CHAPTER 24

Substructuring Methods for Parabolic Problems*

Maksymilian Dryjat

Abstract. Domain decomposition methods without overlapping for the approximation of parabolic problems
are considered. Two kinds of methods are discussed. In the first method systems of algebraic equations resulting from
the approximation on each time level are solved iteratively with a Neumann-Dirichlet preconditioner. The second
method is direct and similar to certain iterative methods with a Neumann-Neumann preconditioner. An analysis of
convergence of the methods is presented.

1. Introduction. In this paper domain decmposition methods for solving discrete parabolic
problems are discussed. The discrete problems result from finite element and finite difference ap-
proximations of parabolic problems with respect to the space and time variables, respectively. For
simplicity of presentation only piecewise linear, continuous approximation on triangular elements
and the backward Euler and Crank-Nicolson schemes are considered.

Two kinds of substructuring methods, i.e. domain decomposition methods which do not use
overlapping subregions, are constructed and analyzed. In the first method systems of algebraic
equations resulting from the approximation on each time level are solved iteratively by a conjugate
gradient method with a Neumann-Dirichlet preconditioner. As in the elliptic case, it is shown that
the rate of convergence is almost optimal with respect to h, the parameter of triangulation, and that
it is independent of the time step 7; see Section 2.

Iterative substructuring methods with a Neumann-Dirichlet preconditioner for elliptic finite
element problems have been analyzed in [3], [4] and [5].

The second method is direct and similar to certain iterative substructuring methods for elliptic
finite element problems using a Neumann-Neumann preconditioner; see [1], [5]. A solution at each
time level is obtained in two fractional steps. The rate of convergence of the method is of the order
71/2 4 h provided that r is proportional to h; see Sections 3 and 4.

Most papers on domain decomposition methods are devoted to elliptic problems, see for example
[5] and the literature cited therein. Extensions of the methods to parabolic problems have been
considered in [2] and [6].
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2. The differential and discrete problems. We consider the parabolic problem. Find
u € L2(0, T; H}(Q) ) N C°(0, T; L2(Q) ) such that

(2.1a) (Zt—“ ,8) +a(u, )= (f,6), $€H}), ae te(0,T)

(2.18) (u,8) = (w0,8), ¢ €LR)

Here (-, ') is the L2-scalar product, a(u,v) = (Vu, Vv) + (u,v) and Q is a bounded polygonal region
in R2. We assume that f € L2(0,T;L2(Q)) and uo € H}(Q). The problem (2.1) has a unique
solution and is stable, see for example [7].

‘We solve the problem (2.1) using a finite difference method (FDM) and a finite element method
(FEM) for the ¢t and = variables, respectively. For simplicity only the backward Euler and Crank-
Nicolson and piecewise linear approximations are discussed. A triangulation of 2 is constructed as
follows: We first divide § into triangular substructures ;, with a parameter H, and we then divide
each of the ; into triangles ¢;, with a parameter h. These form a coarse and a fine triangulation of
). We suppose that they are shape regular in the sense common to finite element theory. V4(Q) is
the space of continuous, piecewise linear functions on the fine triangulation, which are zero on 89Q.
The interval [0, T is partitioned uniformly, t, = nr,n=0,...,N, Nr=T.

The discrete problem is of the form: For n =0,1,...,N -1,

(2.20) (U, 4) +a(Urtt,4) = (frtl,9), $€VHQ),

(2.2) (U ¢)=(uo,8), SEVHQ),

where UP = (Un+l — Un)/7, Un(z) = U(z,ta). The problem has a unique solution and is stable.
We rewrite (2.2) as the system of linear algebraic equations: Forn =0,...,N —1,

(2_3) AQ"+1 = (M + TK)_U_"+1 - £n+1

where (Mu,v)r,, = (u,v), (Ku,v)r,, = a(u,v), u,v € V* and m is the number of nod:?l points in
Q. Tt is easy to derive a formula for F**! from formula (2.2a). We first describe an iterative method
with a Neumann-Dirichlet preconditioner for solving (2.3).

3. The Neumann-Dirichlet iterative method. In order to describe the method, we first
assume that there is a red-black ordering of the substructures €;. We will refer to the red and
black subregions as Neumann (N) and Dirichlet (D) substructures, respectively. Thus, no two
substructures of the same type share an edge. For the case when there is no such ordering, see
the remark below. Let Qn and Qp denote the union of the N-type and D-type substructures,
respectively and let T' = 8Qy \ 8% and Ox =Qn Ul

We now stop underlining vectors and represent the system (2.3) as

Ain 0 As ypt F;”“:
(3-1) AU+ = 0 A Ass U;‘*’i = ngl
ATy Af; Ass ugt Fg

The matrix Ay represents the couplings between pairs of degrees of freedom associated with the set
Qp, A1 the couplings between pairs associated with p and I and so on. M a.nd.K are represented
in the same way i.e. Aij = My + 7Kqij. Let S be the Schur complement of A with respect to As3.

‘We obtain

(3.2) S =S 48D



266 DRryJA

where SOV = A — AT A5} Azg and SP) = Ag? — AT, AT} A1a. To define ALY we introduce the
matrix A(P) which corresponds to the bilinear form (u,v) + Ta(u,v) restricted to Qp UT. This

matrix is represented as
A A
AD) = ( ; )
afy 4

where A%) corresponds to the couplings between pairs of variables on T'. A(N) and Ag? are defined

in a similar way. We note that Ass is the sum of A;%) and Ag?.
Let VE(T) be the restriction of VA(Q) to T
THEOREM 3.1. For all u3 € VH(T')

2
(3.3) (5@0a,09) < (S05,09) <7 (L log 1) (5@0a,00)

where v is a constant independent of h, H and 7, (-,*) = (-, Jrms and mg is the number of nodal
points on T'.

The left inequality of (3.3) is obvious, To prove the right one, we need two lemmas.

LemMA 3.1. For funciions v € VA(Q), which are solutions of

(3.4) Anvi + Aiavz =0, Azzvz + Aszva =0
the following hold
(Av,'v)Rm = (S'ua,’uz;)Rma , (A(D)(vl,va)T, (’111,?)3):11)le = (,S'(D)‘u:;;,1.)3)}2,.,,a N

(A(N)(‘Ug, 03)T; (1)2) v3)T)Rm2 = (S(N)'USy 1)3) B™3
where v = (v1,v2,v3)T, vi € Rmi,

COROLLARY.
(A(D (w1, v3)7, (vlyvs)T) < (A(D )(#y,vs)T, (T4, vs)T)

with 91 € R arbitrary.
Lemma 3.1 and its Corollary are proved straightforwardly doing some manipulations.
Let
bi(u,v) = (u, v)pan,) + Tai(u,v)

where a;(u, ) is the restriction of a(y,v) to ;.

LEMMA 3.2. For the solution u of (3.4) the following holds
(3.5) bi{u,u) < C(1+log —I?—)2 > bi(u,u)
3 = h . IS

where the summation is over the §3; whick are the N-lype neighbors of the D-type subregion Q; and
C is a constant independent of h,H, and 7.
Proof: In view of the Corollary to Lemma 3.1, we have

(3-6) bi(u, u) < bi(w, w)
where w is arbitrary at the nodal points of Q; and equals u on 8Q;. We represent w as w =

w) + wa + w3 where w; is equal to w on side T of ; including one of its end points z;; and zero
on 8Q; \ (Ti; U {zi;}). Below, we construct w; such that

H
(8.7) bi{wj, w;) < C{1+log -}—l—)zbj(u, uw),i=12,3,
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where b;(u,u) is defined for the N-type Q; with side I'y;, i.e. Ty = Q; N 1. Summing this with
respect to j and using (3.6) we obtain (3.5).
To construct the w;, we first extend the function u, given in the N-type substructures £, to
a function @; defined in a larger region G containing the D-type substructure Q; and the N-type
substructure Q;, such that @; = u in ;, @; € H}(G) and
ll@sllzacey < Cllullzzyy »  1djlae < Clulm(ay) -

The function @; is not a finite element function in general. Using the extension theorem from [§],
we construct a finite element function w;; such that

(3.8) l®nllzace) < Cllullzagayy s |@inlaye) < Clulmia) -
Let &; be a harmonic function in ; defined by its values on 9€%. At the nodal points of

Ti; U {zi;}, it is equal to 1, it vanishes at the remaining nodes and is defined by linear interpolation
between the nodes. The function &; € H3/2(€;) and it can be shown that

H
i3 sy < C(L+log )

We now choose wj = I(&;@W;jr), where I, is the standard linear interpolation operator. We
note that, in view of (3.8),

||wi”%=(n;) < C”&j”iw(n,-)”wjh”%z(n,-) < C”“”%z(n,-) .
We now estimate ||Vwj||zaq;). Let &5 be the average value of &; over the element ;. We have

SNV < 230 IV Es — 0y + 1 Vo)
k k

and
> W5 Viinll3age,) < CllVillzaq,) < Clula;y
%

in view of (3.8). Using a standard error bound and the fact that &; € H 3/2($);), we obtain
IV(In(&5 — E5)binlZagey < ClNDiAlE e IVEislIEaces) -
Summing with respect to k and using (3.8) and a discrete Sobolev inequality, see e.g. {B], we obtain

_ H, . H
YoV — & Ybinllace,) S CUL+log TP inllin e, S CA+log 3P [ulm ) -
k

Hence H
IVw3l2a,y < CA+log 3 Plulinge; -

Combining this with the estimate for ||w;{|32(q,y, We obtain 3.7.
Proof of Theorem 3.1: The right inequality: It is enough to show that

H
(3.9) (5Pdus, u5) < C(1+1og 57) 2(5(M)u3, v3)

Using Lemma 3.1, we have

{(SPug,vs) = (AP)yp,vp) £ "ﬁD”%sz) + Tﬂﬁbigfl(ﬂg)
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where vp = (v1,vs)T is the solution of (3.4) and #p = (#1,vs)T with an arbitrary #,. Applying
Lemma 3.2 and then again Lemma 3.1, we obtain (3.9). The proof is complete.
We now define a preconditioner A for A of the form

. 4n 0 Az
A= ( 0 Az @ Azs .
AL, AL A%+ AT AT Ass

THEOREM 3.2. For any v € V()
~ Hy2, ~
(3.10) (Av,v) < (Av,v) < v(1+ log 7) (Av,v)

where v is a positive constant independent of h, H and 7.
Proof. 1t is easy to see that

A=17DL and A=ITDL

where
. An 0 0 Ai; 0 O
D= ( 0 Ao 0 ) , D= ( 0 Aax 0)
0 0 S 0 0 S
(3.11) L 0 AflAwn

L=(0 I, A Asx)
0 0 I3

The generalized eigenvalue problem
Az = Az , z2=1(z1,22,23)T

reduces to
(S 4 S(DY)z3 = AS(M)zg

since the matrices D and D have the same first two block rows. Applying Theorem 3.1 we obtain -
(3.10) and the proof is complete.

From Theorem 3.2 follows that the systems (2.3) with the matrix A can be solved iteratively
using A as preconditioner in a conjugate gradient method. The number of iterations to obtain the
solution with accuracy ¢ is on the order of log 1(1+log &), In each iteration step a system with the
matrix A is solved. For that the factorization A = (LTﬁ)L is used. In each step, this invovles solving
two sets of the Dirichlet subproblems with the bilinear form b;(u, v) for the D-type subregions and
a set of the Neumann problems for the N-type subregions.

The D-type subproblems are independent and can be solved in parallel. The Neumann sub-
problems are coupled at the cross points, i.e. the vertices of N-type subregions. We can use a block
Gaussian elimination or a capacitance matrix method for solving the systems corresponding to these
subproblems, cf. [4].

The connections at the cross points provide a mechanism for the global transportation of in-
formation similar to that of a finite element approximation of an elliptic problem. As was shown in
[9], the condition number of any method without such a mechanism deteriorates at least as fast as
H-2, For parabolic problems the situation is different. As we will see below this mechanism can be
dropped if 7/H? is bounded cf. [2]. In particular, the set of Neumann subproblems can be split into
independent subproblems and solved in parallel. We now study this case.

Let AWY) denote the matrix
A A
AN) = 22 .
Caz, 4®)

Note that for u,v € V5{Q), which are the solutions of (3.4),

(S(N)ug, ”3) = (A(N){”Zy"%)T, (“27 u3)T = (1 + T’)(v, u)f,z(nN) + ’T(Vﬂ, Vu),;a(g") 3
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f. Lemma 3.1. To get the preconditioner A for A, we replace AM) by AWN) which is defined as
follows: Let Qw5 and Qg denote the sets of nodal points of the fine mesh in Qn and the coarse
mesh in §, respectively. Let Iou € V#(Q2) be zero for z € On,5 \ g and equal to u(z) for z € Qp.
We introduce a bilinear form c(u,v) by

(3.12) c(u,v) = (1+ 7)h2 Z u(z)v(z)+ T E u(z)v(z)

€8N, z€RH

+T(V(u — Iou) , V(v — Iov) )L?(QN) ’

and the matrix A®) by _
(A(N)(u% "3)T y (027'”3)’1’)3":2 = c(“i v},
Let ~ ~
~ A A o~ ~ g
AN = ( Zg’z 28235) ’ S = A:(szs) - AgaA221A23 .
23 ‘33

By using (3.11), we find that

» - - Ann 0 0
A=ILITDL, D=(0 Az 0 ).
0 0 SM

LEMMA 3.3. For allv € V3(Q), v = (v1, v2,v3)T

(3.13) 7o (1+ %)“ (1+ log %)‘I(Z(mw,w) < (AMoy,vx) < 11 (AMoy, vy

where vy = (v, va)T and the vi are constants independent of h, H and 1.
Proof. We first prove the right inequality. It is easy to show

(U;W)Lz(nN) < Ch? Z 1}2(1:) .

z€linn

Using the triangle and inverse inequalities, we get

(Vv, Vv)Lz(gN) < 2(V(v — Iow), V(v — IO”))Lﬁ(nN) +C Z v3(z) .

T€QH
The right inequality of (8.13) now follows.
We have
(3.14) (V(v = Io), V(v = Iov) ) 12,y < 2(V0, VO)i2(an) + C 3 v2e) .
zE€QH

It is known that
2 € CHENolagqy + (1 +Tog ) [VolZagqy)
”””Lea(n,-) b flv L2(0:) o7 L)) -
From this we obtain

(3.15) Ty v (z) <C(1+log %) (1+ gri) (ol a(any + TV 32 (00)) -
€

Substituting (8.15) into (3.14) and using the inequality

B2 Y~ 0%(2) < Clolliany, -

zeﬁN,h

we obtain the left inequality of (3.13).
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THEOREM 3.3. For allv € VH(Q)
- H, 1, ~ H.2 ~
72(1+ _I;Z—) 1(1 + log ~}—l~) 1(Av,v) < (Av,v) < 75(l +log T)Z(Av,'u) .

Here +;, i = 2,3 are constants independent of h, H and T.

Proof. Thls result follows from Lemma 3.3 and Theorem 3.2 and the representations of A, A
and 4, see (3.11).

Remark. In the method discussed, we have assumed that there exists a red-black ordering of
the substructures 1.e. no two substructures of the same type share an edge. To extend the method
to the case when this condition is not satisfied, we introduce ND-type substructures which borders
substructures of both N- and D-type. In this case, we construct a preconditioner as follows: On each
Q; let u be represented as u = Pju + H;u where H;u is the discrete harmonic extension of u from
09 in the sense of b(-,-) = (1 + 7)(u,v) + 7(Vu, Vv). On a Q; of ND-type, denoted by Q;,np, we
consider an extension H,u which satisfies b, ND (H i,#) = 0 for all basis functions ¢ associated with
the nodal points = € Q; xp \ T's; and with Hiu = u on the sides T;j of Q; yp which are shared with
D-type substructures. On the remaining sides of £; yp, we use homogeneous Neumann boundary
conditions. Let

d(u,v) = Z b,‘(.P;u, Pv) + Z b v(Hiu, Hiv) + Z b nD (ﬁ;u, E;v)
i i i

and let B be a matrix corresponding to this bilinear form. Here b; n(:,-), bi,np(:,-) are the restric-
tions of the bilinear form b(-,-) to substructures of N-type and ND-type, respectively. It can be

proved that B is spectrally equivalent to A except for a factor {1+ log L,{-)z; ¢f. Theorem 3.2.

headingdThe Neumann-Neumann direct method In this section, we discuss a direct method for
problem (2.1), which can be interpreted as a generalization to the parabolic case of a method with
a Neumann-Neumann preconditioner previously developed for elliptic problems; cf. [1], [5]. The
problem (2.1) is approximated by the following scheme.

Forn=0,1,...,N -1,

(4.1a) {(Ut L)+ aD((Un+1/2 FU/2,6) = (71, 4), ¢€VHQ)
‘ /2 = =Un, T & QN,]-,
and

UrH 2, 4) +a ((U"+1 + U"+1/2)/2 &)= (574, $eVH)
(4.18) { - U ey

Here UP = (Un+i/2 — Un)/r, UPTH? = (Un+1 — Untl/2) /7, fotl = fptl 4 41 ang fo+l = ¢
and j’""{'1 = 0 for x € Qup and z € Qpp, respectively. ap and ay are the restrictions of the
bilinear form a(u,v) to @p and On. Qn,n and £pn are the sets of nodal points in Qn and Qp,
respectively, Un+1/2 ¢ V5{0) is defined by the values of U" at the nodal points = € Qx and by the
solution of (4.1a) in p. The function Un+! is defined similarly. The schemes (4.1a) and {4.1b},
taken separately, do not approximate the problem (2.1). In spite of this, we can show convergence
with a rate 71/2 4k provided that 7 is proportional to h. We formmlate the stability and convergence
theorems without proofs.
THEOREM 4.1. The solutions of (4.1) satisfy the following inequalily

N-1
maz U=z sy + E (”Un—H/z +Unli sap) + |Un+t + gn+1/2“§{ "(QN))

n=0

N1
< (X TR + 1) + uol?)

n=0

where C is ¢ constant independeni of h, H and 7.
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THEOREM 4.2. If the solution u of (2.1) is sufficiently smooth and T is proportional to h then,

N-1
maz [|27|Faqy + 7 D7 (1242 4 20 gy + 24t 4+ 20122, ) < O(r+ B2)

n=0 .
where 27 = un — Un, 7712 = yn+l — Untl/2 Un is the solution of (4.1) and C is a constant
independent of h, H and 7.
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