CHAPTER 14

Preconditioning and Boundary Conditions:
L, and m, Theory™*

Seymour V. Partert

1. Introduction

Let © be a bounded open region in R2. Let A be an invertible uniformly elliptic operator_ défined on Q.
That is, in Q

Au = —[(a11ug)z + (B12uy )z + (G12uz )y + (G2ttyly] + a1te + auy + aon, (1.1)
with boundary conditions 4
u=0onT 6”*—& +a(a)auonI‘ (1.2)
= 0, By oM )5 1 .

where Q =T U and(—.,%’: denote the co-normal derivative. Consider a boundary value problem
Au= f e L), (1.3)
and a finite element discretization

AnUn=fo, Un€Sh (1.4)

Much of the literature on preconditioning for Ay is concerned with the cases where A is symmetric and
positive definite and/or Tg(A) = 0%, i.e. the boundary conditions are Dirichlet conditions on the entire
boundary. In this work we will focus our attention on methods which can deal with the case where

A# A* and To(A) # 89.

Let B be another invertible uniformly elliptic operator defined on . Thus

Bu = —[(b11vs)e + (b12vy )z + (b12vz)y + (b22vy)y] + brvz + bavy + bov. (1.5)

Let B, be a discretization of B acting on the same space, S, as Ay. This report is concerned with the
preconditioned operators Ry = AhB,fl, Ly =By 14;.
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The basic questions addressed are:

(i) Can one find an elliptic operator B so that

Cr, (B " An) = |1B; Allm, | A7 Ballm, < Km 7

(ii) Can one find an elliptic operator B so that
Cr(B;  4x) = || B Anlla|| 45 Balle, < Ko 7 (1.6)

(iii) Can one find an elliptic operator B so that
Cia(AnB; ) = 14nB; Il Ba Az llze < K )

(iv) Given operators By and Bpr so that (1.6) and (1.7) hold respectively, what can one say about the
distribution of the singular values of Ly and Rs?

The interest in such estimtes stems from the well known estimates for the convergence of the Conjugate
Gradient methods. That is, if £* = Uy, — U} is the error in the sth Conjugate Gradient iterate U}, then

el < 2 el (18)

C -
e+
where ¢ denotes the appropriate Condition number.

However, the optimality theorem of Conjugate Gradient method implies that the estimate (1.8) may be
a serious overestimate when the singular values of B;lAh or A;.B,:l. (depending on the implementation)
cluster about a few values.

Note: In practice one uses f?;l, an approximate inverse of By, e.g., a single multigrid sweep.

2. Basic Results: Hy Regularity

These topics have been discussed in detail in [FMP], [MP], [JMPW], [GMP]. The basic results are:
Theorem 1 [FMP, MP]: Let A, B be invertible. Let Aj, By be families of finite-clement discretizations.

(a) Suppose A7 — A%, By — B~ pointwise in L. Assume there exists a K7, > 0, independent of
h, 0 < h < hg such that
HB;IAh”Lz < Kr. (2_10,)

Then, there exists a K} and
I1B~*A4llz, < K. (2.1)

(b) Suppose A;l — A7, B,‘,’1 — B! pointwise in H;. Assume there exist a K > 0, independent of &,
0 < h < hg, such that
1185 Allz, < K. (2.20)

Then, there exists a K and
1B Allm, < K*. (2:26)

(c) Suppose (A3}~ — (A")"L,{(B;)~t — (B*)~! pointwise in L. Assume there exists a Kg, independent
of h, 0 < h < hp, such that
”A};B;l“[,2 < Kg. (2.3a)
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Then, there exists a K} and
4Bz, < Kb W (23)

We deal with the H; estimate, (1.9b) first. The result is elegant and complete.

Theorem 2 [MP]: Let A and B be invertible, then (1.9b) holds if and only if
T'o(4) = I'o(B). (2.4)
That is, if and only if the partition of the boundary 89 into I'g UT'; is the same for both operators, Wi

Theorem 3[MP]: Suppose the discretizations Ay, By are obtained as direct Galerkin schemes, i.e., the
operators Ay and By are obtained by simply restricting the usual weak form (bilinear forms a(u, v), b(u, v))
to the subspace S,. Suppose (2.4) holds, then (2.2a) holds. W

While there is much to be done to obtain such results (as in theorem 3) for other discretizations,
theorems 2 and 3 complete our discussion of the H; case. We now turn to the L, case. Qur first results are
for the case where both A and B are Hy regular. That is: there exists K;1(A), K1(B) such that, for every
f € Ls, Au= By = f implies u,v, € Hp and

”u”H:' < I{l(A)”f”Lar (2~5ﬂ)
Iolla. < Ku(B)IF]z. (2.58)

Theorem 4[MP]: Suppose A, B are invertible and (2.5a), (2.5b) hold. Then

(a) AB~?! is a bounded operator mapping L, into Ly with
lAB Y|, S K <0

if the domain of A equals the domain of B. That is, if A and B have the same boundary conditions.

(b.) B~'A (which is originally defined on the domain of A) can be extended to a bounded operator
mapping L into Ly with
|1B-Allr, < K < o0

if the domain of A* equals domain of B*. That is, if A* and B* have the same boundary conditions.

Proof: The proof of (a) is immediate. Since (2.5b) holds, B~! : Ly — Hy (1 D(B) = D{A), boundedly.
And, of course, for ¢ € D(A), hence in Hs

{l4¢liz, < Ka(A)l¢ll,.
Hence
4B fllz, < Ka(A)Ki(B)IfllL,
The proof of (b) follows from (2) and the relationship
1B~ AllL, = |A"(B") iz W

Theorem 5: Suppose A, B are invertible and, not only (2.5a), (2.5b) hold, but all invertible second order
elliptic operators E of the form (1.1), (1.2) with smooth (say C) coefficients and boundary conditions which
use the same decomposition of 8Q = Ty UT; as either 4 or B also are Hp regular. Note: this condition
is satisfied whenever (1) 84 is smooth and (2) distance (To(A4), [1({4)) > 0. And, (1.12a) and (1.12b) are
extremely unlikely when (2) is not satisfied — see [G]. Then, the sufficient conditions of Theorem 4 are also
necessary.

Proof:t The proof of this theorem given in [MP] depends on a constuction and is somewhat technical.
Hence, we omit it. J
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In this context the results for the discrete operators Ay, By depend on two conditions:

Condition Op: The family A satisfies Condition Op if there exists a constant M;(A), depending on 4,
but not on h, such that; for every f € Lz we have

A4z f — A fllz, < B2Mi(A)|IFl|L,-

Remark: When A is H; regular it is reasonable to expect that Condition Op holds [Ci]. Conversely, if
Condition Op holds then A is Hj regular [W].

Condition INV; The family 45 satlsﬁes Condition INV, if there exists a constant M>(A4), dependmg on

A but not on h such that; for every u* € S; we have

”Ahuhan < MZ(A)h-d“uh”Lz

Theorem 6: Let A and B be two invertible uniformly elliptic operators which are Hj regular. Let the
families of discretizations Ay, By, satisfy both Condition Op and Condition INV, Then

(a) Let the Boundary Conditions for A be the same as the Boundary Conditions for B. Then there is
a constant Kg, independent of h, such that

148 B5 s + 1 Badi Iz, < K.

(b) Let the Boundary Conditions for A* be the Boundary Conditions for B*. Then there is a constant
Ky, independant of k, such that

185 * Anllz, + 145 Ballz, < K.

Proof: See [MP]. The proof of (b) without the assumption on boundary conditions but with the equivalen.
assumption that A='B and B~!A could be defined as bounded operartors in Ly was given in [BP]. Unfor-
tunately, the authors of [BP] were unaware of theorems 4 and 5 and hence made an error in the example
they discussed. B

Theorem 7 [MP}: Let A and B be invertible, uniformly elliptic operators which satisfy
D(A*) # D(B”).
L};et Ay, By be families of discretizations which satisfy conditions OP. Then there is a constant K > 0 such
that
|{B;*Asllc, > KR™/?

“Ah lBhHL, > Kh~Y2, | |

Before we discuss Ly estimates without H3 regularity we digress to discuss some computational results.
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3. One Dimensional Computational Results

Let

Av = —(a(z)') + a0 +av,0 <z < 1

with boundary conditions

v(0) = 0,v'(1) + av(l) = 0;

while

Bu = —(b(z)v') + bv' +bov,0 <z < 1

with boundary conditions

v(0) = 0,v'(1) + Bu(1) = 0.
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(8.1a)

(3.18)

(3.2a)

We assume a(z), b(z) are smooth, positive, and bounded away fiom zero. The discrete operators are
obtained by simple central differences (Note: finite difference equations, not finite element equations) See
[JMPW] for a more detailed discussion of the experimental study. In this report we present a few typical

examples which illuminate the later discussion.

Computation 1

Av=—v"+80 v(0)=0,v'(1)=0

By ="

In this case we expect

v(0) = 0,v/(1) + 8v(1) = 0.

Cu(By 1 Ar) = ||A; " BalluliBy *Anlln < K

where

[Iolls = (REloe )"/

The results are summarized in Table 1

TABLE1

Table 4.1 Singular Values of (B,)~ 4,

N | (B 4n) | o) | a(N=-1) [ (1)
0 6.1493 04430 | 0.9189 | 2.7239
121 6.3406 0.4339 | 08935 | 2.7514
364 6.3488 04345 | 08901 | 2.7587
769 6.3438 04351 | 0.8897 | 2.7604

Computation 2:

Av=—v"+8/ v@)=v(0)=0

Bu= -9, v(0)=d{0)=0

(3.3q)
(3.36)

(3.4)

(3.5)

(3.6a)
(3.6)
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The results are summarized in Table 2,

TABLE 2
Table 4.2 Singular Values of (Bx)~'4x

N C{{Br)~*4n) o(N) o(N —1) o{1)
40 72.416 0.4138 0.6798 29.967
121 158.70 0.3231 0.5218 51.274
364 43478 0.2033 0.4894 88.397
769 900.73 0.1424 0.4842 128.27

These computations are consistent with resulis of [MP]; that is

Cal(B;")4n) 2 KB
Nevertheless, these results raised additional questions. The fact is: The Conjugate Gradient Iferations based
on the normal equations converged much faster thai one would expect from (1.8). Therefore, we undertook
further computations exploring the distibution of the singular values.

Computation 3:
Av=-t" +8/ O<z<l (3.9a)
v(0)=0, v(1)=0 (3.95)
Bu = —u" (3.10a)
u(0) =0, '(1)+8u(l)=0 (3.106)

In this case we expect (3.4a) to hold. Actually, B! was replaced by B;'!, a multigrid sweep for the
solution of B. Figure 3 shows the distribution of the singular value of B! for 4 different calculations. In
this figure, u denotes the number of unknowns. The numbers “j; num” on the right of the lines are to be
read as follows:

j = number of singular values > 2
num = value of the largest singular value

Observe the “clustering” of these singular values about 2 = 1. In fact, the clustering is actually stronger.
The printer could not handle the large number of values very close to “1.

Computation 4:
Av = ~(afz)v” + 8, 0<z<1 (3.11a)
o{0) =0 v{1)=0 {3.118),
Bu = —u”, {3.12a)
w0} =0, w(1)+8u(l)=0 {3.12b)
with

af{z) = 14 1/2sinxx

in this case we again expect {3.4) to hold.
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Figure 3

Figure 4.3 Singular Value Distribution of (B,(,l))‘lAh
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Observe the clustering of the singular values in he interval [1/3,3/2], the range of the function a(z).
Observe also that these singular values actually “fill in” that interval.

4. Results Without Hy Estimates

The computational results, and the theoretical explanation of them found in [JMPW] are special cases
of the result in [GMP].

We no longer assume H regularity. We no longer assume Condition OP. We no longer assume Condition
INV. However, we do assume
aij(mx y) = [l(:L', y)btj(mx y) (4'1a)

0<pe Sp(z,y) Sm (4.15)

Because we are unable to do the complete “integration by parts” or applications of the “divergence
theorem” necessary to obtain 4*, B*; we deal with A# and B# the operators we would have obtained (as
adjoints) if such procedures were correct.

Theorem 4.1 [GMP]: Let 4, B and B* be invertible. Let
To(A) =To(B) (4.2)

Let
L=B"'4, Q=L-pul (4.3)
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Figure 4

Figure 4.7 Singular Value Distribution of (Bl('l))‘lAh
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Then L and @ are bounded operators on L,(Q) if and only if: the boundary conditions for A# are the same
as the boundary conditions for B¥.

Moreover, in that case, 3C such that
”Qu”Hx < C“““La (44)

That is, @ is a compact operator on L2(2) W

Theorem 4.2: Let A and B be invertible. Let (4.2) hold. Let
R=AB"', Q=R-ul (4.5)

Then R and @ are bounded operators on L((?) if and only if: the boundary conditions for A are the same
as the boundary conditions for B.Moreover, in that case there is a C! > 0 such that

1Qulln,,, < C'llullz, (4.6)

That is § is a compact operator on L,(Q) &

Theorem 4.3: Let 4y and By be discretizations of A and B obtained by simply restricting the weak form
to Si. (I) Assume A}, and B} are invertible. In particular, there are constants B, « independant of h, such
that

B ot e, < Bl s (AR ol < ollo*llca (4.7)
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(1) Assume the boundary conditions of A# are the same as the boundary conditions of B#. Then, there is
a constant K, independant of k such that

WEallz, = 1B Anllz, < K 4.38)

Further, under reasonable hypothesis on B; %, (B%)~1, (4;?) and (A%)~! we have:
Let  o/(h) > o/*}(R) > 0 be the singular values of Lj = By'As. Then

(A.) For every € > 0,3J = J(¢) and ho > 0 such that for all 2,0 < h < ho, there are at most J(€) such
singular values outside the interval

(1o — €, 1 + €]
B) The singular values of Ly “fill in” the interval [ug, 1]
| |

A similar theorem holds for Ry = AnB;t. 1
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