CHAPTER 18

Iterative Methods for Solving Equations with
Highly Varying Coefficients

N. S. Bakhvalov*
A. V. Knyazevi
G. M. Kobel’kov*

Abstract. Using as an example the Dirichlet problem for the diffusion equation
with piecewise-constant coefficients a relation is established between iterative
algorithms of two main versions of the decomposition method with iterations of
gradients and fluxes typical of the fictitious domain method.

1. Introduction. The problem of solution of elliptic equations and systems with
highly varying coefficients is typical of the mathematical modelling of behaviour
of structures composed of materials with constant properties, for example, in
mechanics and electrical physics.

One of the approaches to solving such problems is based on decomposition of
the original structure into its constituent substructures with homogeneous
properties. It is particularly efficient in the case where the number of
substructures is not large and all of them are of the simple form (the latter
permits application of fast algorithms to solving auxilary subproblems arising in
decomposition methods). In addition, in a number of cases the computational
characteristics of some decomposition methods do not become worse with the
coefficient discontinuity infinitely increasing.

On the other hand, in numerical modelling it is sometimes reasonable to
combine some substructures of complex form into one simple-form structure
adding probably “fictitious’ parts as in the fictitious domain method thereby again
leading to a great difference between coefficients. Similar equations also arise in
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the theory of averaging compositional materials. To solve problems of such kind,
it is natural to replace the decomposition method with methods involved in
solving the auxiliary boundary value problem in the composition domain as it has
a simple form (in the fictitions domain method by construction).

The duality of these two approaches is reflected in a definite relation of the
transition operators of the iterative processes corresponding to them. This paper
is devoted to finding this relation.

In Section 2 according to [1] we give two main realizations of the
decomposition method on the surface of coefficient discontinuity by using
Poincaré-Steklov operators for a very simple case of the diffusion equation with
piecewise-constant coefficients. In the first realization there arises an equation
for the trace of the solution on this surface, in the second one there arises an
equation for the normal component of the flux.

In Section 3 for the problems from Section 1 we present a known iterative
method whose grid version is regarded as the method with spectrally equivalent
operators. It is shown that under a special choice of the initial guess this method,
first, uniformly converges in all possible values of coefficients of the equation
solved and, second, permits realization on the functions defined only at the
coefficient discontinuity boundary. Moreover, its representation in terms of the
Poincaré-Steklov operators coincides with one of the iterative algorithms in the
first-type decomposition method considered in Section 1. A particular case of
infinitely large coefficient discontinuity was studied earlier in [3].

In Section 4 we have obtained similar results for the flux iteration method
with the only difference that its representation in terms of the Poincaré-Steklov
operators coincides with one of the iterative algorithms in the decomposition
method of the second type but not of the first one.

2, Formulation of domain decomposition main equations. Let us prescribe non-
overlapping simply-connected bounded Lipschitz domains £, and £, such that

mes">0, ['=3Q,Na3Q

and let the domain & defined by the equality 2 =0, U @, be also a Lipschitz
one. Consider the equation

divkVu - =0, ueWi(Q) @.1)
with the piecewise-constant coefficient
k=kin Q, k=const>0, i=0,1.

As known, the generalized solution to problem (2.1) exists and is unique for any
right-hand side fe [L,(£2). The following continuity conditions are valid at the
boundary I':

=0, [&Vu-f),1=0. (22)
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These conditions imply equations of the two main realizations of the domain
decomposition method at the ‘cutting line’ (common boundary of subdomains) I
[11. .

Introduce restriction spaces H = WZl(Q) I g i = 0,1, and operators ¥, of taking

i
the trace on I" of functions from H,. For solenoidal vector functions (with zero
divergence) in the domain € define the operator v, of taking the normal
component on I". Then conditions (2.2) can be written in the form

Yoo = "1t
VolkgVily — i) + vk Vi = f) =0

here and henceforth, the subscripts of functions mean that the restirictions of the
functions are taken on Q,i=0,1
Define Poincaré-Steklov operators S, by the relations [1,5]

(23)

Sy=9 & y=w(W), ¢=yv, 4dv=0in Q, v=H.

Note that here we have v(Vv)=dv/on on I.

Let us derive the equation of the first version of the decomposition method.
To make use of the Poincaré-Steklov operators, it is necessary to pass from u to
the piecewise-harmonic function. To this end, define the function v by its
restrictions v, which are the solutions to the problems

div(kVv,-f) =0 in 2, v e WD). 2.4)

Then the difference w=u—-v is a piecewise-harmonic function and from
conditions (2.3) we derive the conditions for the difference

YQ(W()) = 71(W1)

kOVO(VWO) + klvl(le) =k Vi + 1) + vV, + 1)

as y,(vy) = ¥,(vy) = 0 by the definition of v. Set

(2.5)

9= yg(wo) = }’1(W1)

and write down the left-hand side of the second equality in (2.5) by using the
Poincaré-Steklov operators

Sy L+ kST o= .. (2.6)

This condition is considered in the decomposition method as equation in ¢.
To solve it, we can use various iterative methods, for example, the stationary
Richardson method

¢n+1_ g,n

A+ (ySg t + ST e — . = 0. @7
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Method (2.7) with an appropriate 7 >0 converges in Wzl/ 2(I), at least, at the

rate of geometric progression for any initial guess ole ﬁ’l/ 2(I") if an auxiliary
operator A is properly chosen. Moreover, the common ratlo is independent of
ky and k;. The typical choice of 4 is A=, “Lord= S ~1[1,5]. The choice of
A in (2.7) is considered in more detail in Sectlon 3.

In the second version it is convenient to define the function v in a somewhat
different way:

div(kVv, —-£) =0 in v.e H

1 i i 258)
vV, - f) = 0.

The function v may have a discontinuity on I". From (2.3) and the definition of
v we have relations for the difference w=u —v:

70(w0) - 'J’l(Wl) = yo(v()) - 71("1)

kovy(Vwp) + vy (V) = 0.

2.9)

Set

v= kOVO(Vwo) = — kv (Vw,)

and write down the first equality in (2.9) by using the Poincaré-Steklov operators.

y 1’SO thy 1Sl)w = y()(vo) =) (2.10)

In the decomposition method this condition is treated as an equation in y. To
solve this equation, we can also use the stationary Richardson method

W’Hl _ V/ 1 _
B——-——;—-— + (kg S+ k1 SOY” = 9y + () =0. (2.11)

Method (2.11) with an appropriate 7> 0 converges m W, 1 2(I’) at least, at the
rate of geometric progression for any initial guess y% e W Y21y if an auxiliary
- operator B is properly chosen. Similarly to method (2. 7) the common ratio is
- independent of k and k- If the appropriate operator 4 in (2.7) is known, we
can choose B =A 1, specifically, B = Sy or B =3,. This problem is considered in
detail in Section 4.

3. Iterations of gradients and their realization at the ‘cutting line’. To solve
problem (2.1), let us consider the iterative process

n+l n

u o
A————+div(kVu" - ) =0, u" e WD) (3.1)
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with the initial guess 1° which is the solution to the problem

div(Vu® -g) =0 in @
flky in 9, (32)
flk, in @,.

Method (3.1) is equivalent to the iterations of gradients:

Vutl - gy 0
- +PkVu" -f)=0, u"eWXRQ) . (33)
where P =VA " ldiv and 4 LW, _1(.(2) ﬁ’l(.())

It is known that for an appropriate 7>0 (for example, for any positive
T< 2/maxk) iterative method (3.1) converges in Wl(.Q) with an arbitrary initial
guess ule Wl(.Q) at least, at the rate of geometric progression. However, the
common ratio is dependent on k, and k;, in particular, for ky/k, —~0 the
convergence dramatically decreases.

Let us show that with the special initial guess u® from (3.2) the common ratio
estimating the convergence rate of process (3.1) is independent of k; and k;
Introduce the error function &” =u”" —u. We can directly verify the fact that the
function €% is piecewise-harmonic, i.e. Aal” =0 in @, i=0,1, hence, by
induction all &” are piecewise-harmonic as (3.1) implies

8n+1 —gh o
A +divkVe" =0, &"eWiQ). (34)
T
The convergence rate of iterations (3.4) is determined by the relation 2z = 2/2
of the constants from the inequalities

0< 2 =< (kVeVe)/(VeVe) < &
0 3.5)
eeWiQ), Ag=0in Q.

Here and henceforth, (+,+) is an ordinary scalar product of vector functions in
IL,(2). The condition of piecewise harmonicity in (3.5) plays a dicisive part as it
is this condition which makes it possible to obtain the relation # independent of
ky and k. We have

(kVe,VE) = ky(Ve, Ve, + ki (V2,78),;
= ky<Vy(V&). 1&g > + ky <v(Ve). 8> (3.6)

= <{kSy L+ kS reve>

where ye= Y ="¢E a5 861%@1(!2). Here and henceforth, <-+,*> is an
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ordinary scalar product in L,(I') and also the duality relation for the pair of
spaces W, 1 2(l"))(Wl/ X(I"). Likewise, for the denominator of the fraction in
(3.5) we have the representation

(Ve,Ve) = <{kyS; L+ kS, e pe>.
Thus, (3.5) is equivalent to

_ <tk t+ kS hee>

0<z <z, oeWVD). 3.7
G5 1+S Ty, 9 e W;/«I') (3.7)

Inequalities (3.7) are in turn implied by the 1mportant property of
Poincaré-Steklov operators [5] that the functional <8~ 1p.0 >1/ 2 i=0,1, is the
norm on W1 2(I'), which is equivalent to the ordinary norm ||¢||W1 a/2(ry Indeed,
we have in the numerator

<tgSy ' + kST o> = max{Hloly

and in the denominator
<{Sg '+ 800> = 0l

hence, both estimates 2 and 2 = max{ki}, and their relation & is independe:
of ky and k.

Returning to method (3. 1) we can state that the error in (3.4) with a definite
choice of 7 decreases in Wl(Q) at least, at the rate of geometric progression
with the common ratio independent of k. For example, for 7=1/max{k} the
following estimate is valid:

"'Snuw,g(g) <(1- $)”||80]IW21(Q). (3.8)

Of interest is a comparison of the behaviour of errors for decomposition
method (2.7) and method (3.1). Similarly to transformations (3.6) we obtain a
process equivalent to (3.4) for traces of the errors pe™:

n+1

ye" T — ye”

{ 50—1 + 31—1} + {koS(;l + klsl‘ 1}))8” =0. (39

On the other hand, from (2.7) we directly derive the formula

8“+1— et
Al T s kS e =0 (3.10)
T

in which we denote yg® = p" - yu. Iterative method (3.1) thus leads to formula
(3.10) for traces of the errors ye”, which is a particular case of similar formula
(3.10) with 4 =5y 1 +87 ~1 for decomposmon method (2.7). The particular case
of k=0 and k1 1 m(39) and 4 =8~ ,kO k =1, in (3.10) was analysed in
Bl

Similarly to the above-given arguments concerning the convergence estimate
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of method (3.9) we can establish the fact that method (3.10) with an appropriate
7 converges, at least, at the rate of geometric progression with the common ratio
independent of k; if the linear operator A: Wl/ 2ry— w, 1/ Ar) is symmetnc in
L,(I') and the funcuonal <Ap,p>1/2 defmes the equ1valent norm on W1 A
51

Methods of type (3.1) were analysed in the paper by N.S.Bakhvalov and
A.V.Knyazev which is called ‘Methods of cost-effective computation of averaged
characteristics of composites of a periodic structure composed of essentially
heterogeneous materials’ and published in ‘Computational Processes and
Systems’, No.8, Nauka, Moscow, 1990.

4, Iterations of fluxes and their realization at the ‘cutting line’. In [4] we
suggested an approach to solving the problem of type (2.1), which is based on
iterations of fluxes. Such iterative methods by their efficiency are approximately
equivalent to methods of type (3.1), only the requirements for memory are
stronger as in iterations of gradients (3.3). In particular, they converge, at least,
at the rate of geometric progression with the common ratio independent of k.
Let us consider one of the simplest methods following [6] and the paper by the
same authors mentioned at the end of Section 3. Transform problem (2.1) to the
equivalent form

divie -f) =0, k™ lo=Vu
] (4.1)
ueWiI), oely(9Q).
As in (3.3), introduce the operator
P=valdiv, where 4 LW, (@)~ W}(Q).

It is known that P is the orthoprOJector in [Lz(.Q) onto the subspace
P= VWl(Q) clL(2), and the operator P+ =I~P is the orthoprojector in

L,(2) onto the subspace PLl of functions with zero divergence. Write down
(4.1) using these operators:

P(c-f)=0, Ptk lo=0. (4.2)
Note the possibility of geometric interpretation of equations (4.2):
oe@f+PLynker(Plte™Y).
To solve system (4.2), make use of the method of iterations of fluxes ¢”

n+l _
O pli-lgn=0, =P 43)

T

For errors &" = 6" — o the following recurrent formula is also valid:
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8n+1_8n

+Plr1gn=0. (4.4)
T

The initial error &° =Pf-oe PL, ie. d1V80 0 in Q and in each subdomain
Q is a gradient of a function v, e H, = Wl(Q)l @ and this can be verified in a

straightforward way. Then by virtue of (4.4) the same properties belong to all
errors &". Define the subspace G < IL,(2) by the relations

eebodive=0in 2, &=V in @,y ek

which contain all errors &" € 6. The rate of convergence of iterations (4.4) in
L,(2) is determined by the relation #=/& of the constants in the
inequalities

O<z<(k lee)/(ee)<Z, &e<B6. 4.5)

From the definition of the subspace G and the Poincaré-Steklov operators we
derive

(k™ Te,8) = ky 1V, Vvp)y + K 2V, Wv,),

=k Y vg vve> + K< > 4.6)

= <y, fky 1S, + kIS >

where ¥ =g = —v¢. Making use of the similar representation for the
denominator we arrive at the inequalitites equivalent to (4.5):

<y, {ky 8, + kIS >
<y {8, + S;Hy>

As known [5], the functional <v/,Sw>1/2, i=90,1, is the norm on W"lﬂ(f’)
which is equivalent to the ordmary norm “"’"W—i/ﬁ(r) Therefore, in (4 6) we
have in the numerator

Ul + kT 83w> = maxth Y iy

and in the denominator

O<e=<

<2, geW,VXI).  @&7)

<8+ S = Wy
hence, both estimates g and Z = max{kl.‘l}, and their relation 2 is
independent of k.
It is not accidental that the same symbol & is used for the relations of
constants in (3.5) and in (45) as & in (3.5) and # in (4.5) can be chosen

identical. It can be easily established taking into account the equality of extreme
values of the functionals

<8 low>/<8 00>,  <wSw>/<ySw>.
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Thus, the errors in (4.4) for an appropriate 7 decrease in [L,(£2), at least, at the
rate of geometric progression with the common ratio independent of k. In
particular, the following estimate is valid for 7 = min {k}:

el oy < —&’)"IISOII[L Q- (4.8)
25D 2(52)

Let us compare the behaviour of errors in decomposition method (2.11) with
that in method (4.8). Similarly to (4.6) we obtain a process equivalent to (4.4) for
the normal component ve" = v&' = — v,' of the errors " on I':

n+l _ ,.n
S+ Sp——+ kg 15, + k1S, }ve" = 0. (4.9)
On the other hand, from (2.11) we derive
ve'tt 1_
B—— + {ko"ls + k1S e = (4.10)

where we have changed the notation ve” = y" — y.

We arrive at the conclusion that formula (4.9) can be treated as a particular
case of formula (4.10) with B =S, + §,.

The choice of the operator B sultable for iterations (2.11) in the sense
indicated at the end of Section2 is the choice B: W, 1/ Xr)— Wl/ )
symmetric in L,(I) under which the functional < l//,Bl//> 1/2 defmes the
equivalent norms on W, 1/ 2(I).

The results of the paper can be extended to the case where €, and Q, are
not simply connected and even not necessarily connected under the condition
that I remains a Lipschitz boundary.

The results can also be extended to the case of other boundary conditions on
3Q and to the case of elliptic systems, equations of the elasticity theory and the
Stokes problem.
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