CHAPTER 21

Overlapping Domain Decomposition Methods for
FE-Problems with Elliptic Singular Perturbed Operators

Yu A. Kuznetsov*

Abstract. This paper provides a theoretical justification to a domain decomposition method with
overlapping applied to the solution of non-symmetric singularly perturbed elliptic problems. Such
problems originate mainly from implicit discretization schemes for parabolic equations. The method is
based on the use of the rapid exponential decrease property of grid Green’s function when the distance
from the point of location to the source function increases. For simplicity one considers in this paper a

model problem with a number of non significant restrictions.

1. Introduction. Domain decomposition methods constitute an important actively developed
approach to approximate realization of implicit schemes for unsteady problems. Information about the
present state of this methodology is available in the Proceedings of International Symposiums on

Domain Decomposition Methods ([5-7]).

In recent years a new approach has been suggested ([9, 12]) for constructing and justifying

domain decomposition methods for numerical realization of implicit schemes for unsteady diffusion
equations. This approach is based on the property of rapid exponential decrease {of the form

—lx 1/2 e
e Ixxo1 /(A1) ) of the grid Green’s function of the singularly perturbed elliptic finite element

operator when the spacing from the point x,, of location of the source function increases.
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This approach was extended (in [11]) to implicit difference schemes for unsteady convection-
diffusion equations. The above publication suggestgd. a new technique for investigating the behavior of
grid Green’s functions of singularly perturbed elliptic operators. The idea was to use the
preconditioned Richardson’s method, and two versions of the domain decomposition with overlapping

subdomains were proposed together with their justification in the case of regular triangulations.

This paper, using as an example a non-symmetric singularly perturbed elliptic model problem,
gives a detailed description and justification of one of the versions of the domain decomposition method
with overlapping subdomains. Most assumptions and restrictions are introduced here only with the
aim of greater simplicity and better illustration of the results to be presented. The most important
assumption concerns the local finite element counterpart of the extension theorem. This assumption
limits in theory the set of admissible spatial grids since despite numerous publications ([1, 14, 15]}
there are still some points to be clarified here. This paper should thus be regarded as a sequel to [11]
with a more detailed description of 2 number of basic problems, although it contains new fundamental

results such as, for example, the justification of the method in the case of irregular triangular grids.
2. Preconditioned Richardson’s method. Let @ be a unit square with boundary 69 and let
g€ Ly(Q), llgll=1, be a given function. Let us consider the following variational elliptic problem:
find u € H1(Q) such that

a (4,v) = (wv) + ra(u,v) = 7(g,v) VW € gl (2.1)

Here, (-, -) is the ordinary scalar product in Ly(R), 7 € (0,1] is a parameter and

a(n,v) = f[Vu Vv + (i; V u)vjdQ, (2.2)
Q

where the vector function g: (bl,b2) is assumed to be smooth in © and to satisfy the conditions

-
divh =0in Q, b, =0 on 8Q, nil?—_xl,2 n};{aég x| < ¥2. (2.3)

e
Here, b, denotes the normal compenent of b at the boundary 852.
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Next, we construct in © a square grid Q 4 with step size d = n'l, where n is a positive integer,
and also a triangular grid Q- Assume that the lines of the grid Q4 constitute a union of sides of
triangles from Qh, as shown, for example, in Fig. L

Denote by Htl1 a standard piecewise-linear finite element subspace of ! and consider the finite

element problem ([4]): find ul ¢ Hll1 such that

a,_(uh,v) =r(g,v) Vv € Hi. (2.4)
This problem leads within the framework of the usual nodal basis to the linear algebraic system
A = M+ rAu =1 (2.5)

with the N x N mass matrix M=MT > 0 and with the N x N matrix A=A0+A1. The matrices A, and

A; are determined by using the relations

(Agv,w) = J vvh. vwhdg,
Q
(Avyw) = I(g Vvh)whdﬂ,
Q
which are assumed to be valid for all v, w € RN or, equivalentl-y, for all vh, wh € H}ll, where vh, wht
denote piecewise-linear prolongations of v, w. The above-made assumptions imply that A(,:A’(I; >0

— _aT
and Al— —A 1

Figure 1. A case of grids Qd and Qh.
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To solve system (2.5) one makes use of the following preconditioned Richardon’s iterative

method
B(uk. - uk—l) = —a(ATuk_l -1, k=1,2,.. (2.6)

under the condition that u,=0, where « is a relaxation parameter and B is a symmetric positive

definite matrix such that

o(BV¥) < (A vv) = (M + rAg)v,v) < ¢y(Bv,v) Vv € RN (2.7)

where ¢, and ¢; are two constants independent of 7 and Qh' Introduce the matrices

R=(M + 1A 2 Ay + 74 /2 = —RT,
S, =BY2M 4 ra)B /2 = 6T 5 o, (2.8)

s; =82 4812 = T,
It is obvious that in case where B=M47A,, we have S,=E and R=Sl.
To study method (2.6), we need the following
Lemma 2.1. Under the above assumptions, we have
IRI = »(®) < % (2.9)

Proof: Let us consider the eigenvalue problem
imp =Ry, peRl, ypeck,

 which we rewrite, taking into account the representation ¥ = ¢1 + i¢2, ¢1, q,bzeRN, into the

equivalent form
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"l“»bg = R¢1a
iy = R¢2~

Making use of the notation = (M+1'A0)-1/ 2¢i, i=1,2, we rewrite this system into the more

convenient following form:
(M + "Ao)602 = A1<P1,
HM + TAo)e; = Aqpg.
Hence, we have

- -
- vebtaa - [ E- Vb

_ (Al‘P2,<P1) - (A1601$02) _ 9 QO
- M+7A)psp)
D N [T TR e A
! i=1,
Q
Then, making use of the following inequalities
h
ot op
1. h 1 hi2 2 1
Q Q Q
h h
t?goh P 4
Jb2 1| 40 < max ]b1|2j—1 d ng—l dQ,
1i 0%y Ox x4
Q Q
and of the third condition (2.3) we obtain the sought estimate
p(R) =max |p] < Y5 O (2:10)

Return now to method (2.6). Let wy = 1w — A;lf be error vectors. Then,
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A A A A 9 A 2
Iwe g = 1802 = 11951 12 - 2a(8eMy %) 1) + oI (So + 7SpWy 1 1%
where Q:Bl/ 2w. Hence, making use of the inequalities
A A A
(Sl 1™ 1ey) 2 o 1%y 112

A A A A
21 (oW1 S1%) | < FellSoW g 12+ V7 l18y%y ;112

IA

A A
1SeWi 1 Il < egllwiqlls

IA

A A ¢ A
1% qll < e IR I% gl < 1¥ 1 1l

we obtain
A A A
1912 < 1= 2000 + o231 + ¥ |9y 1 12 < [1 - 2000 + 222 | @y 4 |2
These inequalities imply that for a proper choice of the relaxation parameter « (for example

c
@ = egpy =—5)
4c]
method (2.6) converges in the norm || - || g as a geometric sequence with the ratio q = I—eg,y <1
which is independent of the grid  and of the value of the parameter o in the interval (0,1]. It is

interesting to note that if the numbers ¢, and ¢y converge to one and if

(2.11)

=1
Pt (14v7)2

then the ratio q converges to the guantity l—acpt.:\ﬁ"(zw?) / (1+\ﬁ")2, i.e. for r < 1 we have q ~ 247
and, hence, method (2.6) converges very rapidly.
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3. Two-level domain decomposition preconditioner. To construct a two-level domain
decomposition preconditioner (DD-preconditioner), we make use of the results obtained in [10, 11]. We
consider the finite difference case; using therefore the grid Q) we partition the domain @ into two
subdomains €2y and €2, as shown in Fig. 2. It is seen in this figure that Qg is a multiply-connected
domain consisting of squares Qg ), i=1, ...,p, where p is a positive integer of order n2, the side length of
these squares being equal to d. “According to the theory of DD-methods with alternating Neumann-
Dirichlet boundary conditions ([2,13]), the matrix M+7A, has the following block form:

M+7Ay = (3.1)

and the corresponding first-level DD-preconditioner is of the form ([3.10])

-1
By + Ay Agy Ay Ay
B, = (3.2)

A Agg
where the submatrix By, is determined by using the relation

N
(By1vppWy) = J [vll’wll1 + TVvlll- Vw}i‘]dﬂ Vv,wy ER 1, (3.3)
Q
1

As it is generally know, we have M+rA, > By by construction and, hence, to estimate the
condition number of the matrix B'll(M+er) in the By-norm, it is sufficient to estimate its maximal
eigenvalue. If some specific assumptions on the grid 2 hold, this eigenvalue can be bounded by a

constant independent of Oy and of the parameter 7.
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Figure 2. The first level of DD-procedure

Let us construct in {2 an auxiliary grid €94, as shown in Fig. 2 (with dotted lines). This

corresponds to the partitioning of 2 into internal squares with side length 2d and near-boundary

rectangles which we denote by leg, i=1,...,ﬁ2, where fi ~ n. Then, as it is generally known,

where

A h AR A, h
p(B'll(M+TAO)) = max 7\ ) < max, max_ - i) < max ——;—fﬁ
velU b (Vh) 1<i< ve Ul b I(vh) veE Ue b e(vh)

=1}

U={wve RN, Ag1vy + Aggvg = 0},

dety= [ 11240 Vb an,
Q

AR - A A N - A A ol
where b is a restriction of 2 onto 2y, a; and b ; are restrictions of @ and b onto the subdomains Q2

and Qg& M2, respectively, and e is the value of index i at which the first maximum is attained. Note

also that by Ui we denote the restriction of U corresponding to the transition from the domain  to its

in o)
subdomain Q2d'



OVERLAPPING DD-METHODS FOR FE-PROBLEMS 231

Without loss of generality assume that Qg? is an internal subdomain of Q and using the

transformation %;=x;/(2d), i=1,2, map it onto the unit square G = ﬁg(? In addition, the subdomains

Ql n Qg(? and 92 n Qg? are mapped onto Gl and G2, respectively. As a result, we obtain

=~ ¢rh
p(B'll(M + TAg,)) < max_ Eje(vh),
veT, boB)

where

B = [ (1012 + 25 1 948206,
& 4d
and Be is a restriction of &, onto the subdomain Gy. Now we will make two assumptions. First, we
choose d=V7. Second, we assume that the finite element counterpart of the theorem of norm-
preserving extension from H}ll(Gl) to H%(G2) is valid for the grids € and the partitionings of domain
) into subdomains. This means that there exists a positive constant ¢y independent of the grids D
such that for any function ve& fH}ll(Gl) there exists such a function v € H}ll(G) which is identically
equgl to v, in G 1 and obeys the inequality

Be(v) < cgbe(v).

It is obvious that we assume the constant cy to be also independent of the value of index e, i.e.
of the choice of the subdomain Qg(? The last statement is valid, for example, for regular triangular
grids Qh([1,14,15]) and also for many other grids which are constructed by using various refinement

procedures,

The theory of domain decomposition methods with alternating Neumann-Dirichlet boundary
conditions implies that, under the assumptions which have been made, the maximal eigenvalue of the
matrix B'll(M+er) and, hence, its condition number are bounded by the same constant ¢y which, by
virtue of the assumption made on the extension theorem, is independent of the grids £y and, by virtue

of the technique of construction of the matrix By, is also independent of the value of the parameter 7.
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At the second stage of construction of the two-level DD-preconditioner we partition the domain
2, into two subdomains @41 and Qy9, as shown in Fig. 3, and construct the corresponding block

partitioning of the matrix B 11 considering it as the stiffness matrix for the domain Q:

A A
Ap A9

B, = 3.4

11 A A (3.4)
Ay Agg

A A Ag A A
Bip+Ap Ay Ay Ay
B — 3.5
p) A A (3.5)
A9y Agy

where the submatrix B, is determined by using the relation

(ﬁllol"/’\vl)= J vlil‘/’\V}il'*'Tvol;’vv/‘\lkll]dQ Vol,é\VlERNll,
yq
N N/
Qe /Qﬂ\ 1S /Q“\ Q
V Q
£ / = 1
N 7 2
<) Sl R X 19
12 P 1‘1\7/ 12 Y N 12
AN e N2
12, \\ 12 //4 N 2

-~
-

Figure 3. Second level of DD-procedure
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As in the first stage, the eigenvalues of the matrix B'21B11 are larger than or equal to unity.
To estimate its maximal eigenvalue, we make use of the same approach but with other partitionings
into superelements whose boundaries are shown by the dotted lines in Fig. 3. Under the same
assumptions on the value of d and on the grids {3}, concerning the finite element counterpart of the
extension theorem, it is not difficult to show that the maximal eigenvalue of the matrix B'21B11 is

bounded from above by a constant cg independent of the value of 7 € (0,1] and of the grids Q-

Define the resulting two-level DD-preconditioner by the following formula ([10]):

A
-1
Bog+Ag Agy Agp Ay
B= (3.6)
Agq Ay

Under the assumptions made above, it follows from [10,11], and from the facts previously proved, that

we have the following

Proposition 3.1. The eigenvalues of the matrix B'l(M+1'A0) belong to the interval [1,c], where
c=c9cg Is a positive constant independent of the value of the parameter = € (0,1] and of the grids Q-

4. DD-method with overlapping. This section consists of two mutually connected parts. First, we

apply the iterative method
B(uk —_ uk_l) = —aopt(ATuk_l — f), k=1, ey Sy (4-1)

with the initial guess uy=0, the matrix B from (3.6) and the relaxation parameter aopt=(4c2)'1 in
order to study the properties of the solution of system (2.5) with the special right-hand side f and also
to obtain certain auxiliary estimates. Then we use the obtained results to construct and justfy
completely a new DD-method with overlapping subdomains. During the discussion we shall assume

that the parameter 7 is as small as it is necessary for carrying out new assumptions.

Section 2 implies that to solve system (2.5) by the method (4.1) with accuracy €; <1 (in the
sense that the following inequality holds:
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twsllg < eqllwollg (4.2)

where wg=ug—u, wo=u and u is the exact solution to system (2.5)), it is sufficient to choose the value

of s by the formula

In €
s=|1; q + 1, (4.3)

where [y] means the integral part of y, and the quantity q=1'_aopt is independent of @, and of
r€(0,1].

o)

Gs

G

A
Figure 4. Subdomains G, Bg and G.

Since we have by definition, (f,v) = T.[gvdﬂ VVERN, then taking into account the
assumption that || g|] =1 it follows from Q

(A mu) = (M+rAguu) = (fu)

and from the inequality (f,u) < 7]ju]| that we have the estimates
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lullp < 7 Wullyga, = "l < = (4.4)
From (4.4) and (4.2) we also have the estimates
fwslig < ¢, (4.5)
w2 ll g1 < eV, (4.6)

which we will need below.

In addition to the special property of the right hand side f, assume that

supp g € G, (4.7)

where G C  is a square with side lenght r which does not exceed, for example, *rl/ 3. We assume that

c 41'1/ 3 <r< 'rl/ 3, where ¢, is a positive constant independent of 7. The last assumption on the side

length of the square G is made mainly for simplifying the formulae and estimates to be given below.

We assume that G is the union of cells of the grid Q4

The structure of the employed DD-preconditioner B implies that the supports of the finite

element, functions ul of method (4.1) belong to the squares Gk with side length 1'1/ 3+k7'1/ 2, whose

k
centers coincide with the center of the square G, as shown in Fig. 4. We thus arrive at two
conclusions. First, the error function wl; of method (4.1) obeys inequalities (4.5} and (4.6). Second,
the function uls1 is zero in the domain Q\Gg. Hence, for the solution u to system (2.5) we obtain the

estimates

(o124 7] VP Hde < 272 and (4.8)
oG,

I ult I < eNT. (4.9)

B{Q\Gy) ~

Now we make use of the assumption that the quantity 7 is sufficiently small. Moreover,

A - -
assume that the values of r and € are such that the square Gg belongs to the square G with side
B

length 21'1/ 3 as shown in Fig. 4. Such assumption on €; is quite natural if we set, for example, €=7",
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where B is a positive constant. This is the situation which arises with numerical methods for the
solution of parabolic problems by implicit schemes which is our main motivation, here. We assume

A
that G is also a union of cells of the grid 4

Bounding again the set of grids {2y with the assumption that the finite element counterpart of
the local extension theorems holds, and making use of the technique of the previous section, it is easy
to prove the following statement: for any function ull € Hl(Q\é) there exists a function vl € HI(Q)
such that vi = ull in Q\é and the inequality

J [0 12 + 72/3) b | 2aG < cgj [ub 2 4 723 vub 240 (410)

A A
G O\G

is valid with a positive constant 5 which can be chosen independently of the grids Qs of the value of
‘the parameter 7 and of the location of the square G. It is obvious that according to (4.8) such function

vi obeys the inequality
IR0 A < egevm (4.11)
HY(G)

Making use of the already obtained estimates for the solution function uP and for its extension

A A
vB from Hl(Q\G) to Hl(G), we consider one of the possible approaches to construct a new method of

solution of system (2.5).

Our aim is to solve numerically system (2.5) with an accuracy € < 1, i.e. to find a function

u}g € ml obeying the inequality

- g <« (4.12)

. - - I\
The construction of such function ulel will be carried out as follows. From the square G given

above define the space
L.\ 1 PRV
HYQO\G) = {viv e HY(Q), v=0 in O\G }. (4.13)

Then consider the finite element problem: find Qb €H 1({2,9\({\}) such that
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a,(dy) = r(gv) Vv e EL Q). (4.14)
This problem leads to the following system
202t Yerh, (w.15)

A A A A AN AN A
where the N x N matrix A =M+7(A,+A ;) is a diagonal block of the matrix A,. The matrix A is
also the stiffness matrix of the FE-method employed for the differential problem

A

A
u —T[A{l\ - (-g V){x\] =T/g\ in G,aaA—%-=00n 69,{1\ =0on 3G N (4.16)

Suppose that we have found a vector A ¢ Which approximates the solution & of system (4.15)
with accuracy €/2 in the sense that the inequality
Ah Ah
1o — b

ue—u

/2, (4.17)
A
where {1\13 =0 in O\G, is valid. then arises the question whether the following estimate holds

Ah_ h

ul —u < €/2. 4,18
1R < (4.19)
If this estimate holds, the considered function {1\161, obviously, obeys inequality (4.12) and, hence, is the
sought e-approximation of the function ull. Let us show that inequality (4.12) can hold if we impose

additional constraints on the quantity €1 and the parameter 7.

. Ah_ AL .h . . AL
The function W 2=1 ®—u" can be described as follows. In the subdomain Q\G it identically

coincides with ul! and, according to (4.9), obeys the inequality

|h

< fl\ﬁ- (4.19)

alo\G)

AR

A .
Hence, ¢ is surely less than ¢/(247). In the subdomain G we write the function W™ as the sum of two

functions:

Nh_yh b (4.20)
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h . Ah < o Ah_ h: oA
where for v we choose an extension of W from the subdomain Q\G (recall that w* =u" in Q\G),
A
which obeys inequality (4.11). Then the function 'th belongs to Hl(G ), provided that ¢h=0 on
8G N . This implies that the vector ¥ € RN is the solution of the linear system

\ Lo =F, (4.21)

A
where F=—A _v.

Taking the scalar product of both sides of system (4.21) with the vector ¥ we obtain

A
mmeuw%+A=4&wy (4.22)
T

—
Making use of the third assumption (2.3) concerning the vector function b, we can readily

derive the estimate

Avi) < 2livila A =¥IA A - (4.23)
M4rA M+-A

This estimate and (4.11) imply that

A
@) = Nolly o <2000 A < 2oV
M+rA HY(G)

We have thus proved the following

Lemma 4.1. The function {r\vh obeys the estimate
A
ISR g < Bog + Degm

This lemma and the previous arguments imply that estimate (4.12) will hold if ¢; obeys the
inequality

-
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There remains one more question concerning the assumption that Gg C é . Indeed, the values
of the constants ¢; and <5 and also of 7 g,nd € may happen to be such that this inclusion does not
hold. An analysis of this situation will be restricted to the case where ezrﬂ , where 3 is a positive
constant. In real problems related to the numerical realization of implicit schemes for parabolic
equations it is usually assumed that € ~ 'rﬂ , Where £ is equal to two (for first-order accurate schemes)

or three (for second-order accurate schemes of the Crank-Nicholson type).

A
Under the assumptions made on ¢ and from the requirement that GgC G, we obtain the

following inequality for the admissible values of :
sNT < %‘rl/ 3 ' (4.25)

B or, according to {4.3) and (4.24),
172

2(4c+1
1'1/6 -——-—-——(c5 )< 1

o < (4.26)

It is obvious that there exists 7 € (0,1] such that inequality (4.26) bolds for all T € (0,4'\]. Thus the
A
inclusion Gg C G holds for all sufficiently small 7.

In conclusion, we outline the obvious application of the described algorithm within the
framework of DD-methods with overlapping subdomains to solving system (2.5) with an arbitrary
right-hand side f. Write down the function ! as the sum

m
-3 & (4.27)
i=1 !
so that the foﬂowing condition is satisfied:

supp i € a®, i=1,..m. (4.28)

Here, m is an integer, and the G(l) are, for example, squares with the same side lengths. Then the

solution of system (2.5) reduces to the approximate solution of the system
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A =1 (4.29)

1 1

with an accuracy e(l), i=1,...,m, by the algorithm described above, and then to the calculation of the

2/3 is, for example, the simplest one and at

sum of the approximations obtained. The choice e(l)=er
the same time the cheapest one. Note that for sufficiently small values of 7 it is sufficient to choose

E(i)=€/4.

5. Conclusion. It is obvious for the reader that most assumptions have been made only to simplify
the description of the considered algorithm and of the corresponding arguments. In our view, those
DD-methods with overlapping subdomains discussed in this article are highly efficient from the points
of view of their arithmetic cost and their implementation on parallel computers. They apply
particulary well to the discrete problems obtained from implicit difference schemes for solving unsteady
problems. We have considered above an approach for constructing DD-methods with overlapping
subdomains which is based on the superposition idea. Another approach was announced in [11]; it can
be applied to both linear and non-linear problems ([8]). Its theoretical investigation will take place in

the near future.
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