On Some Modern Approaches to Constructing Spectrally Equivalent Grid Operators

E. G. D'Yakonov*

Abstract. A finite element grid system $L_h u_h = f_h \ (L_h = L_h^* > 0)$ arises as a result of discretization of the mixed boundary value problem in a bounded d-dimensional domain Ω ($d \ge 2$) for the steady-state equation of heat conduction with the piecewise-constant thermal conductivity. The considered p-level triangulation $T^{(p)}(\Omega)$ is obtained due to the recurrent refinement of the zero-level triangulation $T^{(0)}(\Omega)$. We suggest constructions of the multigrid preconditioner B_h spectrally equivalent to the operator L_h and such that the solution to the system of type $B_h v_h = g_h$ can be obtained in, at most, KN_h arithmetic operations, N_h is the order of the system to be solved. It is especially valuable that the equivalence estimates $\delta_1 \ge \delta_0 > 0$ from the inequalities

$$\delta_0 B_h \leq L_h \leq \delta_1 B_h$$

lead to the condition number $\delta \equiv \delta_1 \delta_0^{-1}$ close to unity even for the case of strongly varying thermal conductivity ($\delta = 1.5$ is typical of d = 3 and the cubic grid). We use ideas of the grid domain decomposition and the splitting of the finite element space into a direct sum of subspaces. Possible generalizations are indicated including the case of $L_h \geq 0$, $B_h \geq 0$, and also the case of boundary value problems on two-dimensional manifolds with complex geometry (for example, on the surface of closed polyhedron in the three-dimensional space).

Moscow State University, Moscow, USSR.

1. Introduction. Modern constructions of preconditioners $B_h = B = B^* > 0$ [1-3] lead for d-dimensional problems with d = 2 and d = 3 to the estimates

$$\delta_0 B \le L \le \delta_1 B \tag{1.1}$$

 $(L_h = L = L^* > 0$ is the original grid elliptic operator) with condition numbers $\delta = \delta_1 \delta_0^{-1}$ independent of the grid and close to unity even for problems with strongly varying coefficients. The approach to be developed below gives required constructions of operators B also for the general case $d \ge 2$ due to combining grid domain decomposition (finite element space splittings) and the theory of two-stage iterative methods [2].

Essential are also geometrical aspects of partitioning of the d-dimensional simplex into 2^d congruent constituent simplexes with edges reduced by half (one of them can match the other by an isometric mapping).

The following notation is introduced here: H is an Euclidean space; $\mathcal{L}(H)$ is a linear normalized space of linear operators mapping H into H; $\mathcal{L}^+(H) \equiv$ $\{B \mid B \in \mathcal{L}(H), B = B^* > 0\}; H(B)$ is an Euclidean space with the scalar product $(u,v)_B = (Bu,v), \|u\|_B = (u,u)_B^{1/2}, \|A\|_B = \max_{\|u\|_{B}=1} {\|Au\|_B}, I \text{ is an identity}$ operator.

2. Original grid problem. Let Ω be a bounded domain from \mathbb{R}^d with the given triangulation $T^{(0)}(\Omega)$ composed of a finite number of simplexes $T_0 \in T^{(0)}(\Omega)$; Γ is the boundary of Ω ; $[\Omega] \equiv \Omega \cup \Gamma$, $\Gamma_0 = [\Gamma_0]$ consists of a finite number of (d-1)-dimensional faces of simplexes $T_0 \in T^{(0)}(\Omega)$; $\Gamma_0 \subset \Gamma$; $x \equiv [x_1, ..., x_d]$, $(u,v)_{0,\Omega} \equiv \int_{\Omega} u(x)v(x) \, d\Omega$. Let us consider the Hilbert spaces $V_1 \equiv W_2^1(\Omega;\Gamma_0)$ and $G(\Omega)$: G[2]:

$$(u,v)_{1,\Omega} \equiv (1,\nabla u \cdot \nabla v)_{0,\Omega}, \qquad (u,v)_G \equiv (a(x),\nabla u \cdot \nabla v)_{0,\Omega} \tag{2.1}$$

 $a(x) = a(T_0)$ for $x \in T_0$, $a(T_0)$ is a constant, $\|u\|_G = \|u\|$. The (l+1)-level triangulation $T^{(l+1)}(\Omega)$ is constructed by using $T^{(l)}(\Omega)$ due to the refinement of $T^{(l)}(\Omega)$ by half [the simplex $T_l \in T^{(l)}(\Omega)$ is partitioned into 2^d simplexes $T_{l+1} \in T^{(l)}(\Omega)$, l = 0, ..., p-1].

Let $\Omega^{(l)}$ be a set of vertices $P_i^{(l)}$ of simplexes T_P , which do not belong to Γ_0 and each vertex (node) $P_i^{(l)}$ be in correspondence with the standard basis continuous piecewise-linear function $\hat{\psi}_i^{(l)}(x)$: $\hat{\psi}_i^{(l)}(P_i^{(l)}) = 1$, $\hat{\psi}_i^{(l)} = 0$ in the remaining nodes of $\Omega^{(l)}$, $\hat{\psi}_i^{(l)}(x)$ is linear on each $T_l \in T^{(l)}(\Omega)$. Let

$$\hat{G}^{(l)} = \left\{ \hat{u}(x) \middle| \hat{u}(x) = \sum_{P_i^{(l)} \in \Omega^{(l)}} u_i \hat{\psi}_i^{(l)}(x) \right\}, \quad l = 0, ..., p$$
 (2.2)

 N_{l+1} is the number of nodes in $\Omega^{(l+1)}$, $N_{l+1} = N_l + N_l^{(1)}$, $\mathbb{R}^{N_{l+1}} \equiv H^{(l+1)} = M_l^{(l+1)}$ $H_1^{(l+1)} \times H_2^{(l+1)}, \quad H_2^{(l+1)} = H^{(l)}, \quad \underline{u}_{l+1} = \{\underline{u}_i\} \in H^{(l+1)}, \quad \underline{u}_{l+1} = [\underline{u}_1^{(l+1)}, \underline{u}_2^{(l+1)}]^T,$ $\underline{u}_i^{(l+1)} \in H_i^{(l+1)}, \ i=1,2. \ \text{Along with the basis} \ \{\hat{\psi}_i^{(l+1)}(x)\} \ \text{for} \ \hat{G}^{(l+1)} \ \text{consider the basis} \ \{\bar{\psi}_i^{(l+1)}(x)\} \ \text{with} \ \bar{\psi}_i^{(l+1)} = \hat{\psi}_i^{(l+1)} \ \text{for} \ P_i^{(l+1)} \in \Omega^{(l+1)} \backslash \Omega^{(l)} \ \text{and} \ \bar{\psi}_i^{(l+1)} = \hat{\psi}_i^{(l)} \ \text{for} \ P_i^{(l+1)} \in \Omega^{(l)} \ \text{assuming} \ \text{the numbers of nodes from} \ \Omega^{(l+1)} \backslash \Omega^{(l)} \ \text{to be less than those from} \ \Omega^{(l)}. \ \text{The indicated choice of the basis} \ \text{leads to the splitting}$

$$\hat{G}^{(l+1)} = \hat{G}_1^{(l+1)} \oplus \hat{G}_2^{(l+1)} \subset G, \quad l = 0, \dots, p-1$$
 (2.3)

$$\hat{G}_{2}^{(l+1)} = \hat{G}^{(l)}, \quad \hat{G}_{1}^{(l+1)} \equiv \{\hat{u} \mid \hat{u} \in \hat{G}^{(l+1)}, \hat{u}(P_{i}^{(l)}) = 0 \ \forall P_{i}^{(l)} \in \Omega^{(l)} \}. \quad (2.4)$$

The Gramm matrices for these bases take the form

$$L^{(l+1)} = \begin{bmatrix} L_{11}^{(l+1)} & L_{12}^{(l+1)} \\ L_{21}^{(l+1)} & L_{22}^{(l+1)} \end{bmatrix}, \quad \bar{L}^{(l+1)} = \begin{bmatrix} \bar{L}_{11}^{(l+1)} & \bar{L}_{12}^{(l+1)} \\ \bar{L}_{21}^{(l+1)} & \bar{L}_{22}^{(l+1)} \end{bmatrix}$$
(2.5)
$$\bar{L}_{11}^{(l+1)} = L_{11}^{(l+1)}, \quad \bar{L}_{22}^{(l+1)} = L^{(l)}.$$

Note that

$$(L^{(l+1)}\underline{u}_{l+1},\underline{u}_{l+1}) = \|\hat{u}^{(l+1)}\|^2 = (\bar{L}^{(l+1)}\underline{v}_{l+1},\underline{v}_{l+1}), \quad \hat{u}^{(l+1)} \in \hat{G}^{(l+1)}. \quad (2.6)$$

3. Schur matrices and angles of subspaces. Let $S_2(L^{(l+1)}) \equiv L_{22}^{(l+1)} - L_{21}^{(l+1)} \times (L_{11}^{(l+1)})^{-1}L_{12}^{(l+1)}$ be the Schur matrix for $L^{(l+1)}$; the angle $\alpha_{l+1} \in [0,\pi/2]$ between $\hat{G}_1^{(l+1)}$ and $\hat{G}_2^{(l+1)}$ from (2.3) is determined by the inequality [2]

$$|(\hat{u}_1^{(l+1)}, \hat{u}_2^{(l+1)})| \leq \cos \alpha_{l+1} \|\hat{u}_1^{(l+1)}\| \, \|\hat{u}_2^{(l+1)}\| \, , \quad \hat{u}_i^{(l+1)} \in \hat{G}_i^{(l+1)}, \quad i=1,2 \quad (3.1)$$

if d = 2, then $\cos^2 \alpha_{l+1} < 3/4$ [1]. In 1978 the author [2] published

Lemma 3.1. The Schur matrix $S_2(\bar{L}^{(l+1)})$ is the Gramm matrix for elements $\varphi_1,...,\varphi_{N_l}$ with $\varphi_i \equiv \bar{\psi}_i^{(l+1)} - P_1\bar{\psi}_i^{(l+1)}$, where P_1 is the orthoprojector in G onto $\hat{G}_i^{(l+1)}$.

Lemma 3.1 (see also [1]) implies that $S_2(L^{(l+1)}) = S_2(\bar{L}^{(l+1)})$;

$$(S_{2}(L^{(l+1)}\underline{u}_{2}^{(l+1)},\underline{u}_{2}^{(l+1)}) = \|(I - P_{1})\hat{u}_{2}^{(l+1)}\|^{2} \equiv X$$

$$\hat{u}_{2}^{(l+1)} \equiv \sum_{P_{i}^{(l)} \in \Omega} u_{2,i}^{(l+1)} \hat{\psi}_{i}^{(l)} \in \hat{G}_{2}^{(l+1)}$$

$$s^{2} \|\hat{u}_{2}^{(l+1)}\|^{2} \leq X \leq \|\hat{u}_{2}^{(l+1)}\|^{2}, \quad s^{2} \leq \sin^{2}\alpha_{l+1}$$

$$s^{2}L^{(l)} \leq S_{2}(L^{(l+1)}) = S_{2}(\bar{L}^{(l+1)}) \leq L^{(l)}.$$
(3.2)

Theorem 3.1. Let all simplexes T_0 from $T^{(0)}(\Omega)$ be standard parts of the partitions of some cubes into d! congruent simplexes [2]. Then the angles α_{l+1} [see (3.1)] satisfy the estimates

$$\cos \alpha_{l+1} \le \gamma \equiv (d2^{-d})^{1/2}, \quad s^2 = 1 - d2^{-d} > 0.$$

4. Two-stage iterative methods. The following theorem [2] is well known:

Theorem 4.1. Let $\Lambda \in \mathcal{L}^+(H)$ and an iterative method be known for solving systems $\Lambda \underline{v} = \underline{g}$ which leads in k iterations to the relation $\underline{v}^k - \underline{v} = Z_k(\underline{v}^0 - \underline{v})$ with the operator of reduction of the error $Z_k = Z$, which is symmetric in $\mathcal{L}(H(\Lambda))$ and such that $\|Z\|_{\Lambda} \leq q < 1$. Then,

$$B = \Lambda (I - Z)^{-1} \in \mathcal{L}^+(H), \quad (1 - q)B \le \Lambda \le (1 + q)B$$
 (4.1)

if also $Z \ge 0$ in $\mathcal{L}(H(\Lambda))$, then $\Lambda \le B$; the solution of the system $B\underline{w} = \underline{g}$ coincides with the kth iteration \underline{y}^k in the indicated iterative method for $\underline{y}^0 = 0$.

Theorem 4.2 [1,2]. Let the iterative method

$$A(\underline{y}^{n+1} - \underline{y}^n) = -\tau_n(A\underline{y}^n - \underline{g}), \quad n = 0,...,k-1$$
 (4.2)

be considered where $\Lambda \in \mathcal{L}^+(H)$, $A \in \mathcal{L}^+(H)$, $\sigma_0 A \leqslant \Lambda \leqslant \sigma_1 A$, $\sigma_0 > 0$, $\sigma \equiv \sigma_1 \sigma_0^{-1}$, $\{\tau_n^{-1}\} = \{t_i\}$ or $\{\tau_n^{-1}\} = \{t_i^+\}$, $i = 0, \dots, k-1$, $t_i \equiv \varphi(\cos \pi(2i+1)/(2k))$, $t_i^+ \equiv \varphi(\cos \pi(2i+1)/k)$, $\varphi(t) \equiv \frac{1}{2}[\sigma_1 + \sigma_0 + (\sigma_1 - \sigma_0)t]$. Then the operator $Z \equiv (I - \tau_0 A^{-1} \Lambda) \dots (I - \tau_{k-1} A^{-1} \Lambda)$ is symmetric in $\mathcal{L}(H(\Lambda))$, $\|Z\|_{\Lambda} \leqslant q_k$ (in case of $\{t_i^+\}$), $0 \leqslant Z \leqslant q_k^+ I$ (in case of $\{t_i^+\}$), $q_k \equiv [T_k((\sigma+1)/(\sigma-1))]^{-1}$, $q_k^+ \equiv 2q_k/(1+q_k)$, $(1+q_k)/(1-q_k) = 1/(1-q_k^+)$, $T_k(\lambda)$ is the Tchebyshev polynomial of the kth degree.

5. Construction of multigrid operator B. The following lemma is valid:

Lemma 5.1. There exist constants $\sigma_{11} \ge \sigma_{01} > 0$ defined only by the geometry of the simplexes T_0 such that for the level l+1=1,...,p there exists a diagonal matrix $A_{11}^{(l+1)} \in \mathcal{L}_{11}^{(l+1)}$, and additionally $\sigma_{01}A_{11}^{(l+1)} \le L_{11}^{(l+1)} \le \sigma_{11}A_{11}^{(l+1)}$. Making use of Theorem 5.1 for iterative method (4.2) with $A = A_{11}^{(l+1)}$, $A = L_{11}^{(l+1)}$, $\sigma_0 = \sigma_{01}$, $\sigma_1 = \sigma_{11}$, $k_1 = k_1$ and $\{t_i^+\}$, we obtain the operator

$$B_{11}^{(l+1)} \equiv L_{11}^{(l+1)} (I_1 - Z_1^+)^{-1}, \, 0 \leq Z_1^+ \equiv Z_{1,k_1} \equiv Z \leq q_{k_1}^+ I_1 \ \, \text{in} \, \, H_1^{(l+1)} (L_{11}^{(l+1)})$$

where $q_{k_1}^+$ is small for large k_1 . Note that the indicated iterations permit obvious parallelizing; a more complicated choice of $A_{11}^{(l+1)}$ is possible especially for square grids which increases the convergence rate.

Lemma 5.2. Let $B^{(l)} \in \mathcal{L}^+(H^{(l)}), \ \sigma_0^{(l)}B^{(l)} \leq L^{(l)} \leq \sigma_1^{(l)}B^{(l)}, \ 0 < \sigma_0^{(l)} \leq 1 \leq \sigma_1^{(l)}, \ \sigma^{(l)} \equiv \sigma_1^{(l)}(\sigma_0^{(l)})^{-1} \ \text{and let} \ \sin^2\alpha_{l+1} \geq s^2 > 0.$ Then,

$$s^2 \sigma_0^{(l)} B^{(l)} \leq L_{22}^{(l+1)} - L_{21}^{(l+1)} (B_{11}^{(l+1)})^{-1} L_{12}^{(l+1)} \equiv S_2(R^{(l+1)}) \leq \sigma_1^{(l)} B^{(l)} \,.$$

Consider iterative method (4.2) with $A = S_2(R^{(l+1)})$, $A = B^{(l)}$, $\sigma_0 s^2 \sigma_0^{(l)} \le 1$, $\sigma_1 = \sigma_1^{(l)} \ge 1$, $k = k_2$ and parameters $\{t_i\}$. By Theorem 4.2 we have $\|Z_2\|_A \le q_{k_2}$, $Z_2 \equiv Z_{2,k_2} \equiv Z$. Therefore,

$$B^{(l+1)} = \begin{bmatrix} B_{11}^{(l+1)} & L_{12}^{(l+1)} \\ \\ L_{21}^{(l+1)} & S_2(R^{(l+1)})(I_2 - Z_2)^{-1} + L_{21}^{(l+1)}(B_{11}^{(l+1)})^{-1}L_{12}^{(l+1)} \end{bmatrix}$$
(5.1)
$$B^{(l+1)} \in \mathcal{L}^+(H^{(l+1)}).$$

Theorem 5.1. If the hypotheses of Lemma 5.2 are satisfied, we have

$$\sigma_0^{(l+1)} B^{(l+1)} \le L^{(l+1)} \le \sigma_1^{(l+1)} B^{(l+1)}$$

$$\sigma_0^{(l+1)} \equiv (1 - q_{k_2})(1 + \xi_1)^{-1}, \quad \xi \equiv \frac{1}{1 - \cos^2 \alpha_{l+1}} \cdot \frac{q_{k_1}^+}{1 - q_{k_1}^+}, \quad \sigma_1^{(l+1)} \equiv 1 + q_{k_2}$$

$$\sigma^{(l+1)} = f(\sigma^{(l)}), \quad f(t) \equiv (1 + \xi_1) \left[1 + 2T_{k_2} \left[\frac{t + s^2}{t - s^2} \right] \right]^{-1}, \quad t \ge 1.$$
(5.2)

Theorem 5.2. Let $s^2 > 0$, the equation t = f(t) [13] have the solution $t^* > 1$ and the operator $B = B^{(p)}$ be constructed by using (5.1) for l = 0,...,p-1; $0 < \sigma_0^{(0)} \le 1 \le \sigma_1^{(0)}$, $\sigma^{(0)} \le t^*$. Then inequalities (1.1) with $\delta_1/\delta_0 = t^* = \delta$ are valid for the operators $L^{(p)} = L$ and B.

It is obvious that t^* exists for large k_2 . The case $k_2 \le 2^d - 1$ where the determination of $(B^{(l)})^{-1}g_l$ requires K_0N_l or less arithmetic operations is important. If $s^2 \ge 5/8$, then $k_2 = 2$ and $k_1 = 8$ yields $\delta = 1.4$ (similar $B^{(l)}$ from [3] for d = 3 and the cubic grid require $k_2 = 4$, $\delta = 6.6$). For d = 2 the general case $s^2 > 1/4$ is related to $k_2 = 2$; if the grid is square, then $\delta = 1.074$ for $k_2 = 3$, $k_1 = 3$ and $\delta = 1.4$ for $k_2 = 2$, $k_1 = 3$.

6. Possible generalizations. For local grid refinement the only difference is related to the fact that the vertices $P_i^{(l+1)}$ lying on the common boundary of the domains with the old and new grids must not belong to $\Omega^{(l+1)}$. We have obtained generalizations for the case of $\Gamma_0 = \emptyset$ as well, and also for non-local

40 D'YAKONOV

boundary conditions. Generalizations are considered for problems on two-dimensional manifolds with the complex geometry (for example, for a finite number of polygons lying on different planes which do not have any common sides) and also for systems of elasticity theory.

REFERENCES

- 1. O.AXELSSON and P.S. VASSILEVSKI, Algebraic multilevel preconditioning methods, I. Numer. Math., 56 (1989), pp.157-177.
- 2. E. G. D'YAKONOV, Minimization in Computations, Nauka, Moscow, 1989 (in Russian).
- 3. YU. A. KUZNETSOV, Algebraic Multigrid Domain Decomposition Methods, Preprint No.232, Dept. Numer. Math., USSR Acad. Sci., Moscow, 1989 (in Russian).