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Abstract

This paper reviews the development that has occurred in order

to adopt a large scale structural analysis package, SESAM!, to the rapid changes
in computer architecture as well as to the algorithmic advances that has been made in
the past few years. We describe a parallel implementation of the sophisticated direct
solution algorithm, based on processing substructures in parallel, but also allowing a
high degree of parallelism in the computation within each substructure. We further
discuss the use of iterative solution strategies. The paper concludes that iterative
techniques should be further investigated and that the current knowledge about such
methods makes them attractive for certain special classes of problems

already today. We provide a few numerical examples in support

of our conclusions.

1 Introduction

Structural analysis provided the problems, motivation and pioneering work that led to the
development of the powerful finite element method. This field is still the most important
application area of finite element based analysis. There exist a number of highly successful
commercial codes that can be used to analyze the behavior of almost any kind of structure
under rather general conditions. In almost all of thesé codes the technique called substruc-
turing [1] is used in order to simplify modeling and post processing. The physical domain
is divided into several disjoint pieces called substructures, and each substructure can be
assembled separately. The global stiffness matrix is then usually formed in order to solve
the equations.

One commercial code, SESAM, [29],[3] pioneered the further use of this concept,
by also taking advantage of the substructures (in particular identical ones) in the solution
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algorithm. In this code the solution procedure is carried out by the elimination of inte-
rior unknowns from each substructure, followed by the calculation of Schur complements
corresponding to the unknowns on interior interfaces between substructures.
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Figure 1: The multilevel substructure technique.

This strategy is implemented in a recursive fashion, thus making a multilevel sub-
structure implementation. At any given level in this procedure, the unknowns can be
uniquely divided into two

disjoint sets, the internal variables and the retained or external variables. The latter
group of variables can be interpreted as boundary values or fixed degrees of freedom at
this level of the algorithm. Before the algorithm proceeds to the next level, all internal
variables are eliminated. At the next level the retained variables from the previous level
are again split into two sets and this process repeats until one reaches the highest level
where all remaining variables (or unknowns) in the problem will be in the internal set.

The organization of a finite element model, as well as the computational procedure
outlined above, can be represented as in Figure 1. The dots represent internal nodes, these
are nodes which cannot be shared with other substructures. The small squares are retained
nodes, which are nodes retained for the purpose to be coupled together with retained
nodes from other substructures. Retained nodes at a given level may become internal or
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specified nodes at the next (upward) level. Figure 1(b) shows an intermediate level in
the assembly process where substructure 2 and one instance of substructure 3 are coupled
together to form the new substructure 4. The retained nodes on the interface between these
two substructures become internal nodes in substructure 4, while the remaining retained
nodes from substructure 2 keep their status. The substructure tree of this intermediate
level is shown to the right in 1(b). Finally, Figure 1(c) shows the entire computational
-model where substructure 1 and a rotated instance of substructure 3 are matched with
the remaining retained nodes of substructure 4 to form substructure 5, the structure level,
On the structure level there are only internal variables. A small, but realistic model of a
tubular joint assembled from 9 substructures is pictured in 2, together with the simple,
two-level substructure tree.

The leaves of the tree (not shown in Figure 1 or 2, corresponding to "zero-level’ sub-
structures), represent basic finite elements, the branches indicate dependencies. Each node
in the tree as well as subtrees can also be directly associated with physical components of
the structure that is modeled. Identical subtrees show identical substructures from which
the global structure is built. This tree can also be used to illustrate the computational
procedure, and in particular, the coarse grain parallel possibilities of both direct and iter-
ative algorithms. The Cholesky factorization of the global stiffness matrix can be viewed
in terms of a block algorithm, by processing all the different branches of the tree starting
at the first level substructures and working up to the root. (Note that only one copy
of identical branches or sub-branches are processed in this scheme.) Similarly, given any
particular right hand side vector (load on the structure), one can find the displacement

(and strain) at a specified point in the structure, by traversing the tree in the oppo-
site direction from the root and along the branches that lead to the corresponding element
in the finite element model. This implies flexibility when the solution is of particular inter-
est in certain areas of the structure. In order to find the solution everywhere, all branches
including identical ones, must be traversed in the back substitution phase.
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Figure 2: Two level computational model.
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2 A direct, parallel substructure algorithm

The original ideas for an efficient, parallel, direct solver implemented in the SESAM system,
were described in [4]. At the end of 1989, many of these proposals had been carefully
investigated and implemented by Anders Hvidsten as described in his thesis [21]. We will
in the following sections report on the most significant findings from this large project. In
order to provide sufficient flexibility in a rapidly changing parallel computing environment,
the target parallel machine was defined to consist of one or more computational nodes
Ni,i = 1,n individually capable of running the SESAM code and in addition, satisfy the
criteria:

e N; has local memory

e N; has m; > 1 processors

o N; is connected via some network to all nodes N hi=1,n
& N; has access to all secondary storage devices in the system
o N; has identical binary data representation

The majority of modern computing environments satisfy these requirements, the last one
can of course be omitted at the expense of running an appropriate filter program.

This computer model makes the set of possible systems that can run SESAM con-
siderably larger than before. As will be discussed below, different parts of the parallel
algorithm will be attractive on different computer models. The coarse grain level can ben-
efit from computers connected in a fairly low bandwidth network, provided that there is
local data storage.

The parallel algorithms that are implemented inside each substructure, on the other
hand, depends on somewhat higher interprocessor communication bandwidth. More im-
portantly, these algorithms depend on high bandwidth to the relevant storage devices in the
system. These algorithms are currently restricted to the elimination of internal variables
and the computation of the corresponding Schur complement within each substructure.
This is the only computational task that has a complexity growing faster than linearly in
the number of unknowns. The algorithms are all organized as block linear algebra routines,
and the task granularity corresponds to the computation of a resulting block, often involv-
ing a considerable number of Blas-3 level operations [14] with a program tunable block size
parameter. Unlike the LAPACK [13] [2] software, all matrix blocks are square and of the
same size (typically 50-100), with the exception of a few rectangular ’remainder blocks’ of
smaller dimensions. The potential for fine grain parallel computation of the Blas-3 kernels
are left to the possible parallel hardware that may exist internally to what we define as a
computational node.

We have worked with computer systems that are suitable for either the coarse grain
or the medium grain parallel level. There are currently very few computer systems that
are able to take full advantage of both parallel levels simultaneously.

The potential reduction in elapsed computing time for a model like Figure 2 is
not very dramatic, but for larger models having hundreds of thousands of unknowns in a
substructure tree with many branches, resulting in fairly large, dense computational tasks
at the higher levels, the gain can be considerable. Figure 3 shows curves that represent
upper bounds on the speedup that can be obtained by applying different parallelization
strategies to compute the tubular joint model in Figure 2. As the substructure matrices



PARALLEL SUBSTRUCTURING ALGORITHMS 325

-
T
TR T T

| combined parallelism

3t 1 matrix parallelism

substructure parallelism

N R 5 e T2 T E—TY
Processors

Figure 3: Upper bounds on the speedup with substructure and block parallelization sirategies,
for the model in the previous figure, S is the speedup.

involved in this calculation, are fairly small and in order to get an upper bound that is
independent of the actual block size, we have assumed that the individual matrix problems
achieve linear speedup as a function of the number of processors used. It is also assumed
that the processors involved to obtain these bounds are identical. The best speedup line
in figure 3 shows the upper bound for the speedup when combining the substructure and
the matrix parallel strategies.

2.1 Distributed data structures

In order to process individual substructures in parallel, each substructure must have a
separate and complete data structure that contains all information necessary to complete
its calculation. The restructuring of the data structures was a major step motivated by
the development of parallel algorithms, but this reorganization of data has many other
advantages as well. The ability to stop and restart a computer analysis as well as secondary
storage management have been improved. (These features actually help the introduction
of parallel computing into a conservative user community!) A main advantage with the
substructure approach is that the entire calculation can be made parallel, including a large
number of statements that would be virtually impossible to parallelize in any other way.

2.2 The pool of tasks concept and inter-process communication

Since different substructures in the same model, typically have very different sizes and
our computer model allows for computational nodes with unequal speed, the optimal as-
signment of substructures to computing resources is difficult. (Indeed, both of the above
problems are NP-hard to solve [20].) Our strategy uses a pool of tasks [24] where informa-
tion about all the tasks including precedence relations, time estimates and the computing
system

is stored. This approach ensures a symmetric and well balanced load, there is no
predetermined job scheduling.
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In the active pool process implementation there is one process that executes a
pool algorithm and a set of computational processes that use primitives from Table 1
to communicate with the active pool process.

generic name description

create Create a process.

open Open a communication chan-
nel to a process.

send Send a message to a process.

recv Receive a message from a pro-
cess.

close Close the communication

channel to a process.

Table 1: The required communication primitives for the active pool process.

The generic pool process that is executed by the pool of tasks, will loop until a user
specified condition is no longer true.

The first entry point in this algorithm is a recv, which blocks the execution of the
pool process until a computational process sends a request to it. Depending on the type
of this incoming request, the pool process performs separate actions.

The implementation of the active pool primitives is based on a send construct that
can send a message to a specified process on a specified node of a computing environment
in addition to

associate a message type with each message to send. The corresponding recv con-
struct must be able to distinguish between accepting messages with any message type and
to block execution until it receives a message of a specified message type. The message
passing primitives conforms to the Intel iPSC/1-2 send and recv constructs {22].

A typical process picture throughout the execution of the two-level parallel algo-
rithm will be of the form shown in Figure 4, with two sets of processes attached to matrix
computations. The figure shows the substructure pool P, and two (temporary) matrix
pools P, together with the computational processes they control. The process pl has
turned itself into a temporary (matrix) pool process after it has created the two matrix
processes p} and p3. It is also assisted in the matrix computation by the substructure
process p?. Process p} controls in a similar way two separate processes to perform another
matrix computation. The substructure process pj is either in a non-matrix part of a sub-
structure computation or it is idle. This approach will dynamically add idle processors as
they become available to ongoing matrix computations in a very smooth way.

A large analysis can start with many low level substructures being processed in
parallel and end with many processors working together at the higher level matrix com-
putations. As the matrix problems in the low level substructures often are sparse, while
the higher level problems become dense, this strategy gives good processor utilization at
all levels.

The number of processes that should be assigned to substructure calculations and
the additional number that can be dedicated to matrix calculations, will depend on both
the size of the computation and of the type of the computing environment in question.
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Figure 4: Two-level process picture.

For example, in a computing environment where the separate nodes are shared memory
multiprocessors that are connected in a cluster, one strategy would be to assign substruc-
tures to the computing nodes, and have each node spawn matrix processes locally. Because
of the normally large imbalance of the transfer speed between the set of shared memory
multiprocessors and between the processors within each multiprocessor, it may not help to
assign idle substructure computing nodes to matrix processing.

Consider also a hypercube type computer with disk devices connected to separate
nodes like in Figure 5. A natural way to create processes in this environment is to define

ot

Bl

Figure 5: Computing environment with two disk devices D.

. subsets of processes, i.e. subcubes, where each subcube executes one substructure process
and a number of matrix processes. The number of matrix processes should match the
dimension of the actual subcube. A computing environment partitioned into many small
subcubes at the beginning of a run, can automatically reconfigure itself into larger and
larger subcubes as the computation traverses towards the top of the associated substructure
assembly tree.

A third example of a computing environment where one can apply the two level
scheme, is a set of workstations connected through some high speed network. If all the
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nodes in this system are equivalent with respect to the substructure computations, then a
natural concept is to create one substructure process on each node in the environment and
let these processes start to compute substructures. At the start of each matrix computation,
the node creates an additional matrix process to ensure progress with the actual matrix
task. When the substructure pool is (temporarily) empty, the scheduling scheme can
decide on a switching between the substructure computation algorithm and the matrix
computation algorithm for the substructure process that experience the empty pool.

2.3 Example calculation of a tubular joint.

We report on a calculation of a tubular joint, considerably more complex than the one in
Figure 2. The joint has 16 first level substructures and a total of 9852 unknowns. In Table
2 we list the results of 2 runs. The first run is using the sequential version of SESAM,
tuned for Cray computers. We report on elapsed times on a machine with no other activity.
The second run uses 4 SUN 4/75 (Sparc-2) workstations and the parallel version of the
program, restricted to do substructures in parallel only.

First level | Second level | Total
Cray X-MP 171 s 146 s 317 s
4 SUN 4/75 263 s 721s 984 s

Table 2: Comparison of supercomputer and workstations analyzing a tubular joint.

Table 2 shows that the workstations come close to a factor of 3 compared to the
Cray X-MP on this example. In the parallel computation of first level substructures the
workstations perform at 65 percent of the speed of a Cray. In a more realistic production
environment (having several jobs on the Cray) we have observed elapsed times that are 2
to 3 times longer on the supercomputer, making the two systems quite similar with respect
to ’time to solution’. A contributing factor to the performance of the workstations in
this example, is the total bandwidth to secondary storage devices in the two computing
environments, The Cray employs one {expensive) fast disk, while the 4 workstations each
use a standard, local SCSI disk. On the Cray, this application is very 1/0 bound, while
the workstations achieve a much higher cpu utilization. The example also shows the need
for the matrix parallel algorithms since three workstations are idle more than 70 percent
of the

time. Currently, the computer network based on Ethernet technology, severely limits
the potential of todays workstations in this respect. The matrix parallel algorithms depend
on a reasonable balance

between communication speed and computational speed. Unfortunately, due to the
rapid microprocessor development, the next generation FDDI based network, will only
improve this situation marginally. Based on this experience, we see a very cost effective
computing alternative provided that clusters of high performance microprocessors with
sufficient internal communication bandwidth, become available.
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3 Iterative substructure algorithms

The renewed interest from the numerical analysis community in substructuring as a way of
breaking up the solution of elliptic problems into problems on smaller domains has provided
a new understanding and a theoretical foundation for the use of iterative methods in this
process. An early numerical analysis paper in this direction is [12]. More recent work is
described in [15,16], [6], [9], [7], [10], [11] see also the references listed in these papers. In
order for iterative methods to gain acceptance in the structural analysis community, the
method must fulfill many requirements.

A very important consideration is the effort needed to incorporate new algorithms
into existing industrial software. This means that an algorithm should be based on ac-
cessing information that has been - or easily can be computed. Another important con-
sideration is the ability to solve for multiple right hand sides in an efficient manner. The
detection of errors due to for example incorrect use of a preprocessing program and the
ease of porting the program to a wide range of computer systems, are two other goals that
must be satisfied.

It is interesting to note that a block implementation of the conjugate gradient
method employing diagonal scaling is described in the SESAM user manual dated 1972. Un-
fortunately, although this block conjugate gradient algorithm is written and programmed
entirely in terms of matrix operations, the inversion of the block matrices that generalizes
the scalar parameters, is done by just inverting the diagonal elements. (The programmer
obviously just wanted to create a block algorithm based on processing multiple right hand
sides, but he came very close to discovering the block conjugate gradient algorithm well
before its first description in the literature [25].)

The existing SESAM substructuring method does not use overlap between substruc-
tures. It may therefore be natural to first study the

iterative substructuring methods as a basis to implement preconditioned conjugate
gradient algorithms in SESAM. The methods of particular interest are those which op-
erate on matrices that already exist within the SESAM framework. The implementation
of the Neumann-Dirichlet iterative substructuring algorithm [7] in SESAM, see Bjgrstad
and Hvidsten [5], is an example of a method that builds a preconditioner from matrices
readily at hand. That work was the first example of a new algorithmic theory on iterative
procedures implemented in an existing commercial structural analysis code. Although the
algorithm has its practical limitations, it verifies that the modular design of SESAM makes
it possible to proceed in the direction of iterative substructuring algorithms. The imple-
mentation of new iterative substructuring and iterative refinement strategies into large
scale industrial codes may offer an attractive software evolution path because it can be
achieved without a substantial reorganization and rewriting of the software.

There exist several techniques to reorganize the implicit matrix representation from
Figure 1 into the framework of different preconditioning strategies. One technique is to
reduce the number of levels of the substructure assembly tree associated with a particular
matrix, by collapsing subtrees within the global tree. With this collapsing technique, re-
tained nodes from substructures are coupled together and moved into the set of internal
nodes of a new and larger substructure. In the extreme case, the collapsing of all sub-
structures in a computational model, will produce the global stiffness matrix for the entire
model.

Another technique to shorten multilevel trees is to compute some of the Schur
complements, for example all Schur complements up to a certain level I. The highest
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level substructures with their Schur complements computed then become the new first
level substructures. Figure 6 shows a four-level substructure assembly tree which has been
collapsed into a new two-level tree by applying both the top and the bottom collapsing
strategies. The boxes in Figure 6 describe which of the substructures from the original
substructure assembly that are collapsed into the new substructure levels.

new structure level.

AN AN
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Figure 6: The substructure collapsing technique

3.1 Hierarchical change of basis

The hierarchical change of basis proposed by Yserentant [33] is an attractive way to pre-
condition finite element problems in two dimensions. In the context of substructures in
the plane, an attractive idea is to apply the change of basis only to the retained variables
(see Figure 1), that is

directly to the Schur complements that are computed at the first level. A conjugate
gradient iteration can then be used to solve the next level problem, accessing the matrix
in its unassembled form, including the hierarchical transformation matrices. It is easy
to see that the hierarchical basis change derived from the retained variables between two
substructures, applied to the corresponding Schur complement is equivalent to apply the
hierarchical change of basis to the entire substructure and then compute the resulting
Schur complement. The former approach is clearly the most attractive. A few results from
this approach (first presented at the Salishan Sparse Matrix Conference in May 1989), are
given in Table 3.

level unknowns dim(S) | iter. «(S) [iter. w(T78T)

42 L 8 18.76 8 7.89
210 30 18 3767} 18 1141
930 62 33 7942] 28 14.65

3906 126 62 161.06§ 38 18.25
16002 254 | 120 323261 45 22.25

[N R U X

Table 3: Hierarchical basis change in the Schur complement, membrane elements.
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Although this technique appears attractive, the method has limited applicability
since the problem must be at most 2-dimensional for these results to hold. A careful
discussion of this technique applied to the Laplace

model problem is given in [28]. J. Xu has proposed a nodal basis preconditioner
that overcome some of the limitations of the hierarchical basis preconditioner [31,32], see
also [8]. This method can be applied in a similar way and may be the basis for a more
general preconditioning technique.

3.2 Approximate Schur complements

The preconditioner implemented and studied in this section, may be thought of as building
an approximate Schur complement. It is based on an idea in Dryja and Widlund [18]
to zero out off-diagonal blocks in the Schur complement matrices. This method is also
related to the Bramble, Pasciak and Schatz method [9]. In the context of the model
problem described in [9], the main difference in these two methods, is the description of
the coarse global system. In [9], a separate coarse 'wire basket’ is defined with piecewise
linear functions between the vertices, while in this preconditioner, the global problem is
obtained by carrying out the standard block Cholesky elimination with some blocks
within the matrices explicitly set to zero. Mandel 23] describes a similar preconditioning
strategy where the coarse global system is defined by average values from each substructure.

In the framework of the multilevel substructuring technique, the preconditioner
described here may zero out off-diagonal blocks at all levels of multilevel substructure
irees or at certain levels only.

Let K be the stiffness matrix corresponding to internal nodes at a certain level. In
2 dimensions, the block structure of K is defined such that each block consists of those
unknowns which are on the common interface between two substructures from a lower level.
The preconditioner is constructed by replacing off-diagonal blocks in K by zero-blocks
before the usual block Cholesky elimination step. Applying this recursively at every level
of a hierarchy gives successively coarser approximations to the exact Schur complement.
An argument showing why this preconditioner still might be a good approximation to the
original Schur complement, is that the interfaces at higher levels depend on the global
behavior of their descendant substructures and that they are not strongly dependent on
the more local information that has been replaced by zero. To ensure that all the modified
Schur complements on all levels are positive definite, it is sufficient to impose the restriction
that the structure level matrix has full rank. For all intermediate levels, the grouping of
unknowns into internal and retained sets, and restricting the removal of blocks to the
matrix K, will guarantee this.

Widlund [30] shows that for regions divided into substructures like the two-level
models in Figure 7, the condition number of the preconditioned system grows proportional
to (1+log(#))? where H is the dimension of a typical substructure and h is the diameter of
a typical finite element within a substructure. An interesting question is whether the same
logarithmic bound holds when the technique is applied recursively in multilevel hierarchies.
The numerical results for Model 3 in Figure 7 indicate that this may be true.

Taking model 1'in Figure 7 as an example, the stiffness matrix for the edge and
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vertex system of equations, has the form:

S 11 S 12 0 514 S 15

Silz' 522 S 23 0 S 25
S=|0 ST 5, S, Sy |,

ST ¢ Sy Se

ST
st sz st osTos,

S, is associated with the vertex node common to all four substructures and $;; ,2 = 1, ..,4,
with the edges between two and two substructures. Constructing our preconditioner from
S gives the sparse matrix:

5,0 0 0 &8,
0 S, 0 0 &,
s |0 0 S0 S,
*=1lo 0 o S8, S,
5% 5. S Sk S

In order to estimate the cost of the preconditioner as compared to the standard
block Cholesky elimination, consider a model problem defined on the unit square.

-In the first partitioning strategy each square is recursively partitioned into smaller
squares in the following way. Each square at a given level j in the partitioning process is
divided into four equal new squares. This process is repeated ! times, resulting in m = 2/
substructures along each side of the original square. Model 3 in 7 is partitioned with this
strategy using ! = 2. The number of unknowns along each substructure edge at level j
in the partitioning process is N = 37 and there are 47 squares at level j where n is the
number of unknowns along each side of the original square.

The number of operations needed to compute the preconditioned

and the original factorization at all the levels can be estimated. At level j = 0
(the structure level) there is only a Cholesky factorization to perform. The operation
counts for the Cholesky factorization are $ N3 and -‘-’;N 3 for the preconditioned and the
original system respectively. For the levels j > 0, the additional number of operations
needed to compute the Schur complements for the preconditioned and the original system
are counted to be LN3 + O(N?) and 32N> + O(N?) respectively. Summing over all !
partitioning levels show that the operation count of the preconditioner compared with the
block Cholesky factorization approach ratio

-;%‘; as | increases. To form the preconditioner is therefore in the limit approximately
eight times cheaper than the direct factorization. This ratio decreases from 16 in the case
of one level.

Consider the following alternative partitioning strategy without recursive partition-
ing. The original square again has n unknowns along each side and is divided into 4
equally sized smaller squares. Model 2 in Figure 7 is partitioned with this strategy taking
I = 2. The number of unknowns along each edge of a square when there is a total of 4/
squares, is V = 7. The number of interior edges of the partitioned square is 22'+1 — 2I+1
and the block bandwidth of the stiffness matrix of the edge systems of equations is 21— 1.
The operation count to compute the Cholesky factor of this banded matrix is of O(N 32‘“)
if2' > 1.

With the latter partitioning strategy, the preconditioner gives a block diagonal
system of dimension N - (2% — 2M1) where N is the dimension of the diagonal blocks.
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In addition, there is a small dense stiffness system corresponding to the vertex nodes that
must be factored. The operation count for the vertex system is of O(2%'). As long as the
factorization cost of this vertex system is small compared to the cost of the block diagonal
system, the operation count of the preconditioner is of O(N32% ). Hence the ratio of the
operation count between the preconditioned and the original system is of o@2™%)

when the vertex system can be ignored.

Comparing the two partitioning strategies, shows that the latter method gives a
reduction in the number of operations, compared with a direct solution method, which is
proportional to the number of substructures.

The approximate Schur complement preconditioner has been applied to the 2-
dimensional model problems in Figures 7 and 8. The models are defined on the unit
square and they all have the same underlying finite element mesh. The thickness of the
elements are 0.05 and the Poisson ratio ¥ = 0.3. Both 4 node membrane elements and 4
node shell elements are used to generate the stiffness matrices for the system of equations
to be preconditioned in the tests. The membrane elements have 2 unknowns per node
while the shell elements have 5 unknowns per node, three displacement unknowns and two
in-plane rotational unknowns. The differences between the separate models are the differ-
ent groupings of finite elements into substructures and the assenibly of substructures into
computational models. The different grouping strategies give rise to different numbers of
retained unknowns along the internal edges.

Model 1 Model 2 . Model 3
(two-level) (two-level) (three-level)

Figure 7: The 2D Model Domains: Squares.

Model 4 Model 5 Model 6
(two-level) (two-level) (three-level)

Figure 8: The 2D Model domains: Strips.

The initial guess of the solution vector z has been z =0 in all the tests. The
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stopping criteria is
Ll oo pg.g0-10
Amin || 2l
where A, is obtained from the representation of the Krylov subspace at hand in the
conjugate gradient iteration and = is the residual [19]. For the membrane elements, this
stopping criteria produced the same iteration count as the component based stopping
criteria divect
max LT oyl 1070
: I z! 1T EC] l
where z#7¢* is found from a Cholesky factorization of the problem. With shell elements,
the amplitudes in the rotational variables are several orders of magnitude less than in the
displacement variables. .This results in a larger number of iterations to obtain a given
tolerance, using the last criteria.

The results from the tests are organized in the following three paragraphs where
each paragraph presents results from a group of models.

Model 1 consist of 4 first level substructures assembled into a two level compu-
tational model. Table 4 shows the preconditioning results for Model 1 with membrane
elements and Table 5 shows the corresponding results with shell elements. In each table
the condition numbers £(§) and x(S;1S) for the original and the preconditioned system
are tabulated as a function of decreasing mesh size k. For the membrane elements, it can
be seen that the condition number x(5;15) grows proportional to (log(h~*))?. membrane
element test For the shell elements the situation is slightly different. The condition num-

N b | &8 I k(S8 I
37 .0500 | 17.91 18 569 11
69 .0278| 3324 27 7.96 12
133 .0147 | 6400 39  11.00 13
261 .0075 | 12559 55  14.82 15

Table 4: Preconditioning results for Model 1 using membrane elements with two unknowns
per node. N is the number of nodes along the edges. k(S) and k(S;18) are condition
numbers of the original and the preconditioned system. I is the iteration count.

bers are reduced significantly in all the tests but going from h = 0.05 to h = 0.0278 shows
a doubling of the condition number. However, in the next refinement step, the logarithmic
growth is visible. A more detailed investigation of the matrix entries in S and S, shows

N & K(5) I w(S718) I
37 0500 | 25360.52 236 78.44 17
69 .0278 | 4598056 399 17534 19
133 .0147 | 8792425 >500  9226.84 22

Table 5: Preconditioning results for Model 1 using shell elements with five unknowns per
node. N is the number of nodes along the edges. (S) and k(5718) are condition numbers
of the original and the preconditioned system. I is the iteration count.

that within the off diagonal blocks that have been replaced by zeroes, there are entries
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in the range 10~2 — 100 This is pictured in Figure 9 where the z entries in the matrix
[ § — S| are plotted for Model 1 with & = 0.05. The peaks represent the missing couplings
between nodes that are adjacent to the vertex node. It can be seen that this error is rapidly
decaying as the distance from the vertex increases. Omne can improve the preconditioner

Figure 9: © entries in matriz |§ — S, | for Model 1 with h = 0.05. Scaling = 5.0 - 10~1°,

by moving adjacent nodes from each of the internal edges into a new extended cross set
Sss. This strategy will reduce the largest entries in the matrix | § — §,|. Table 6 shows
the decrease in x(5;1S) and in the number of iterations, as the number of nodes in the
extended cross is increased. The fest is done with a mesh parameter h = 0.0075 for the
membrane element model.

N, 1 n(S;'lS) I
1 wvertex 14.82 15

5 .02 7.96 13
13 .05 4.56 10
25 .10 292 8

Table 6: Preconditioning results for Model 1 with extended vertez set. N, is the number of
nodes in the new vertex set. | is the linear size of the new vertez.

Both Model 2 and Model 3 are based on the same 16 first level square substruc-
tures. In Model 2 all these substructures are combined into the structure level while in
Model 3 there is an intermediate level, grouping four and four substructures together. The
structure level substructure is here represented by the thick lined edges built from the four
substructures at the intermediate level. With Model 2, the preconditioner is similar to
the Bramble, Pasciak and Schatz preconditioner [9]. With the three-level model, Model 3,
there are three different ways to introduce zeros in the matrix. First, one can remove the
coupling between the edges of the four intermediate substructures (thin lines). The second
option is to remove the coupling between the edges in the highest level substructure (thi.ck
lines). The third option is to apply the preconditioner at both levels simultaneously. Fig-
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ure 10 plots the growth in the condition number for the iteration matrix with the various
preconditioning options arising from Model 2 and Model 3 as a function of (log(h~1)).
The condition numbers grow linearly as expected.

=8 T T T T T T T

)

(4): Model 2
(3): Model 3 with zeros
at both levels.

(2): Model 3 with zeros
at the top level.

(1): Model 3 with zeros
at the first level.
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Figure 10: The condition number k(5;18) as a function of (log(R™*))? for Model 2 and
Model 3 meshed with membrane elements.

Model 4-6 are assembled from substructures being strips. The matrix picture of
the Schur complements assembled from strips are by nature different from those assembled
from squares. This is so because there is a constant distance between the edges in all strip
models. Figure 11 plots the entries of the matrix | § — 5, | for Model 4. By comparing this
plot with the one in Figure 9, the different nature of strip and square models can be seen.
Note that the scaling of the entries in the two plots differs with a factor of ten. Tables 7
and 8 show the condition number and the iteration count for the various preconditioners
applied to the strip models.

Model 4
N h | &(5) «(S719)
38 0500 144 2.74
70 .0278 | 25.19 2.74
134 0147 | 46.22 2.74

Table 7: Preconditioning results for Model § using membrane elements. N is the number
of nodes along the edges. k(S) and k(S;185) are the condition numbers of the original and -
the preconditioned system.

Observe from Table 7 and 8 that for a given preconditioner, the condition number
is independent of the mesh size. The refirement introduces new couplings with exactly the
same magnitude in the strip case. In the square models, however, this approach leads to
stronger coupling as the mesh is refined. Note also that introducing zeros at both levels
in Model 6 gives identical condition numbers to the first case considered. This is expected
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Figure 11: = entries in the matriz | §— 8. | for Model 4 with h = 0.05 Scaling = 5.0-1079.

Model 5 Model 6
k(8) &(S;L9) K(5715)
N h optl opt2 opt3

152 .0500 | 40.91  24.90 9.32 247 9.32
280 .0278 | 58.97  24.90 9.32 247 9.32

Table 8: Preconditioning results for Model 5 and Model 6 using membrane elements. N is
the number of nodes along the edges. k(S) and k(S;15) are the condition numbers of the
original and the preconditioned system. optl, op2, opt3 are the different options referred
to in the text.

since two first level substructures that are decoupled will remain decoupled at all higher
levels.

3.3 Additive Schwarz methods

Domain decomposition preconditioners based on ideas from Schwarz [26], has received
much attention, see [16],[17] and the references in these papers. Until recently, most of this
work related to model problems and scalar elliptic equations. In his thesis Barry Smith [27]
developed and tested a method for two and three dimensional linear elasticity. He proved
the optimality of the method and carried out extensive tests using the SESAM structural
analysis program to provide the underlying stiffness matrices. This method appears very
robust and quite promising, it is however, somewhat more complex fo incorporate ina
structural analysis code in its full generality. The preconditioner can be built in a system-
atic way, but unfortunately, the components that enter, are not already explicitly available

in the SESAM code.
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4 Conclusions

We have shown how a redesign of a large industrial finite element code for parallel pro-
cessing, can be carried out. The resulting code has the capabilities to employ two different
levels of parallel algorithms, dynamically switching between them, in order to achieve good
parallel efficiency in all phases of the computation.

The development of a parallel version further makes the incorporation of iterative
algorithms in parts of the solution process, easier. Several such algorithms based on precon-
ditioned conjugate gradients, have been discussed and tested using different finite element
formulations. The understanding of how to construct good preconditioner has improved
during this project and are now ready to be tested out on realistic models.

With the preconditioned conjugate gradient method as a basis to solve systems of
equations in SESAM, new methods to construct

preconditioners should still be investigated. The methods must have optimal or
near optimal convergence rate properties.

We plan to pursue the incorporation of these and similar ideas for important classes
of frequently analyzed structures. Almost all models of tubular joints like the one in Figure
2 consist of a potentially very large number of first level substructures combined with a
very compute intensive structure level matrix. This is a very attractive special problem
class where the combination of direct elimination of the first level matrices

(in parallel) combined with an optimal iterative solver like the one proposed by
Barry Smith [27], may challenge the traditional use of direct algorithms.
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