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Abstract : This paper discusses some implementations of domain decomposition methods
for the numerical solution of Stokes and Navier-Stokes problems. They are used as
preconditioners for conjugate-gradient-like iterative methods such as the Generalized
miltgmum residuals (GMRES) or the Conjugate Gradient Squared (CGS)
methods.

1.The Navier-Stokes problem.

We rapidly recall here the Navier-Stokes equations for a viscous incompressible
flow. In a domain Q of R? or R3, we are looking for a velocity field y and a pressure field
p satisfying the system of partial differential equations,

(1.1) -pAu +u-gradu+gradp=1£,
(1.2) divu=0.

These must be completed by a suitable set of boundary conditions, for instance Dirichlet
conditions,

(13) wp =w.

Choosing a stable finite element approximation for this problem requires some care.
It is well known that the approximation of y and the approximation of p cannot be chosen
independently.(see e.g. Brezzi-Fortin! ,Fortin2 or Girault-Raviart3). In the present study,
computations were done with a full biquadratic approximation for velocity and a
discontinuous piecewise approximation for pressure. Once the choice is done, we obtain a
finite-dimensional problem of the form,
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as (AREYD)- ().

where f and g depend on data, A(u) is a discrete form of -pAy +u- grady and B is the
discrete divergence (B thus being a discrete gradient) . In the case of the linearized Stokes
problem, in which non-linear terms are neglected, (1.4) is the optimality condition of the
saddle-point problem,

(1.5) inf sup %<Av,v> -<q,Bv> - <f,v> + <g,q>
v q

and is therefore indefinite.
A very classical method for the solution of (1.4) is Newton's method :

r -Let uo be arbitrarily chosen,
-Given y, , find du solution of

A'(uq) BryOu A Bty (f
.6 (B Isp)‘ 300 J)()
-Update y and p by
A {H.n+1 =u -3u.
- Pn+1 = Pn- 5P

Such a method therefore reduces the solution of our non-linear system to a sequence
of large scale non-symmetric, (A'(uy) is not in general symmetric), indefinite problems. As
we want to attack three-dimensional problems, we are quite naturally led to look for some
iterative method able of handling such a system.

Iterative methods for the solution of elliptic problems are now known to be very
effective in three-dimensional problems. For symmetric problems, in particular,
preconditioned conjugate-gradient methods are widely used. For non-symmetric problems
minimum residuals methods, like the GMRES method of Saad and Schultz?, have been
very popular in the last few years. They have been, in particular quite successful in
aerodynamics problems. (BoivinJ, Dutto®). A very important feature of conjugate gradient
or minimum residuals methods such as GMRES is that, when used to solve subproblems
of the form (1.6) in Newton's method, they do not require the computation of the matrix
A’(). Indeed they only need the computation of expressions such as A'(ww, where w is
some "descent direction". This can be approximated by,

AQu+iw)(u+iw) - A(Wu
A

for A small enough. Such an approximation permits to use quasi-Newton methods in
situations where the jacobian matrix is difficult to compute, This is hardly the case for
Navier-Stokes equations but this remark becomes essential in more complex situations
such as viscoelastic flows.(Fortin-Fortin?). . .
Most iterative methods are however suited to the solution of positive definite
problems. Incompressible Stokes and Navier-Stokes problems,which we shall consider
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in this paper, lead to indefinite systems which are moreover not symmetric . Even for a
minimum residuals method such as GMRES, positivity is important. In the indefinite case,
our experience has shown that the generic situation is a stagnation of the residual at a
non-zero value, while the descent direction becomes singular that is, denoting K the matrix
of the system,

(2.1) <Kwy, wp> = 0.

This leads the algorithm to fail but this failure can be corrected by a better
preconditioning: convergence depends on the positivity of eigenvalues of §-14 . -
We shall describe in this paper a preconditioner based on domain decomposition
~and adapted to the solution of Navier-Stokes equations.The starting point for our method
will be Arrow-Hurwicz's method for saddle-point problems, (see e.g. Fortin-glowinski8).
Applied to a linearised problem like (1.6) the continuous version of the method would be,
1o being given,

as

SE+ Auow + Blp-£=0,

op

—-kBu = 0.

ot

for some well-chosén operator S and some parameter k. Although other points of views

could be adopted, an interesting way of describing our iterative process is to apply a

domain decomposition procedure to a discrete version of (2.2). To consider the simplest

possible case, suppose that domain Q is split into two overlapping subdomains Q; and £2,.
We shall denote {uj,p]} and {uj.p5) the solution at time t,on Q; and Q,

respectively. One possible a.fgorithm is then to solve in sequence, U, and p, being known,

.2)

u=url,,. 0 =pmlg,

@2.3)3 Sy = 810} - p(A'olu] + B'p} - D)

p111+1/2 - p;'l + pk B.‘J.nl+1l2

in Qy, with if boundary conditions are needed n{”’m =y" on 2Q;. Then we set,

= ph
pn+112={ p* on Qg\Ql

= p’;"l/z on Q4
(2.4)
” =" on Q2\ £
n+ —
u = =El;+1/2 on Ql
and then,

n+l/2_ o n+1/2 _
22 e g_n+112 ‘92’ Pz - Pn+1/2 |92

@2.57 Sa5* = Sau3 ™2 - p(A oy} + B2 -

n+l

n+l/2 n+l
P2 2

P + pk Bu,
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in ;, with if boundary conditions are needed n;"’l = u"*1/2 on 9Q; . Finally we set,

p3lon Q

. { un* 172 on Q1 Q5
u_ =

prt =

(2.6)

n_r;'l on Q3

As to the choice of S; and Sy, it is quite natural in the context of domain
decomposition methods to take,

@.5) Si= A)lg, »

the restriction of the jacobian matrix to €;. In that case, it is also natural to take p = 1.
‘When one works inside a global Newton's procedure, it is often convenient not to update
matrices S; at every step but to keep them fixed for a few or all iterations. We shall discuss
this later when presenting numerical results. In the case of a linear Stokes problem, the
choice (2.5) with p = 1 reduces the computation of gi'” to

(2.6) A + Bip!-£=0

and we fall back on a method which we already discussed in previous papers (Aboulaich-
Fortin? ). This method reduces to the classical Uzawa's algorithm in the case of a single
(sub)-domain.

It is also easy to generalise (2.3)-(2.4) to an arbitrary number of subdomains. The
rule might be described rapidly as: on each subdomain, make one step of Arrow-
Hurwicz's method, starting from the last known values. In our actual
implementation, we prefered to use many small subdomains. This was done in view of
storage considerations for large-scale problems but is obviously not the only possibility.
The idea can also be adapted to other global procedures: parallel computations on
subdomains, additive Schwarz's method etc. ,

As we shall see in numerical results, the method is fairly robust and converges even
for rather small values of the viscosity parameter in the Navier-Stokes Equations. No proof
is presently known, even in the linear case. We hope that recent progress in domain
decomposition methods applied to time-dependent problems might lead to new insights in
building such a proof.

3. Conjusate-eradi hod

Although the domain decomposition procedure just described can work as
"standalone” method, our aim was to employ it as a preconditioner for conjugate-gradient-
like methods, defining a search direction by

Wy = u_n+1_2n ,
on]
Wp = pn+1_pn .

Doing so, we hoped that the combination would yield a more efficient algorithm as, for
instance when over-relaxatioon is used as a preconditioner for a conjugate -gradient method
in the solution of a discrete elliptic problem (Axelsson and Barker!0). From our previous
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experience, we chose to try two methods, namely GMRES and the conjugate gradient
squared (CGS) method of Sonneveld!! both being, a priori, suited to the solution of non-
symmetric problems.

In the standard conjugate-gradient method, the search direction is made orthogonal
to all the previous ones through recurrence relations. This is also the case in CGS which is
based on the bi-conjugate-gradient method where a symmetric system is handled,
associated with the matrix,

t

3.2) G.( 8 ) :

The method requires the storage of six vectors.

In GMRES on the contrary, one keeps orthogonality to a given number of previous
directions by a Gram-Schmidt procedure. For storage reasons this number of orthogonal
directions cannot be taken very large. In a typical three-dimensional problem, ten is already
prohibitive but is very small with respect to the number of variables. It is therefore very
important, when using such a procedure that the iterative process should not rely on
orthogonality properties but should converge for any number of orthogonal directions
(including one).

It must be noted that for the linear Stokes problem, which is symmetric, a standard
conjugate-gradient method will keep orthogonality through recurrence relations, and that
convergence is much easier to achieve, despite the non-definiteness of the matrix.

We shall not discuss here the precise details of the GMRES algorithm which is now
classical and for which we refer to Saad and Schulz4 or subsequent papers of these
authors.We would just like to make here a few remarks about the actual implementation that
was done in our numerical tests .

The first remark concerns the management of orthogonal vectors. Two possible
ways (at least) can be imagined to keep the last direction orthogonal to some number (say
k) of previous vectors. The first is to reinitialise the process every time the number of
permitted vectors is attained. The second is to keep orthogonality to the last k vectors,
discarding the oldest ones from the stack. A comparison will be made in the section about
numerical results. ’

The second remark concerns preconditioning and the various ways in which it can
be done. In the present study, preconditioning was done by changing the system at hand
Kx = b, into S'Kx = S-1b, where S is some approximation of K, defined implicitly in
our case by the domain decomposition procedure. This is known as left preconditioning
and there is obviously a right counterpart. If an approximate factorisation of K were
known, that is 81 = U-IL-1, one could use a "balanced" preconditioning, changing the
system into L-1KU-1y = L-1b. Apparently, these various ways can change rather
strongly the convergence behaviour of preconditioned conjugate-gradient method. This is

understandable as the scalar product in which orthogonality is kept is changed for instance
from §-tS-1t0 L-tL-1, P g y P e
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4. Numerical results.

We can only present in this short paper a few results illustrating the performance of
the algorithm that we propose. The figures show two or three curves describing the
convergence of the method. They respectively correspond to a norm of the residual of the
non-linear problem, a norm of the residual of the linearized problem and to a norm of the
divergence. All the tests have been done on the square cavity problem using regular
meslgces. This is a relatively easy problem and we were able to reach fairly high Reynolds
numbers.

Figure 1 presents the convergence of algorithm (2.3)-(2.6) without any conjugate
gradient acceleration. The test consisted of computing a solution at Re=2000 from a
solution at Re=1000 on a 10x10 mesh. The preconditioning operator was defined as in
(2.7) and was updated at every tenth iteration. One sees the linear convergence which is to
be expected. The update of the preconditioner is essential for convergence.

divergence

non-linear residual
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Fi 1: Convergence of algorithm (2.3)-(2

The next two Figures present the behaviour of GMRES using the domain
decomposition method as a preconditioner. The problem was a 20x20 cavity at Re=200
starting from a null solution. The subdomains were simple 2x20 overlapping stripes. The
algorithm is in fact a quasi-Newton method in which the Jacobian matrix is approximated
from (2.1). One therefore has an inner GMRES iteration on the linearized problem
imbedded into an outer Newton iteration. The inner iteration was done in order to reduce
the residual by a fixed factor of 200. The number of descent directions retained was 10 and
GMRES was restarted till the criterion on the residual was met. The preconditioner was
updated at every Newton step and was therefore a good approximation of the linearized
problem being solved at this step. The difference between Figures 2 and 3 lies in the
application of the domain decomposition preconditioning. In figure 2, this was done by one
sweep through the subdomains while for Figure 3 two sweeps were done, thus yielding a
better preconditioning. This is a general method to get a better convergence with such a
method. One can see a direct improvement of convergence with respect to the number of
iterations although not with respect to computer time.

However the possibility of controling the quality of the preconditioner is important
as can be seen in Figure 4 . This is the same kind of test as the previous ones, this time on
a 10x10 problem. The intersting feature is here the stagnation of the inner GMRES iteration
at the first Newton step. This iteration was in fact stopped by reaching the maximum
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number of allowed steps. This behaviour is typical of GMRES on an indefinite problem
when the preconditioner is not good enough. Indeed updating the preconditioner for the
second Newton step restored the convergence of the inner loop and made the whole
process to converge rapidly and superlinearly. There are of course many ways of
improving the quality of a domain decomposition preconditioner through the construction
of subdomains and their degree of overlap. An actual implementation must keep a balance
between storage and computer time requirements.

As to the CGS algorithm, we do not present curves but we can state that its
performance was very disappointing on our problem. Convergence could be obtained only
with very good preconditioning (e.g. 5 sweeps per iteration). It was also much more
sensitive to the Reynolds number.

divergence

non-linear residual

Linearized residual
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Figure 3: Convergence of GMRES (two sweeps preconditioner)

5.Conclusions

The combination of GMRES with a domain decomposition preconditioner was
shown to be effective for the solution of incompressible Navier-Stokes problems. The
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domain decomposition method can also be used as a standalone iterative process and is
quite robust with respect to Reynolds number .
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