CHAPTER 31

On a Parallel Schwarz Algorithm for Symmetric Strongly
Elliptic Integral Equations

F. K. Hebeker*

Abstract: In this note we introduce and analyze theoretically a parallel Schwarz
alternating algorithm to treat symmetric strongly elliptic integral equations. The
range of applications as welil as the extension to a multilevel version is briefly
sketched.

1. INTRODUCTION

The principle of domain decomposition has shown up as a versatile and efficient
tool to create parallelism for solving mathematical problems of science and engi-
neering on parallel computers. But in spite of the fact that integral equations
form a particularly advantageous approach to use modern computer architec-
tures, the mathematical analysis of parallel versions is just at its beginning ([2];
concerning vectorized integral equation codes see [7] , [6] , for example). As
Wendland [14] pointed out, the Poincare-Steklov operator as one of the crucial
problems of domain-decomposition methods for certain partial differential
equations in fact is represented just in terms of boundary integral equations and,
consequently, may be evaluated using the boundary element method. In any
case, the problem of solving efficiently integral equations by parallel algorithms
appears and will be addressed to by the present note. We intend to parallelize the
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solution procedure of integral equations “at its roots”, which means that

parallelism is created on the continuous rather than on linear algebra level.

We investigate a parallel Schwarz method for symmetric integral equations on
manifolds with or without boundary. A corresponding algorithm has been in-
troduced by Lions [9] in case of partial differential equations. Note that for in-
tegral equations, in contrast to differential equations, parallelism can not easily
be generated by the common “red-black-ordering” [10] , due to the nonlocal
character of integral operators! The boundary integral equations dealt with in this
paper are furthermore assumed as strongly elliptic, so that Galerkin type bound-
ary element methods are quasioptimal, as pointed out by Hsiao and Wendland
[8]1 and investigated by them in a series of papers (see [13], e.g.). In case of
manifolds with boundaries, see [15] and [11] , for instance. Many integral
equations appearing in the applications fall under the present analysis.

On the other hand, Lions [9] developed a mathematical framework to analyze
the Schwarz method for partial differential equations. In the present note we
extend this approach to integral equations, boundary elements, and a new multi-
level version.

This paper is organized as follows: in Sect. 2, boundary integral operators are
introduced as specific pseudodifferential operators, and their well known basic
analytical properties are briefly summarized. We will study boundary elements
and their numerical properties in Sect. 3. Sect. 4 then is devoted to define a basic
two-level Schwarz algorithm for integral equations and to state a convergence
theorem, the proof of it is given in Sect. 5. The paper is finished with some con-
cluding remarks concerning applications and possible extensions of the present
analysis, particularly to a multilevel version which is parallel of high degree.

2. BOUNDARY INTEGRAL EQUATIONS

Let Q < R? be a smoothly bounded finite open domain. The solution of the

Dirichlet problem

Au=0inQ, u=g ondl 2.1
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may be obtained in terms of a simple layer potential

u(x) = (SY)x) = f — L oo,

4 —
o n|x—yl

the surface source of which solves the boundary integral equation

Sy = g on 3Q.

In this paper we consider more general boundary integral equations
Ay =g on M,

where

)0 = | kCxso)s,

2.2)

2.3)

(2.4)

(2.5)

Here denotes M a sufficiently smooth closed or open manifold of dimension d.

Assumption 1.: , g are real p-vectors, k is a symmetric p X p -matrix, p > 1,

leading to a symmetric system of (real) pseudodiffefential operators 4: Vo V',

where V' is the dual space of V {and <., .> the duality pairing between

Vand V') . A is further assumed as strongly elliptic of order 2o € R (in the sense

of Hsiao and Wendland [8]), which means that there exists a matrix 8(x) and a

positive constant y > 0 such that Garding’s inequality

<049, 0> = Ydly — |x(d, D), deV,

(2.6)

holds, with a compact bilinearform « on the “energy space” V of the operator

system A4 .

In practice, V= H*(M) or V = fI“(M) in case of M closed or open manifold,

resp. Here denotes H*(M) the usual Sobolev-Slobodetski spaces, and

H*(M) = {¢ e H(M): supp $<M}.
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In the context of boundary integral equations, the H-— spaces have been used by
[15] and further for screen problems by Stephan (e.g. [11] ). The strong
ellipticity implies

A: V-V’ continuously, (2.7)

where V' = H+(M). Consequently, A is Fredholm of index zero. We meet
further the

Assumption 2.: a) 0=1;
b) A is definite (i.e. < A9, ¢ > = 0iff ¢ = 0), so that Garding’s inequality is even
strengthened to coerciveness:

<Ad,d> 2o}, allpeV. 2.3)
Consequently, 4:V — V’ isomorphically. Symmetry of A4 then implies that

a(p,y) = <A¢, ¥ > (2.9)

is a scalar product on V, inducing the energy norm

lo] = Jalé, ), (2.10)

which by (2.7), (2.8) is equivalent to the norm ||.|l». For instance, the simple layer
operator S is a definite and symmetric strongly elliptic pseudodifferential oper-
ator or order —1 , hence V' =H"(M)or V = ﬁ‘”%M) (the latter if M is open).
Further integral operators satisfying the hypotheses of this section will be treated
in Sect. 6.

3. BOUNDARY ELEMENT METHOD

Let V,= Skm(M) denote a finite element system in the sense of Babuska and Aziz
[17, transplanted to the manifold M [13]. Choose />m such that

thHm(mﬂﬁa(M)CV,

where a=[a]+ 1, and & >0 denotes the mesh size of an appropriate partition
of M. Usually, this family ¥, of boundary elements spaces is assumed to pos-



386 HEBEKER

sess the “convergence and inverse properties”, (e.g. [8] ) as well, but this aspect
is not stressed in the present paper. Rather we require an extension theorem of
boundary elements which follows immediately from a corresponding theorem for
finite elements due to Widlund [16] .

Extension Theorem: Let M'ccM''<M denote open submanifolds, and
Vy'<HY(M'), V,,“chI“(M”) denote the corresponding boundary element spaces of
the same degree as V,. Then, for sufficiently small /2 > 0, there exist linear ex-

tension operators
E, .V, - VW,
which are uniformly bounded w.r.t. # in the norm of H*(M).

Operators of this kind are constructed (following Widlund) by composing
Calderon’s extension theorem, mollifying, interpolating, patching together the el-
ement constructed so far and the original one, and finally interpolating again.
The original result from [16] is formulated in terms of the spaces H™(Q), m
nonnegative integer, but is easily transplanted to the boundary and generalized
to the negative-order spaces and, by use of interpolation theory, to the interme-
diate spaces as well.

The finite-dimensional spaces V), serve to establish a Galerkin-type boundary
element method to solve (2.4) numerically: find , e ¥, such that

au,x) = <g x> forallyeV, (3.2)

Vi is called the Galerkin approximate of . Cea’s lemma then implies
quasjoptimality of this boundary element method:

[¥,—¥| < constinf |y —]. (3.3)
xe ¥y

This error term has been further estimated by [8] or [11] in case of manifolds
without or with boundary, resp. Note that, in the latter case, due to the severe
edge singularity, the present approach has to be further improved if satisfactory
convergence properties were expected [11].
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4. SCHWARZ ALTERNATING METHOD

The major task to parallelize the algorithm (3.2) is solving the linear system,
whereas the evaluation of the integrals is parallelized straightforward. In the
present paper we intend to parallelize (3.2) “at its roots”, namely on the level of
integral equations rather than on the level of linear algebra.

In this section, we investigate the case of covering by two sets. Covering by more
than two sets will be postponed to Sect. 6. Let

M = Ml U M2 (4.1)
be an open covering of M , moreover, we further meet the
Assumption 3.: My and M, overlap uniformly, that means

4.2
for all x; € OM; — OM, x, € 0M, — OM. (4-2)

Let ¢, {» denote a partition of unity on M w.r.t. My, M,, with this specific
property:

1xl-—*y,-| > 51 > 0

4.3
for all x, € d(supp {) — OM, y; & OM; — OM. “-3)

This partition of unity serves to prove the decomposition
=V+V,, 4.4

where V; = I}“(M,-). Here are functions of V; tacitly assumed to be extended to

¥

M by zero, which is consistently possible by definition of the H-spaces.

An analogous decomposition holds on the discrete level:
Vh = Vhl + th, (4.5)
with

v, = V,n H(M), i=12 (4.6)
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Schwarz algorithm is defined now as follows:

1. Start with any yf9,yQ e Vi Setk=1.
Solve now four discrete screen problems:

2. Find nu € Vi 50 that’for all yu € Vi:
a(ﬁhls Xp) = <& Am>— a(‘/’%kz—l)s Y1)
Set a = fim + YD on M;, and Y = Y on M — M.
3. Find #;; € V), so that for all yx, € Vi
allp X)) = <8 App > — a(!ﬁgkl_l), Xn2)-

Set J’hz = s + YV on M,, and J’hz =yfPon M — M,

4. Find 5i® e V} so that for all yi, € Vi

) .
a®, 1m) = <8 1w > — aWag Xn))-

Set Y = n#f + U on My, and Y = Ui on M — M,

5. Find 5§ € V;; so that for all y; € Vi

. ~
a(’igxz) sXn2) = <& xn2>— a(Wms Xn2)-

Set Y = 7 + Y on My, and Y = Y on M — M,
6. Set k =k + 1. Return to Step 2.

Hence Schwarz algorithm reduces solving (3.2) on V¥, to computing in parallel two
(alternating) independent sequences (Yf}), (Y#) of smaller problems on
Vi or Vy,. This basic algorithm using two subdomains will be generalized up to
more subdomains in Sect. 6. We remark that the integrals on the right hand side
a(Y?, xu), ... may be rapidly evaluated by use of the panel clustering method
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by Hackbusch and Novak [3] . For a variant, based on weighted quadrature
formulae, cf. Volk [12].

Concerning this algorithm we have the

Theorem: For sufficiently small fixed h the method converges with convergence

rate p;,

Py < i’_ <1 » (4.7)
p not depending on h. Consequently, the error estimate
Wi =l < const.(p ) — Yl + inf I — ¥l) (438)
€%

holds, for i =1,2.

We will prove this result over the subsequent section by extending some ideas by
Lions [9] to integral equations and boundary elements. It suffices to show that

each of the alternating sequences defined above converges.

5. PROOF OF THE THEOREM

As it is easily seen,

U — Ve = Pu@s— i)
VR~ = Py — ¥

(5.1)

where P,;: V,— Vi denotes the orthogonal projection w.r.t. the scalar product

a(.,.). Consequently, with

Op = 1— Py » (5.2)

we obtain

Va— V= Ouln— Vi) 653
U=V = Q@ —¥m),
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hence the error ¥, — Y propagates with Qu,Qu. Analogously for ¥, — y.
Hence we have to estimate the projections.

Lemma: For any sufficiently small 4 and for any ¢, e V; there correspond
d’hl € V;,l and ¢h2 € V;,z with (,bh = (bh] + d);,z on M and

b P+ 1dm P < 2l , (5.4)

where ¢, > 0 does not depend on / > 0 and ¢,

Proof: Set ¢, = ¢,on M — M,, and use the Extension Theorem of Sect. 3 to ex-
tend ¢u to an element of V. Now set

- : M.
Pn2 = {¢h d)h(;: ZZewZere ©-3)
Consequently, with ¢, € Vi,
O+ P2 = & (5-6)
and
| il <const.|d,|, (i=1,2) (5.7)

hold, the constant not depending on 4. This implies the Lemma.

The Theorem now results from this

Lemma: The operators Qy or Oy, are contractions on the sets QuVyor OuV, , re-
spectively.

Proof: First, with ¢, ¢, from the previous Lemma, from

|64 ” = @l bu + d1)
A(Pyy by bp1) + (P, d42)

(1 Pudnl® + 1 Prads P)P(1 60 P + | by IP)72
@l bal (1 Puénl® + | Prady |2)l/2

A

iA
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we conclude
lénl < a1 Pudsl” + | Prady P2 (5.8)
Hence,

| Qudn” = 100Qudnl® + 1PCud,
[ Q2@ I + —cl.?— | Qo I

v

Assuming ¢, > 1 without loss of generality,

| Q2O drl < /1 “‘”;iz" | Qs 5.9)

follows. Estimate (5.9) holds in case of indices (1,2) replaced by (2,1), too.
Whence the Lemma.

(5.9) implies
=¥ < Blv,—vi™ (5.10)

with p: = (1 — 9", and the same estimate holds for |y, — ¢#® |. Hence both
series (Y9), (Y) converge to ¥ Combined with (3.3) this implies (4.7) and (4.8)
as well, since | . | and ||.]j, are equivalent norms. The Theorem is proved.

6. APPLICATIONS AND EXTENSIONS

Since one sequence of the classical Schwarz algorithm has been replaced here by
a total of two (independent) sequences, an advantage over the classical algorithm
is obtained by performing a multilevel variant by use of a multiprocessor system

only.

For this, we proceed as follows. Let (M;;, Myy) and (Ma;, M) be an open covering
of M; and M,, resp., where we assume uniform overlapping again. Now, each
iterative step on M, (or M;) may be split into two parallel sequences of subprob-
lems on M;, and M,; (or My, My). This kind of splitting may be continued.
Consequently, by way of this “inner-outer” iteration, one obtains a degree of
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parallelism as high as desired w.r.t. the computer architecture one has in mind,
at the cost of solving a doubled set of boundary value problems. For instance,
if M is split into p =2%(k e N) subdomains, then the optimum degree of

parallelism is %

Quite a lot of (symmetric) integral equations appearing in practice may be treated
by means of the present algorithm, particularly all of the first-kind boundary in-
tegral equations arising from the linear problems of mathematical physics (e.g.
Lame, Stokes, bipotential equations). In addition to (2.3), we mention explicitly
the hypersingular equation (treated by [4], [8], [5], for instance)

Dy(x):= — aix LQ aiy 41tlx1—y| Y()do, + Lgl[l(y)doy =g(x) (6.1)

which is obtained when the solution of the Neumann problem
Au=0 in R®—0Q, 3—,‘2 —g on 0Q (6.2)

is looked for in terms of the double layer potential

_ d 1
u(x) = Lz g Py ¥ (v)do,. (6.3)

In fact, D is a definite and symmetric strongly elliptic pseudodifferential operator
of order +1.
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