CHAPTER 3

Practical Uses of Domain Reduction Methods

Craig C. Douglas*

Abstract. A model of computation that is correct for all digital computers made to date is defined. This
includes serial, parallel, and distributed environments. Use of this model for designing highly portable software using
the Linda system is discussed. A sparse matrix library for solving partial differential equations using domain reduction
or decomposition techniques for parallel or distributed machines is mentioned.

1. Introduction. In this paper, a theoretical model of computation is defined, which is cur-
rently being applied to the design of sparse matrix software for domain reduction and decomposition
methods. This software is probably not optimal in any computing environment, but is close enough
to be of interest. However, it is highly portable, and can be fine tuned to a particular machine
according to the parameters of the theoretical model.

In §2, a model of computation is defined which realistically fits all conventional computers made
to date, serial or parallel. In §3, a brief description of the Linda system is presented. In §4, a brief
description of the domain reduction method is presented. In §5, a sparse matrix package, Tupleware,
is briefly discussed.

2. A Statistical Model of Computation. One of the standard models for parallel computa-
tion is the PRAM model. This model assumes a global clock, that all of the processors communicate
through a shared memory, and that all processors can access an element of memory anywhere in
the memory in constant time. Various memory access methods have been characterized (see [33]),
including concurrent read and write (see [24]), concurrent read and exclusive write (see [6] and [23]),
exclusive read and write (see [31]), common concurrent read and write (alternating read and write
cycles, see [28]), concurrent read and owner write (part of memory is assigned to a processor, see
[21]), and fetch and add models (see [25], [27], and [32]).

There are numerous variations on the PRAM model, including asynchronous models (APRAM,
see [12]) where local clocks are assumed, and distributed models (DRAM, see [30]) where a local
network is assumed. However, all of these models are still quite simple in nature.

Some computer manufacturers “guarantee” access times for simple data elements or a block of
data (e.g., an array or a character string). Unfortunately, these guarantees never take into account
the software interface, possible hardware interrupts, direct memory access capabilities that steal
memory cycles, if all of the processes are actually running simultaneously, poor compilers, or a
variety of similar pitfalls.
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One of the advantages of a PRAM model is that its parameters can usually be determined
by looking up the claims of the manufacturers. This simplifies theoretical analysis of complicated
algorithms since a real machiné never has to be used in order to predict the behavior. ‘I'his argument
has been used to show that PRAM models are simple enough to use and still quite powerful.

The other extreme are models which try to quantify how long every machine operation will
take. This includes the time it takes for an add, to move a byte from main memory to a register,
an interrupt, paging or swapping, and input or output to an external device. These models are too
complicated to be of practical use to most people who want to design highly portable software.

A much more realistic model makes assumptions on how long operations take based on numeric
intervals, not absolute numbers. This is actually a compromise between the two extremes in models
of computation just described. There are two types of intervals of interest.

DEFINITION 2.1. Define the set of all simple real intervals by

I={[mn]|m<n, mmeR}.
Define the set of all function based real intervals by
F = {[min f(-),max f(-)] | f: IR — IR, f possibly multivalued}

DEFINITION 2.2. The statistical model of computation is defined in terms of the following
parameters and sels of intervals.

P tasks (possibly processors)

1<C<p clocks

{ei |es € T}E, time to access a simple data
element

{GN)+t(N) | & +t; € FY_, time to access a block of data
of length N

{si(N) | s; € F} startup time for a task of size
N

For a real computer, many of these intervals can range from infinitesimal to infinite. Hence, we
also want to know an X percent confidence level set of intervals in order to model “normal” behavior
(common values of X are 90, 95, and 98).

To be practicalZ the number of intervals in each set cannot be very large. Otherwise, the model
becomes too. complicated to be of value for most people. However, it should be flexible enough to
allow many intervals in a set for those who wish to be more precise in their modeling.

) 2.1. Major components of t'his model. Since some systems allow threads, a task oriented
instead of processor oriented .model is preferable. The number of clocks is clearly dependent on how
many clusters of how many independent processors are used, and whether or not they are tightly
coupled by clock cycles.
hThcle time to access a simple datum is clearly dependent on if it is stored in a machine register,
;:lac e, llc'>cal or gl?bal memory bank, and how many lines run in or out of the various memory
le:;rlc ies. For simple data elemex?ts, there might only be 3 intervals (register, local memory, or
glr?ve) r:rzn;orzl. tIt(coulEi2 ]b: la.rgzr, if cﬁachmg and paging to an external memory device (e.g., adisk
nt (see or a data flow model). It could also b i
movement), which is similar to the PRAM model)s. o be e amall as one (just memory
Accessing blocks of data can incur both a late i

* . ncy time delay £;(N) (possibl Itiple ti as

well as time for a string of bytes (which may also be modulo somel gxur)nl(:r). ioly multiple times)
dl"]l.nallﬁ, consider modeling the startup time of a task. This is much more complicated than
modeling data movement. On some machines, all local memories are loaded once with identical

copies of an initial mem i icti i
ety ory set, and these must be re-used. This makes predicting the startup time

On other machines, a “fork”
the entire memory set (program
environment, this may cause mem

system call is used to start another processor. This may cause
and data spz?ce) to be duplicated. Depending on the machine
otxg' to be ;c?pn’ed to local memory, another memory box, or across
other machine’s memory. This can take a ver i i

. i e y long time if the
memory set has grown to a large size and is certainly a function of the amount ofgspace being
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duplicated. However, the memory set associated with a completed task can be re-used without
duplication if care is exercised. Then the startup time may be much less than it was the first time
for an identically sized memory set. Hence, the startup time can only be modeled using multivalued
functions.

2.2. Typical bad examples for modeling. Consider the example of a communications
network, combining network, or data switch that is accessed. In each case, machines exist which
do not guarantee a useful upper bound on when data passes through a bottleneck, independent of
the communications topology. For example, suppose multiple pieces of data must pass through a
single data path. Assume the method of deciding which datum will be moved along the path is to
choose a random one. Then, it is quite possible to have a datum stuck indefinitely, causing all of
the processors to eventually halt waiting for that one datum to get to its destination.

A similar bad case is access by multiple processors to the same shared memory bank. On some
machines, if p processors try to access the same row of memory chips (or a collection of rows of chips),
a p—fold slow down in executions occurs. This situation arises most often when a compiler optimizes
the wrong loop with respect to parallelism. The standard solution offered by manufacturers is to
suggest that the programmer rewrite their program using a better algorithm (specifically for that
particular machine, of course). This hinders portability rather severely.

3. Linda Approach to Computation. A number of semi-portable parallel programming
environments now exist. Some of these systems mimic execution time libraries supplied by some
hardware manufacturer, others are complete languages. The Linda system is one of the few which is
language independent in concept (see [5], [9], [10], and [11], and [29]). Implementations are available
for ADA, C, FORTRAN-77, LISP, and PostScript from a variety of sources, including commercial
and academic.

For each Linda implementation, there is a preprocessor and execution time sysiem. The
preprocessor adds a new data type (a tuple) and six operators which manipulate tuples or tasks. As
a result, Linda can be interpreted as a global database system, rather than as a language. The data
is maintained in fuple space, which can be distributed across a number of processors. The processors
may be part of a tightly coupled system (e.g., a shared or distributed memory machine), or a loosely
coupled system (e.g., where the processors are connected via a network).

Data flow is analyzed both at compile time and during execution. On distributed memory
systems, efforts are made to prefetch tuples based on this analysis. There can be a penalty for
using this type of system. When transferring small tuples (e.g., a few words of memory) between
processors, the extra overhead of Linda can be as high as 40%. However, when transferring large
tuples (e.g., several thousand words of memory), the penalty is less than 1%.

The actual Linda operators are as follows.

eval Evaluate a tuple in parallel.

in Move a tuple from tuple space (wait for one if
necessary).

inp Move a tuple (if it exists) from tuple space.

out Copy a tuple into tuple space.

rd Copy a tuple from tuple space (wait for one if
necessary).

rdp Copy a tuple (if it exists) from tuple space.

The operators ending in “p” return a success or failure value, depending on if a tuple matches the
pattern or not. In either case, the routines return immediately.

A tuple can have any number of entries, and each entry can be almost anything. Tuples with
mixed data types (i.e., character strings, arrays, reals, integers, and constants) are allowed. In the
case of the eval() operator, one of the tuple entries typically is a function. This function is evaluated
independently of the current task, either as a thread or separate process on this processor, or on
another processor (depending on the Linda implementation).

Accessing tuples in tuple space (by in(), inp(), rd(), or rdp()) is complicated by a pattern
matching feature: some arguments may be formal (i.e., completely specified) and some may be
informal (anything in tuple space of the same data type can match these). Informal arguments are
preceded by a question mark. For example, consider the following Linda-C code fragment.

in(4, “tupleware”, ? z);
would input any tuple which has as its first entry an integer 4, the character string (of length 9)
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tupleware as its second entry, and the same specific data type as z. In case multiple tuples match,
a (pseudo) random one is chosen to match. A similar example is
in(4, “tupleware”, 7 z : n);
In this case, an array of the same specific data type as z would match. This array would be stored
in z and its length in n. Finally, suppose z is of data type float. Then,
in(4, “tupleware”, 7 float *:);
would cause a tuple to be deleted from tuple space. =~ ’

Accessing a simple data element or a block of data cannot be characterized by the PRAM model
or its simple variants. Unless the preprocessor data flow analyzer has eliminated a tuple space
operator, there is always software involved in accessing tuple space (for either input or output).
Further, there is possible communications on distributed or networked memory systems. On an
Intel iPSC or a network of machines, the tuple header is hashed first to determine which processor
holds the tuple (see [5]). The tuple is fetched, if necessary, and then decomposed to the requested
places in local memory. Alternately, it is just transmitted to the correct processor, which must store
the tuple, thus causing an unfriendly interruption of another processor’s computations.

We determined the intervals for a particularly bad case, namely when a number of processors
simultaneously try to get the same tuple from tuple space (using rd). The tuple has a character
string key and a vector of double precision (64 bit) words. The size of the vectors are contained in
Tables 3.1-3.4. The tuple was requested 2000 times by each processor. The maximum and minimum
are given in the tables along with 95% and 98% confidence intervals.

Due to possibly unexpected interrupts on each processor, it is almost impossible to assume that
tasks are running exactly in parallel. On distributed systems, a large amount of hidden input Joutput
may occur. On time shared systems (e.g., Sequent or Encore computers), competition with other
users occurs, including background jobs run by the operating system. On a simulator running on a
single processor, there is no hope of real parallelism. These situations can be modeled with intervals
rather easily, but cannot be modeled with absolute numbers in a reasonable fashion.

TABLE 3.1
Intervals for an 8 processor Sequent S-81 Symmetry system

95% 98%
Size Average | Min Max | Min Max [ Min Max
1 2.5e-4 0 001 [0 0010 0.01

100 2.1e-3 0 002 (0 001 [0 0.01
1000 | 2.1e-2 0 019 10 007 |0 0.09
10000 | 3.0e-1 0.04 6.25 | 0.04 201 | 0.04 292

TABLE 3.2
Intervals for an 16 processor Encore Multimaz (APC-02) system
) 95% 98%
Size Average | Min Max Min Max Min Max
1 9.0e-4 32-4 17e-2 | 3.5e4 3.4e-3 | 3.2e-4 4.9e-3

100 6.2e-3 6.8e-4 8.7¢-2 | Tde4 2.7e-2 | 7.0e-4 3.2¢-2
1000 | 5.6e-2 4.1e-3 9.0e-1 | 6.7e-3 2.4e-1 | 6.6e-3 3.0e-1
10000 | 7.7e-1 9.0e-2 9.6e+0 | 9.7e~2 3.1e+0 | 9.5¢-2 3.8e+0

TaBLE 3.3
Interuals for a networked 8 SUN SpercStation/1 system

) 95% 98%
Size Average | Min Max Min Max Min lo\flax
1 8.3e—02 | 1.4e-04 1.5e+01 | 1.4e-04 4.9¢01 | 1.46-04 65601

100 Lle-01 | 2.5e-04 9.6e-01 | 2.5e-04 3.7e-01 | 2.5e-04 5.1e-01
1000 | 1.1e-01 | 1.3e-03 5.1e+01 | 1.3¢-03 2.2e-01 { 1.3e-03 3.1e-01
10000 | 9.3e-01 | 1.4e-02 1.5¢+00 | 1.4e-02 1.3e+00 | 1.4e-02 1.3e400
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TABLE 3.4
Intervals for an 64 processor Intel iPSC/2 system

95% 98%

Processors  Size Average | Min Max Min Max Min Max

1 1 3.6e—4 0 3.0e-3 |0 1.0e-3 | 0 1.0e-3
2 1 1.4e-3 1.0e-3 2.0e-3 | 1.0e-3 2.0e-3 | 1.0e-3 2.0e-3
4 1 2.1e-3 1.0e-3 3.0e-3 | 2.0e-3 3.0e-3 | 2.0e-3 3.0e-3
8 1 4.9e-3 1.0e-3 6.0e-3 | 4.0e-3 5.0e-3 | 4.0e-3 5.0e-3
16 1 1.1e-2 6.0e-3 1l.1e-2 [ 1.0e-2 1.1e-2 | 1.0e-2 1.1e-2
32 1 2.1e-2 1.0e-3 2.2e-2 | 2.0e-2 2.2¢-2 | 2.0e-2 2.2¢-2
64 1 2.1e-2 1.0e-3 2.3e-2 | 2.1e-2 2.2¢-2 | 2.1e-2 2.2e-2
1 100 5.2e—4 0 5.0e-3 [ 0 1.0e-3 [0 1.0e-3
2 100 2.0e-3 1.0e-3 3.0e-3 | 1.0e-3 2.0e-3 | 1.0e-3 2.0e-3
4 100 4.8¢-3 2.0e-3 5.0e-3 | 4.0e-3 5.0e-3 | 4.0e-3 5.0e-3
8 100 8.3e-3 2.0e-3 9.0e-3 | 8.0e-3 9.0e-3 | 8.0e-3 9.0e-3
16 100 1.8e-2 2.0e-3 192 | 1.7¢-2 1.8¢-2 | 1.7e-2 1.9e-2
32 100 3.6e-2 2.0e-3 3.7e-2 | 3.5e-2 3.Te-2 | 3.5e-2 3.7e-2
64 100 3.6e-2 2.0e-3 3.7¢-2 | 3.6e-2 3.7e-2 | 3.5e-2 3.7e-2
1 1000 | 4.3¢-3 4.0e-3 6.0e-3 | 4.0e-3 5.0e-3 | 4.0e-3 5.0e-3
2 1000 | 8.0e-3 5.0e-3 9.0e-3 | 8.0e-3 9.0e-3 | 8.0e-3 9.0e-3
4 1000 | 1.4e-2 6.0e-3 1.5e-2 | 14e-2 1.5¢-2 | 1.4e-2 1.5e-2
8 1000 | 1.0e-2 8.0e-3 1.9e-2 | 5.0e-3 1.9¢-2 | 5.0e-3 1.9e-2
1 10000 | 3.0e-2 3.0e-2 3.1e-2 | 3.0e-2 3.1e-2 | 3.0e-2 3.1e-2
2 10000 | 4.1e+0 | 3.1e-2 1.3e+1 | 3.1e-2 1.2e+1 | 3.1e-2 1.3e+1
4 10000 | 9.4e4+0 { 3.1e-2 1.3e+1 | 3.1e-2 1.2e+1 | 3.1e2 1.3e+1
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On a Sequent or Encore parallel processor, all tasks eval()’ed are forked, which causes the entire
current memory set to be copied. On an Intel iPSC (any model) or network of workstations, all
processors start with an identical copy of an initial memory set; all tasks eval()’ed use either the initial
or a used memory set. The Intel model is very useful since it encourages defensive programming,
and does not allow a fork to occur after the memory set has grown (by memory pages being touched
as data is changed or generated) to an unreasonable size. Smart implementations of Linda force
re-use of memory sets when possible, not regeneration.

4. Domain reduction methods. In this paper, the linear problem

(4.1)

Lr=b

is posed on a linear space V. A collection of independent problems on subspaces of V is used to

solve (4.1).

A decomposition of V into subspaces {V;}72, such that

(4.2)

induces a family of projections {II;}%, given by

(4.3)

m
uzz:u;, u; =ILue V.

i=1

It is known [19] that if the projections II; commute with L, then LV; C V; and (4.1} decomposes

into independent problems

Liu; = fi = I f,

where L; is the restriction of L onto the subspace V;,

Li = L}y, = LIL;.
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The projections and subspaces studied in [8], [15], [18], and {20] are induced by various symmetries
of the domain. Use of related group theory approaches is well known in bifurcation theory (see [1]).

It is therefore natural to study the decompositions from a systematic group theory point of view
[17]. Using Abelian groups, we show that in decomposing a space V, the projections commute with
L if and only if there exists a commutative group G of automorphisms of V which generates the
decomposition and commutes with L. This covers the the constructive interfence theory in [19] and
the domain reduction theory in [20]. By using the correct representations, this also covers the high
way domain reductions in [8], [15], and [18], which appear at first to be noncommutative.

In applications of symmetry to differential equations, it is usually assumed that the automor-
phism group G is obtained by symmetries of the underlying physical domain. In the Abelian group
theory, we made no such assumption, but assumed that the group was commutative. In general, the
symmetry groups are not commutative.

Let V be a functional space on the domain Q and ¥ : Q2 — Q, one-to-one and onto. Define
Gu = uov. If the range of G lies in V, then we say that the mapping G : V — V is induced by
v. This mapping is always one-to-one. However, it may or may not be an automorphism of V,
depending on the definition of V and smoothness of 4. For example, if v is an isometry, then G will
be an automorphism in all usual spaces of continuous and differentiable functions and in Sobolev
spaces. However, not all automorphisms obtained by the use of the Abelian group technique in [17]
can be expressed as induced by a one-to-one, onto mapping of the domain.

In the noncommutative cases, problems on rectangular (in 2 dimensions) domains are reduced
to a collection of similar problems on subdomains, some of which are triangular in nature. The
analysis in [17] allows us to determine the correct boundary conditions for reducing problems on
triangles to ones on subtriangles. This allows a recursive definition similar to multigrid (see {3], [4],

.[7], [13], [16], [22], and [26]). Unlike multigrid, we can easily produce a direct method instead of
iterative.

5. Tupleware. A software package has been produced using the Linda system for solving large
sparse linear systems of equations. Details of this package can be found in [14]).

A layered design is used in the package: there are serial, ugly parallel, and clean parallel routines.
An ugly parallel routine runs on an individual processor and communicates with other Processors
running the same routine. A clean parallel routine is called serially by the user and interfaces with
a set of ugly parallel routines. The ugly parallel routines are faster than the clean routines, but for
large enough problems, there is no noticeable difference.

For a constant s, vectors z, y, and 2, and a sparse matrix A, routines exist to compute =Ty,
z=y+ sz, and sparse matrix-vector multiplication (actually, y = Az, y= ATz, y=y+ Az, or
y =y = ATz). Routines also exist to analyze a matrix, build diag(A), redistribute a vector across
processors, and print distributed objects. These routines are used to implement conjugate gradients,
conjugate gradients squared (see [34]), multigrid, and some simple domain reduction methods (see
(8] and [18], [19], and [20)).

) We store a distributed sparse matrix as a collection of blocks. The blocks can be subdivided

1nt:.o overlapping subblocks. A matrix A is stored hierarchically in tuple space. All tuples are keyed

using a ch?racter string. To access a subblock b on processor p, a description is first read. Getting

the coefﬁcxents and column indices requires a second access to tuple space. Special matrices, like

:l:Iden.tlty m.atrix, are treated specially, and the coefficients and column indices are not stored.

g)ertam routines need some global information about A, requiring a possible third access to tuple
ace.

Ul:lllke many sparse matrix packages available today, no array of pointers into the column index
array is required. Further, for an N x N matrix with M rows of all zeros, information is stored
only for the N — M rows which have nonzeros, not for all N rows. This format does not guarantee,
?owever, that only nonzero coefficients are stored: any diagonal element a;; = 0 is stored. This
rz;rgg:.n r;a:li)i'o:sumes that the matrices will be used row by row sequentially rather than in a

The principal application so far has been to the domain reduction method. Here, a number of
boundary value problems are solved which only differ in the boundary conditions. Th;: matrices are
_spar;e and can be though.t of identical to the others up to an extremely sparse matrix. Asymptotically
in the order of the matrices, Tupleware’s storage format allows a p—fold reduction in storage (for p

similar problems), and a p—fold reduction in the matrix generation time (see [14]).
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Tupleware is designed to access a small set of arrays which characterize the machine it is running
on. These arrays include information on how long it takes to move certain size objects (e.g., a sparse
matrices or vectors of certain sizes). These are intervals and can be used to determine how to
distribute data across a machine and how to schedule computation. Very simple programs generate
the intervals which can be included in the Tupleware codes.

6. Conclusions. Before embarking on any new software package, knowledge about how a
number of computer architectures operate should be considered essential. There are now a large
number of computers: serial (simple, vector, very long instruction word), parallel (serial, vector,
cluster, MIMD, and/or SIMD), and distributed (all of the above). Unfortunately, very few packages
do more than try to adapt to parallel or distributed environments poorly. It should be obvious
that a good model of computing is essential to producing anything resembling portable codes. It is
not good enough to require a (nearly) complete rewrite of a very large code (possibly in machine
language) every time a new machine comes along.

Finally, spending large amounts of intellect trying to parallelize small or moderate sized problems
is a waste of time. People who need parallel computers sufficiently to worry about the time spent
on problems which can be solved in a few seconds on an inexpensive workstation typically have a
huge number of problems to solve. Most parallel methods are not close to 100% efficient in processor
utilization. Hence, it is more efficient to solve individual problems on separate (single) processors,
guaranteeing approximately 100% processor efficiency.
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