CHAPTER 5

Domain Decomposition in Boundary Element Methods*

George C. Hsiaot
Wolfgang L. Wendland}

Abstract. An arbitrary substructuring technique is presented for solving elliptic
boundary value problems via a symmetric boundary element Galerkin formulation.
The Steklov-Poincaré operator is expressed explicitly by boundary integral equa-
tions and can be approximated by boundary element methods. Asymptotic stability
and convergence results are given for simple model problems. The method is suited
for parallel processing, since the corresponding boundary integral equations for the
subdomains can be solved in parallel.

1. Introduction. The basic idea of domain decomposition methods or substructur-
ing techniques for elliptic boundary value problems consists of reducing the solution
of the boundary value problem on a domain to the solution of problems of same
type on the subdomains. This idea is not new (see e.g. [18],[19],[20]), but gets
considerable attention in recent years because of modern development of parallel
computers; it is attractive for parallel processing, since the problem can be decou-
pled in independent subproblems and the communication needed will be only for
the interface values [2], [4],[16]. The computation of these interface values is of
central importance to the method.

The approach proposed in this paper uses boundary integral representations for
solutions on the subdomains and reduces subproblems to boundary integral equa-
tions over the boundaries of subdomains. This allows one to define the Steklov—
Poincaré operator [1],[3] explicitly in terms of boundary integral operators on the
boundaries of subdomains (see §2). The Steklov—Poincaré operator represents a
Dirichlet-Neumann map [23] (the capacity operator in the case of the Laplacian
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[7]) and is represented after discretization by the so-called Schur complement ma-
trix (sometimes called the capacitance matrix). In forming this matrix, as usual,
a boundary element Galerkin formulation of the problem is employed. Because of
the integral representations of the solutions, the bilinear forms over the subdomains
can be replaced by the boundary integral forms over the boundaries of the subdo-
mains (see §2). Here we adopt a symmetric weak formulation which allows us to
treat a larger class of elliptic partial differential equations including the Lamé sys-
tem in elasticity. This formulation corresponds to the Hellinger-Reissner principle
(5] 2ng,[i)],[l?] and involves a special coupling of boundary integral operators (see §2
and §3).

We present asymptotic stability and convergence results for the simple model
problem in §4. It is worth mentioning that for the present substructuring technique,
no assumption (or restriction) is made on the size of the subdomains and that the
formulation contains only boundary elements. In a forthcoming paper {13], we shall
discuss substructuring techniques concerning domain decomposition into a family
of macro—elements whose size tends to zero; in addition, each macro—element can
be modelled either with finite or with boundary elements, and the coupling requires
only a few parameters on the common macro-element boundaries.

2. Mo@el Qroblem. Let Q C IR? be a bounded domain with smooth boundary T.
We begin with the Dirichlet problem for the Laplacian,

(2.1) Au=0 in Q, ulr=¢ on T,
and consider its weak formulation: Given ¢ € HY*(T'), find u € HY(Q) such that
ulr = ¢ and
(2.2) a(u,v) := / Vu-Vodz =0 VveH'(Q).

Q
Here H' (2) = {v € H'(Q): v|r =0} is a subspace of the Sobolev space H*(Q)
and H'/?(T) stands for the usual trace space.

To describe the substructuring technique, we partition € into N subdomains

izr{éjdjn})’tg b,yN as illustrated in Figure 1. Now let uj be the restriction of u to {;
A]’ = Duj|p]~

the exterior normal derivative of u; on the boundary T,

> fQ;. rit
a(u,v) in the form: ot §2;. Then we may rewrite

N N
=3 [ uy-Sie =3 [
j=17% j=17T;

provided Au; = 0 in ;. We note that in this way the bilinear form a

.- b
replaced by the sum of the boundary integral forms (see e.g. [12]) (+,+) can be

(2.3) <Aj,v >[“J-2=/ Ajvds.
L
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For this purpose, we now represent u; by the integral representation
4 w@) = [ By - [ DB s, €2
i i
with p; := u;|r; and
-1
E(z,y) = 5~ loglz —y,

the fundamental solution of the Laplacian. We remark that in the representation
formula (2.4), both A; and p; are generally unknown (except that y; = ¢ on I';NT).
These are the Cauchy data of the solution of Au; =0 in Q;, and are related by

)= (5, wvi) ()= (%)
2.5 = = C .
(25) (/\j D; 3I+Kj/\) AN

Here C; is the Calderdén projector (with respect to ;) in terms of the boundary
integral operators:

V@)= [ Bewisi K= [ DB yutuds,,
(2.6) d !
KI])\(.’E) = /I: D E(z,y)A(y)dsy; Dju(z):=-D, /1‘ DyE(z,y)u(y)dsy,

whose mapping properties on Sobolev spaces are now well known (see e.g. [14] and
[6]). In particular, from the first equation of (2.5) we see that for diam Q; < 1,

(1 ) -4
\7S <§I+Kf> t H=(T;) 3 pj = X € H3(T))

represents a Dirichlet-Neumann map [23] and is an isomerphism from the quotient
space le‘(I‘]-)/R onto the subspace of H"%(Fj) defined by

o _1
H 7 (T;):={)j e H¥{I;): < \;,1 >p,=0}.
Consequently, one may substitute A; in the boundary integral form (2.3) by
11
(27) . ’\j =Vj §I+KJ Kj

and define the Steklov—Poincaré operator on the traces of the solution u along all
the interfaces of subdomains.

Alternatively, one may also use the second equation of (2.5), namely,

1
Ay =Djps+ (51 + KQ‘) Aj
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and rewrite (2.3) in the form

1
< A]',’U >r;0= / )\jvds = / (Dj/_tj + 5)\]' + K'])\J) vds
T, T,
(2.8) ; )

=<Djpj,v >r; +5

< Aj,v >r; + < A5, Kjv >

In fact, (2.7) and (2.8) taken togather is the basis for our symmetric boundary
element Galerkin formulation in the next two sections. It is worth pointing out
that this approach does not depend on the compactness properties of the boundary
integral operators K; and K. This gives us the flexibility for partitioning the

domain and allows us to handle a larger class of elliptic boundary value problems
including the ones for the Lamé system in linear elasticity.

3. Symmetric formulation. In the following let us introduce the function spaces:
U={u=(p1,...,un): pj € HE(T;); pjlr;or = @lr;ar)
A={A=(A,..., n): Aj € H¥(T;), the dual of H*(T;)}

U={p=_(p1,...,¢n): p € U with ¢ = 0}.

The spaces U(also U) and A are equipped with the norms

P
2

N
2
ullu = j
Il Z;Wmnhn) H )

N
and [IMla = ¢ ) X113
j=1

Then our symmetric substructuring technique for the model problem (2.1) can be
formulated as: Find p € U and A € A such that

N

1 °
(3.1) 21{5 < Ajyv5 >+ < A5, K, >r; + < Djpj,v; >r,} =0 VYvelU,
J:
and for J=1,...,N,
1
(3.2) <15 V3Ai >1 =5 <y >1; ~ <5, Kjpu; >r;=0 VneA.

In this formulation, the bracket < -,- >r; denotes the duality pairing on H "%(F j)%

ﬁ;gggzlgnd is an extension of the L?(T';)-inner product defined by (2.3) for smooth

Now if we introduce the boundary bilinear form
b

N

a(p, A;v,m) : = Z{< 5> ViXi >r; + < Djpj,v; >r,
(3.3) i=1 J
DS L
5 <X >r; — 5 <Miki >r; + < A, Kjvj >p; — < 55, Kjp; >1‘;}’
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then we see that

N

a(v,m;v,n) = Z{< j> Vjf >1r; + < Djvj,v; >F,-}~
j=1

Hence by the coerciveness properties of V; and D; on Lipschitz domains [6], and by
mapping each of the subdomains to a master element with the help of scaling, one

[
can establish that @ is U x A—elliptic. More precisely, suppose that the configuration
of the subdomain Q; satisfies the assumption: For each Q; there exist two positive
constants r; and R; such that

(H) 27']' < (dia.Ian) < 2Rj and 0<e < Rj/rj < cg,

where ¢; and c3 are fized constants for all j = 1,..., N (see Figure 2). Then we
have the following result.

Lemma 1. Under the assumption (H), there ezists a constant vy > 0 such that

a(v,m;v,1) 2 v{llllf + linll3}

N
— 112 112
=203 (ol gy + 1y )

i=1

for allv E(of and n € A.

As an easy consequence of the Lax-Milgram Theorem, we then have the exis-
tence and uniqueness results for the solution of the system (3.1) and (3.2).

We remark that the present symmetric formulation for the model problem (2.1)
can be easily generalized to a larger class of elliptic boundary value problems. In
the case of linear elasticity, we see that the bilinear form a(-,-) assumes the form:

a(u,v) = / o(u): €(v)dz,
Q
where € and o are the strain and stress tensors defined by
1 t
e(v) = -2-(Vv + (Vv))

and

G .
o(u) = o= (divu)l + 2Ge(w),

1-—-

respectively; here the material constants v and G are referred to as the Poisson’s
ratio and shear modulus in elasticity. Hence, if u; = ulr; satisfies the Lamé system

d]VU’(uJ)-':o in QJ7
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we may again replace the bilinear form a(u,v) by the sum of the boundary integral
forms

< Aj,V >r;i= / Aj - vds,

J
where A; := Duj|r; is now the traction on the boundary T';,
Dui‘f‘j = o(u;) - nr;,

where n denotes the exterior normal to I';. Then one can proceed in the same man-

ner as for the model problem (2.1). The corresponding boundary integral operators
are deﬁne]d explicitly in [11],[15],[22] and details will be available in the forthcoming
paper [13].

4. Boundary element Galerkin method. We now consider the discretization
of (3.1) and (3.2). To this end, let us introduce the finite-dimensional subspaces

Un = {un = (- -y uva) : winlepr € SHTHY,
Up:= {Hh = (Wik, .-+, NR) * o € UpN U} ,
Ap = {’\h = (Aih’--')ANh) : /\jh € Sz(l_‘])} s

where S¢(T ;) denotes the family of (d — 1)-times continuously differentiable splines
of polynomial degree d associated with the mesh width hj on T;.

The BEM-Galerkin method for the equations (3.1) and (3.2) can be simply
formulated: Find (pn,Ar) € Up X Ap such that

(4.1) a(pths Ar; vy n) =0 Y (va,m) € Un X Ay
Here the boundary bilinear form @ is defined by (3.3). In componentwise the func-
tions u;p and Ajn, j = 1,..., N are solutions of equations (3.1) and (3.2) in Ux X Ax

with test functions (vk,nn) € Up x Ay, In what follows we shall refer to these
equations as (4.1); and (4.2); of the Galerkin equations (4.1). We now summarize
our results concerning the solutions yj; and Ajj in the following theorem.

' Theorem 1. Lethj < coH,j=1,...,N for0 < H < 1, where ¢, s a constant
independent of H. Then the Galerkin equations (4.1) (or (4.1);, and (4.1)7) are

always uniquely solvable. Moreover, the Galerkin solutions (1;n. \:1) for the domain
decomposition satisfy the a..symptot,z'c estimate (bims Asn) f

N 1/2
2
ulr; — p; + | Dulp, — Ajulf?
,'2-_-:1 I #Jh"H%(Fj) 1Dulr; AJ"”H‘*(I‘ﬂ)}

< C(C(’H)l_l”“”m(n)

for 1 <€< d+3/2, where u is the ezact solution of (2.2).
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The significance of the condition of h; < coH in the theorem needs some expla-
nation. Consider first a family of decompositions with H — 0 for fixed constant ¢
independent of H. This is the case indicated in Figure 1(a). The number of decom-
positions increases while the numbers of individual elements on all subboundaries
T'; can always be chosen to be the same. In this situation, for congruent {2; one
needs only to invert the BEM equations (4.1); for A;s once for all on a master
domain, and for arbitrary 2;, these equations can be inverted in parallel.

The unknowns ), can be eliminated and the system is condensated to the first
equation (4.1); of the variational equations for the pjn’s. This leads to the usual ca-
pacitance system for the interface unknowns which can be solved by preconditioned
conjugate gradient methods (see e.g. [2],[16],[24]).

On the other hand, as indicated in Figure 1(b), for a fixed decomposition as
in boundary element substructering, H is fixed. One may then require co — 0 to
allow h; — 0 for the mesh refinement(see e.g. [10]).

To conclude the paper, we now comment on the proof of the asymptotic esti-
mate in Theorem 1. The essence of the proof is to show that the Galerkin projection

Gy, defined by
Gr (1, A) = (pa, Ar)

is uniformly bounded on U x A. This follows from the standard arguments now
in boundary element methods (see e.g. [14],[21],[22]). From the boundedness of
the Galerkin projection, we then obtain an inequality of Ced’s type from which the
estimate follows easily from the convergence property of the splines.
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Figure 1: The domain and its partition: (a) co fixed and H — 0; (b) H fixed and
Cyp — 0.
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Figure 2: Assumptions on the subdomains ;.
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