CHAPTER 4

On Some Modern Approaches to Constructing Spectrally
Equivalent Grid Operators

E. G. D’Yakonov*

Abstract. A finite element grid system Ly, =f, (L, = Lh* > 0) arises as a result of
discretization of the mixed boundary value problem in a bounded d-dimensional
domain Q (d = 2) for the steady-state equation of heat conduction with the
piecewise-constant thermal conductivity. The considered p-level triangulation
T(p)(.Q) is obtained due to the recurrent refinement of the zero-level
triangulation T(O)(Q). We suggest constructions of the multigrid preconditioner
B, spectrally equivalent to the operator L, and such that the solution to the
system of type Bhvh =g, can be obtained in, at most, KNh arithmetic operations,
N, is the order of the system to be solved. It is especially valuable that the
equivalence estimates 9, = J,> 0 from the inequalities

OB, <L, <95,

lead to the condition number J = 6160'1 close to unity even for the case of
strongly varying thermal conductivity (0 = 1.5 is typical of d =3 and the cubic
grid). We use ideas of the grid domain decomposition and the splitting of the
finite element space into a direct sum of subspaces. Possible generalizations are
indicated including the case of Lh =0, B, =0, and also the case of boundary
value problems on two-dimensional manifolds with complex geometry (for
example, on the surface of closed polyhedron in the three-dimensional space).
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1. Introduction. Modern constructions of preconditioners B, = B = B'>0 [1-3]
lead for d-dimensional problems with d =2 and d =3 to the estimates

o)B<sL=<JB (1.1

(L,=L =L" >0 is the original grid elliptic operator) with condition numbers
d= (5160_1 independent of the grid and close to unity even for problems with
strongly varying coefficients. The approach to be developed below gives required
constructions of operators B also for the general case d = 2 due to combining
grid domain decomposition (finite element space splittings) and the theory of
two-stage iterative methods [2].

Essential are also geometrical aspects of partitioning of the d-dimensional
simplex into 2 congruent constituent simplexes with edges reduced by half (one
of them can match the other by an isometric mapping).

The following notation is introduced here: H is an Euclidean space; #H) is
a linear normalized space of linear operators mapping H into H; #*(H) =
{B|Be #«H),B=B">0}; H(B) is an Euclidean space with the scalar product
(y)p = (Buy), lully = (wu)y? All5=maxy, _{lullg), I is an identity
operator.

2. Original grid problem. Let 2 be a bounded domain from RY with the given
triangulation T(0() composed of a finite number of simplexes I,e TOW@Q), T
is the boundary of Q; [Q]=QuUT, I'y=[I}] consists of a finite number of
(d-1)-dimensional faces of simplexes T, T(O)(Q); Iyer; x=|x

17"'9'xd]s
(“’V)O,O = (ou(x)v(x) dQ. Let us consider the Hilbert spaces V, = Wzl(.Q;F p) and
G (2]

)= (LVu-Wyg,  @¥)g = (@) Vu- W), 21)

a(x) = a(Ty) for x e T, a(Ty) is a constant, flullg = Il

The (I-'F 1)-level triangulation TV +1)(Q) is constructed by using TO(Q) due
to the refinement of TU)(Q) by half [the simplex 7, & TOQ) is partitioned into
2d simpexes T, , € TOQ), 1 = 0,...p—1].

Let 20 be a set of vertices P‘.(I) of simplexes 7}, which do not belong to T 0

and‘each vertex (node) P,.(l) be in correspondence with the standard basis

continuous piecewise-linear function t/?i(’)(x): é‘/’.(l)(Pi(I)) =1, $V =0 in the
’ i

remaining nodes of Q, lf/i(’)(x) is linear on each T, e T(I)(.Q). Let

50 = 4 200 de) = ;
GV = {u(x)l u(x) = f}(ngg(nui'//i(l)(x)} , 1=0,.p (22)

N,,, is the number of nodes in Q(“l), N1+1=Nl+N1(1)’ RM+1 = gU+D) =

(/+1) (+1 1+1) _
H1 x H2 ), HZ( +1) _H(I), Y, = {u‘.} eH(l+l)’ U= [E1(1+1),u2(1+1)]T’
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L_ti(l e Hi(l”), i = 1,2. Along with the basis {1/7,.(1 D)} for GU*D consider the
basis {70*D@)y with gV =g@D for POV e *N\Q®  and
y‘/i(l ) = lf/i(l) for Pi(l *De® assuming the numbers of nodes from
Q¢ +1)\Q(1) to be less than those from Q). The indicated choice of the basis
leads to the splitting

GV =GV e G DG, 1=0.p-1 (23)
6;2(1+1) =GO, f;l(l+1) ={0|0eGUD Pi(l)) =0 VPl.(’) e . (24
The Gramm matrices for these bases take the form
L1({+1) L1(é+1) El({+1) El(éu)
LU+ - L+ - (2.5)
LY 1§ Lg Lg
l_‘l({+1) =L1({+1), f,z(éﬂ) =10
Note that

LDy ) = 2O = CC Dy, ), 2D GOV @6)

3. Schur matrices and angles of subspaces. Let  S,(L ¢+1)y = Lz(é* D_ Lz({*l) X
L)) ILED be the Schur matrix for LC*D; the angle o, €[0,1/2]
between GI/*D and G{'*V from (2.3) is determined by the inequality [2]

l(ﬁfl+1),ﬁ2(l+1))l < cosa1+1||ﬁ1(1+1)|| ”ﬁ2(1+1)"’ ﬁi(1+1) - Gi(l+1)’ i=12 (3_1)
if d =2, then coszal +1 <3/4 [1]. In 1978 the author [2] published

Lemma 3.1. The Schur matrix .Sz(l_, (”1)) is the Gramm matrix for elements
- with @ = y‘/i(l +1) —Ply‘/i(l *+1) where P, is the orthoprojector in G onto
G 1(1+ 1)

Lemma 3.1 (see also [1]) implies that S,(L¢*V) = $,(L¢+D);
(Sz(L(I+1)L‘2(I+1)’%(I+l)) - "(I _Pl)ﬁ2(1+1)"2 =X

20+ = (+)p ) e GUHD
0= 0Zgets Wi €9 52)
sHaf O < X < i DIP,  5? < sin’ey,

SO <L) =5 D)< LO.
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Theorem 3.1. Let all simplexes T, from TO(Q) be standard parts of the
partitions of some cubes into d! congruent simplexes [2]. Then the angles %,
[see (3.1)] satisfy the estimates

cosqy, < y=@2H/2,  Z=1-a279>0.

4. Two-stage iterative methods. The following theorem [2] is well known:

Theorem 4.1. Let A € *(H) and an iterative method be known for solving
systems Ay =g which leads in k iterations to the relation y* - 1% =Zk(1_z0 -v)

with the operator of reduction of the error Z, =2, which is symmetric in
AH(A)) and such that ||Z] , < g < 1. Then,

B=A(l-2)"'eg*(H), (1-gB<A<(l1+q)B 4.1

if also Z=0 in HAH(A)), then A < B; the solution of the system Bw =g
coincides with the kth iteration yk in the indicated iterative method for v = 0.

Theorem 4.2 {1,2]. Let the iterative method
AW -y = g (At -g), n=0,. k-1 (4.2)

be considered where AeZ*(H), 4e2'(H), oi<A<a4d, a,>0,
o=a9; !, {t7} ={t} or {r, 1} ={t"},i=0,.k-1, 1, = g(cos m(2i+1)/(2k)),
7 = g(cosm(2i+1)/k), @(t) = %[a1 +0y+ (0, -0y)]. Then the operator
Z=(-1A7'A)..(I-1_.A74) is symmetric in HAH(A)), |Z)|, <g, (in
case of {f}), 0<Z=<q'I (in case of {£'}), g = [L((o + 1)/(c - )]},
qk+ =2 /(1+q), (1+ g/ (1 - q)=1/(1- qk+), T.(A) is the Tchebyshev
polynomial of the kth degree.

5. Construction of multigrid operator B. The following lemma is valid:

Lemma 5.1. There exist constants 01, = 0y, > 0 defined only by the geometry
of the simplexes T, such that for the level [+ 1 = L,..,p there exists a diagonal
matrix 4{*D e LH*D), and additionally g4 < LY < g, 40+,

Making use of Theorem 5.1 for iterative method (4.2) wit}} /il=A ({”),
A= Ll({”), % = %y Oy = Oyp» K =k, and {7}, we obtain the operator '

I+1) 7 ((+1 - :
B{*D=L{* V1 -z 0< Zt =2 Ja=Z<glL in HI*DU+1)

+ - . .

where G, I8 small for large k1 Note that the indicated iterations permit obvious
parallelizing; a more complicated choice of Al({+ D s possible especially for
square grids which increases the convergence rate,
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Lemma 5.2. Let B® e 2+ (H®), 6 VBO < LU < 6BV, 0< ¥ <1<
>0 1 ’ 0 17
o) = al(")(ao(l))_1 and let sin® o, = 52> 0. Then,

$200OBO < LEH - LB D) 1LEHD = 5,ROD) < s OB,
Consider iterative method (4.2) with A =SZ(R(1+1)), A=B0O, a, 3200(1) <1,

o, = o‘l(l) > 1, k =k, and parameters {t}. By Theorem 4.2 we have ||Z,)] 4 < Gy
Z,=2, o = Z. Therefore,

Bl({+1) L1(£+1)
B+ = (5.1)
L2({+1) SZ(R(I+1))(12 _Zz)—l +L2({+1)(B1({+1))_1L1(£+1)

B(I+1) p- .‘Z’+(H(l+1)).

Theorem 5.1. If the hypotheses of Lemma 5.2 are satisfied, we have

ao(l+1)B(l+1) sL(’”) < 0.1(1+1)B(1+1)

+
1 9,

a()(l+1) =(1- qkz)(l + 51)_1’ 4 01(l+1) =1+ 9,

1- coszc)zl+1 1 'y
(5.2)

t+52 1
o(+D =f(a(1)), fH=01+¢) l:l + 2Tk2 [t - 2] ] , t=1.

N

Theorem 5.2. Let sZ > 0, the equation ¢ = f(¢) [13] have the solution t*>1 and
the operator B = B® be constructed by using (5.1) for [=0,.p-1;
0< 00(0) <1< 01(0), 6@ <¢°. Then inequalities (1.1) with &,/8, = tT=6 are
valid for the operators L® =L and B.

It is obvious that ¢ exists for large k,. The case k, < 29 —1 where the
determination of (B (’))’1& requires KN, or less arithmetic operations is
important. If s2> 5/8, then k,=2 and k, =8 yields d = 1.4 (similar B® from
[3] for d =3 and the cubic grid require k, =4, d = 6.6). For d =2 the general
case 52> 1/4 is related to k, =2; if the grid is square, then & = 1.074 for k, =3,
k;=3 and J =14 for k2=2,k.1=3.

6. Possible generalizations. For local grid refinement the only difference is
related to the fact that the vertices Pi(”l) lying on the common boundary of the
domains with the old and new grids must not belong to QU*1). We have
obtained generalizations for the case of I;y= @ as well, and also for non-local
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boundary conditions. Generalizations are considered for problems on
two-dimensional manifolds with the complex geometry (for example, for a finite
number of polygons lying on different planes which do not have any common
sides) and also for systems of elasticity theory.
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