrast, the computational time required for
the multigrid sweep is considerably less that that needed for a direct solve {especially in
more general problems with variable coefficients).
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Table 4.3
Preconditioned subproblems, 8 overlapping subregions
h A1 Ao K(B,A)
1/8 2.37 0.53 45
1/16 2.12 0.33 6.4
1/32 2.07 0.27 7.6
1/64 2.04 0.25 8.2
1/128 2.02 0.24 8.4
Table 4.4
Preconditioned subproblems, 7 overlapping subregions
h A1 Ao K(B,A)
1/16 2.36 0.40 5.9
1/32 2.11 0.28 7.5
1/64 2.06 0.24 8.8
1/128 2.03 0.22 9.4

As a final example, we consider a case where the isolated point hypothesis of Theorem 3.1
is not satisfied. Specifically, we consider a coarse mesh of size H = 1/4 and select the four
nodes with (z,y) values (1/4,1/2), (3/4,1/2), (1/2,1/4), and (1/2,3/4). The refinement
region is everything but the subsquares [0,1/4] x[0,1/4], [0,1/4] x[3/4,1], [3/4,1}x[0,1/4],
and [3/4,1] x [3/4,1]. Note that, to satisfy the hypotheses of the theorem, it would be
necessary to include a refinement region centered at the coarse-grid node (1/2,1/2). Table
4.5 gives the smallest eigenvalue for the operator B, A as a function of k. The function
(:32+.36log,(h~1))~2 is also provided for comparison. These results suggest that smallest
eigenvalue Aq decays as predicted by the theoretical bound C/In(H/%)? (see Remark 3.2).

Table 4.5
A “bad” example in two dimensions.
h Ao (:32 4 .36 log,(R1))2
1/8 .50 51
1/16 .32 .32
1/32 22 22
1/64 16 16
1/128 12 12
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