CHAPTER 19

Mixed Finite Element Solutions of Second Order Elliptic
Problems on Grids with Regular Local Refinement™®

R. E. Ewingt
R. D. Lazarovi
P. S. Vassilevski

Abstract. A discretization of second-order elliptic problems using rectangular
Raviart-Thomas mixed finite elements on grids with local refinement is presented.
Two-grid BEPS type preconditioners for the resulting linear system of equations
are constructed and studied. The iterations are performed in a subspace after elim-
ination of the velocity unknowns. Numerical experiments that demonstrate the fast
convergence of the conjugate gradient method with the constructed preconditioner
are presented.

1. Introduction

In many applications, it is desirable to have high accuracy for both the primary
unknown and some function of its gradient. Solving for both quantities simulta-
neously often gives higher-order approximations to variables like fluid velocities,
fluxes, or stresses while directly coupling important associated physical properties.
Mixed finite element techniques have been applied for this purpose to elliptic or
parabolic problems alone [4] or in systems, coupled with other equations [1]. Vari-
ous theoretical results have been obtained with regard to accuracy [4] and efficient
implementation [2,3,8] of these methods.

Often the applications are of sufficiently large scale that local grid refinement
techniques are required to resolve important local phenomena. Efficient solution
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techniques for solving the algebraic equations resulting from the mixed methods
on locally-refined grids are required. A domain decomposition type of approach is
presented to construct efficient algorithms of this type.

A mixed finite element discretization of second-order elliptic problems on locally-
refined rectangular grids using Raviart-Thomas elements of arbitrary degree has
been proposed in [8]. The case of repeatedly refined meshes has been studied in
[11]. This technique uses “slave” nodes in a manner that ensures the necessary
continuity of the velocity, satisfies the Babiiska-Brezzi condition, and thus yields a
unique solution and an error bound.

In this paper, we consider the linear algebraic system arising from this discretiza-
tion and construct a BEPS type preconditioner for the reduced Schur composite-
grid matrix of the problem for the pressure unknowns. Here, we investigate the
BEPS-preconditioner using the algebraic approach from [5]. The main difficulty
with the mixed finite element discretization is to show that the explicitly reduced
system for the pressure unknowns (in this case we use the lumped mass approxi-
mation) can be assembled element by element, so that the corresponding element
stiffness matrices are semi-definite and their null-spaces contain just the constant
vectors. This fact was verified for the Raviart-Thomas elements of arbitrary order
r > 0 in [4]. This enables us to prove that the Shur complement of the reduced
matrix, when eliminating the nodes that were added in the local refinement, is
spectrally equivalent to the reduced matrix for the pressure unknowns on the global
coarse grid. Then the algebraic theory from [5] applies and shows that the BEPS
preconditioner is spectrally equivalent to the composite-grid reduced matrix for the
pressure unknowns. We consider this to be the main result of the present paper; to
our knowledge, this seems to be a new result.

2. Preliminaries and Mixed Finite Element Discretization
Let W = L?(Q2) and
V = H(div; Q) = {v = (v1,v2), 01,02 € L*(Q), divv € L)},

where O = [0,1]2. For any u,v € V and w € W we define the following bilinear
forms

a(u,v) = (@ tug,v) + (@ ug,v2), b(u,w) = (divu, w),

where o(z,y) > ag > 0 is a given bounded function in 2 and (+,-) stands for the
standard inner product in L*(£2).

We consider the following variational saddle-point problem: find u € V and

€ W such that
’ a(w,v) = b(v,p) + b(u,w) = (f,w) 2.1)
for all v € V and w € W, where f € L*(Q) is a given function.

The problem (2.1) corresponds to the weak formulation of the homogeneous
Dirichlet boundary value problem for the equation div (e grad p) = — £ split-up as
asystem —a grad p = u, divu = f. In the following, we call p the pressure E?,nd u
the velocity vector. In a similar way, one can consider a nonh?x;legeneous Dirichlet
boundary condition or problem with a mixed boundary §ond1ﬁmn, when on a part
of the boundary, 2 Neumann boundary condition is specified.
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In [8], a finite element approximation to (2.1) on rectangular grids with local
refinement was described and studied. The goal of this paper is to investigate the
convergence properties of the PCG method for this discretization with the BEPS
preconditioner. We first briefly describe the finite element approximation.

Let T}, be the initial coarse partition of €} into square finite elements of size
h., and let Q;, a subdomain of (), be a union of a certain number of coarse finite
elements. We partition the elements in 4, introducing a finer mesh as shown in
Figure 1. We suppose that the refinement is uniform with a fine-grid step size
hy and is consistent, i.e. any two adjacent elements in €; have the same partition
along their common side. We call this partition of € into coarse and fine elements
a composite partition (or composite grid) and denote it by T5.

2
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Figure 1. Finite element partitioning of )

We denote by W7 and V7, the Raviart-Thomas finite element spaces associatec.
with the coarse partition T} (see, e.g. [8]). Now we construct the composite-grid
finite element spaces W; and V7. Since the elements in Wj do not require any
continuity across the finite element boundaries, an obvious definition of WY is

Wy = {w(z,y) : w(z,y)|. € Q(r,r), for any e € T},}.

For the construction of 'V}, we use the simple idea of enriching the coarse-grid
space V}, with some functions which are nonzero only in Q4. In the standard FEM,
this construction has been described in a compact form by Dryja and Widlund
in [10]. For the mixed finite element method, the space V] has been described
in detail in [8], (see also [11]). This construction can be summarized as follows.

o
The space V}, ({11) consists of vector-functions v which: (i) vanish outside of {;
(ii) have zero normal component at the boundary of ;; and (iii) have restrictions

on {); that are elements of the Raviart-Thomas space on the fine-grid partition Ty,
in £;. Then,

= Vit Vi ().
Nodes that will give a nodal basis of V} at the interface elements with “slave”

nodes are shown for v = 1 in Figure 1b. In all other elements, the Gauss anc
Lobatto points are chosen for nodal points (see [8] for a detailed description).
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We denote by ax(-,-) an approximation to a(-,) using quadrature formulas for
evaluating the integrals so that in each finite element we have the same nodes as
the nodal basis in V}. For example, in the case r = 1, for (o 'vi,u;) these are
the points marked by “e” and for (alv,v;) the points marked by “x” in Figure
1b. These quadratures produce the so-called “lumped mass” approximation of the
form a(-,-). Then the finite element approximation to (2.1) is: find u € V7 and
pr € WY such that

ar(up,v) — b(v,pp) + b(up,w) = (f,w), forall ve V) and we Wy . (2.2)

The stability and uniqueness of the discrete solution and the error bounds of this
mixed finite element discretization were studied in [8].

If we introduce vector notations Uy, Us, P for the unknown values of uyp, usp, pr,
correspondingly, at the nodes and the following matrix notations for the bilinear
forms

2 2 2
an(up, vi) = S VIMU;, —b(vi,pr) =3 VINP, —b(us,w) =3 WIN[U;,

i=1 i=1 t=1

then the matrix form of (2.2) will be

M 0 M1[W 0
0 M, M| U | =] 0 |. (2.3)
NI NT 0 P —F

The matrices M; are block-diagonal with blocks which are diagonal matrices with
an exception along the interface between the coarse and fine-grid regions. Then the
velocity unknowns in (2.3) can be eliminated explicitly, and we obtain the following
system for the pressure unknowns P.

AP = (NFM*N, + NI M;'N,)P = F . (2.4)
The structure of the reduced Schur matrix A will be studied in the next section.
3. BEPS-Preconditioner for the Composite-Grid System

Together with the system (2.4) for the composite-grid partitioning T}, we con-
sider the FE approximation to the problem (2.4) on the coarse-grid partitioning Th;
this leads to the system o

AP =F, (3.1)
where the vector P corresponds to the unknown values of the pressure at the nodal
points of the coarse grid 7. ~

Let us partition the vector P (and similarly P) in such a way that the unknowns
in the refined region ; are in the first group and the remaining unknowns are in
the second group, i.e.

Pl in Ql 5 131 in QI 5
P= [Pz} { in Q\Q,° P= {}32} i in O\Q (note, P, = Py). (3.2)
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Then the matrices A and A admit the following domain decomposition block
(factorized) forms

_ | An Ap | _ | An O I A A, _ =
A_[Azl A22]_{A21 S:l [O 7 ,S—-A22_A21A11A12,

i An Aig _ A 0 I A7lAy, &_ i i F-1g
4= [ An Ay } B [ An S’} [ 0 1 , 5= Ap — Andy A (33)

Then the two-grid preconditioner B of Bramble, Ewing, Pasciak and Schatz [7]
derived algebraically in [5] is defined for the system (2.4) as follows:

_|An 0 I Aff As
B—[Am s] [0 T | (3.4)

i.e. in the factorized form of A, we have replaced the Schur complement S by
S. From the representation (3.4) of B, we see that we have to invert Ay; (which
corresponds to the stiffness matrix in the refined region Q) twice. Inverting S is
equivalent to solving with the coarse-grid matrix A and taking P, of the resulting
vector P. This is seen from the representation

ffl:[: Sil} % Q(\zsli1

Thus, solving the system with the preconditioning matrix B reduces to solving
two problems with the pivot block A;; and one problem with the coarse-grid matirx
A. The practical importance of the preconditioner B is based on the following main
result.

Theorem 1 The preconditioner B is spectrally equivalent to the matriz A with
constants which do not depend on the mesh sizes hy and h. (but possibly depend on
the ratio hy/h., on the local jump of the coefficient « in one coarse element and in
the degree of the polynominals r).

Proof. Since

_ S Y B | I A3A
14 _ 71 . _ 11 A1z
BT7A=U {0 S_ls]U, where U_[O I },

the eigenvalues of B~'A are either 1 or equal to the eigenvalues of 5~1S. Then the
spectral equivalence of B and A reduces to the spectral equivalence of S and S.
Using the property of the Schur complement that

PTSP, = inf PTAP, P:H}} b
P 2
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and similarly for S, the problem reduces to finding constants v, and -y, such that
vy inf PTAP < inf PTAP < v, inf PTAP .
Py Py Py

This is the most difficult and technical part of the proof. It is based on the
possibility of obtaining the stiffness matrix A employing an element by element
assembling procedure and the local analysis technique based on the two-level or-
dering of the unknowns. The full proof will appear in the Proceedings of the Domain
Decomposition Conference, published by the Soviet Academy of Sciences.

4. Numerical Examples
We consider the following model problems for (2.1):

Problem 1 (with smooth coefficient a(z) and localized solution u(z)):

ofa) =1/ [L+10(z} + 23)], w(z) = $(21)d(z2),

t—0.
$(t) = sin27r——0—%§5E , t€(0.8751),
0 ) , t€(0,0.875).

Problem 2 (with piecewise constant coefficient a(z) and piecewise smooth solution
u(z):
{100, 2,2, > 0.875,
o(w) = { 1,  otherwise,

w(z) = (z1 — 0.875)(z2 — 0.875) sin F 2y sin T2
a(z) 2 z

We solve these problems on a grid with n? initial coarse-grid points with a
regular local refinement in the subdomain Oy = {(z1, z2),z1,z2 > 0.75} C O with
ho/hy = 3,5 and 7. We apply the preconditioned conjugate gradient method using
the BEPS preconditioner described above. The stopping criterion is

RTR <€, with e=107"%,

where B = F' — AP is the residual vector and P is the current iterate. As an
initial guess, we choose a piecewise constant interpolant of the coarse-grid solution
P=AF.

In Table 1 we present the numerical experiments for the two problems formulated
above for the lowest-order Raviart-Thomas finite elements, r = 0. We report the
number of unknowns N in the reduced system for P, the aspect ratio h./hy, the
number of iterations iter for achieving the required accuracy €, and the average
reduction factor

p=(A/Do) /e, A = (RTR)'/?, Ao = (R Ro)'?,

where R, is the residual of the initial guess and R is the residual of the last iterate
that satisfies the stopping criterion.
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Table 1
ne | he/hy Problem 1 Problem 2 N
iter p iter P

12 3 3 0.10x1072 4 10.18x10° 2] 272
5 3 0.12x1072 | 4 | 0.15x1072 | 528
7 3 0.12x10~2 4 10.22x10°2 | 912

24 3 4 10.39x10°2 4 [069x10"2 | 864
5 4 |044x1072 | 4 |[0.74x10"2 | 1440
7 4 | 0.46x10™2 4 |0.73x1072 | 2304

48 3 4 10.41x10~2 4 10.95%x1072 | 3456
5 4 |0.45%x10~2 5 | 0.11x10~2 | 5760
7 4 |0.45x10~2 5 | 0.11x10~2 | 9216
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