CHAPTER 2

The ‘Scaler’ Poincare Steklov Operator and the ‘Vector’
One: Algebraic Structures which Underlie Their Duality

A. Bossavit*

Abstract. The Poincaré-Steklov operator, which links the trace and the normal derivative of
a harmonic function, is a standard tool in domain decomposition. From the point of view of
differential geometry, this operator is one in a family, a family which has two members in
dimension 3. The other P.-S. operator (the "vector” one, as opposed to the standard "scalar” one)
is useful too. Their relationship is studied and numerical methods to compute them are suggested.

Introduction. Consider a regular bounded domain D of IR* (boundary S, unit normal
field n, directed towards the interior of D). Let a function ¢s be givenin H'(S). There exists a
unique harmonic function ¢ in IR® - D, with finite Dirichlet norm (g3 _ plgrad o2, such that
95 = ¢s. Then, the normal derivative n . grad ¢ is a linear function of ¢, say n. grad =R [
and the operator R is an isomorphism between Hm(S) and H'm(S) [8]. The inverse of R is
known as the Poincaré-Steklov operator [ 2] of the outer region. (The name could fit R as well,
and this is a matter of convention.) A similar operator can be defined (modulo some care about
ker(R)) for the inner region D.

It is hardly necessary to recall how fundamental this operator is in domain decomposition
methods. This is so because R can often be interpreted as a kind of impedance (or admittance, as
the case may be) of the given region, and matching partial solutions in domain decomposition
methods is akin to matching impedances in electrical engineering [3]. The existence of this
powerful analogy may perhaps excuse the slight overuse in the present paper of a nomenclature
which is borrowed from electromagnetism. The ideas, of course, apply to other fields of numerical
engineering just as well.

The Poincaré-Steklov operator may also be conceived as a device to transfer boundary
conditions from one boundary to another [ 1), and especially to pull-back conditions at infinity to an
artificial boundary at finite distance. To give only one specific example, consider the basic problem
of magnetostatics: given a "source” magnetic field b, such that j* = curl h® (the "source" current)
has its support within D, find in IR®a function ¢ (the magnetic potential), with finite Dirichlet
norm, such that div(pu(h® + grad ¢)) =0. (The permeability p is equal to a constant p, outof D,
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and we'll forget it by assuming a unit system where p,= 1.) This amounts to solving the boundary
value problem

Q) div(p,h’® + grad ¢)) =0 in D, n.grade=R¢ on S

Problem (1) can be solved with finite elements, hence a hybrid method for the original problem in
the whole space: finite elements in the inner region, and some kind of boundary elements procedure
on S inorderto get R.

Which procedure? There are many, starting from Trefftz's method and similar ones (7, 10],
but the most natural one is probably what follows, which has a straightforward physical
interpretation. Let q € H7A(S) be given (a "single layer of magnetic charge”), and let

@ ()= @m)" [ dy (ly - x)™ q(y)

be the associated magnetic potential. The corresponding magnetic field h= grad ¢ is not conti-
nuous across S. When one crosses S from outside, the decrease of the normal derivative of ¢,
or "jump”, noted [n. grad ¢), is precisely g, and the normal derivative (from outside) on § is

©)] (n. grad 9)(x) = qx)2 + @n)" [dy (ly — xD” n(x) . (y - x) q(y).

Let us rewrite (3) in compact form as n. grad ¢ = (1/2 + H) g, with obvious notation. Let ¢5 = G
q bethetraceon S of the ¢ of (2). By eliminating g, one gets n. grad ¢ =R ¢, and therefore

@) R= (1”+H)G".

Formn_xla 3) thus appears as a device 10 compute the (inverse of) the Poincaré-Steklov operator, at
the price of solving eq. 2, which is a Fredholm integral equation of the first kind for the unknown
charge q. Of course, a suitable discretization of (4) must be done [5].

Electrical engineering has us accustomed with a kind of duality between charges and
currents. When something can be done with charges, it can often be done with currents as well
(recall, for instance, the equivalence between current loops and double layers of magnetic charge in
%;chool physics). Let j be atangent vector field defined on S (a "single layer of current™),

(%) a(x) = @m)" [gdy (ly - x) j(y),

be the associated vector potential. The normal component n . b of the corresponding magnetic
induction b= curl a is continuous across S, but its tangential component, which is nx curla up
toa /2 rotation around the normal, is not: one has [n x curl a} = j, and

©6) (n x curl a)(x) = j(x)/2 + (4r)”’ fs dy (ly - x)” n(x) x (y - x) x j(¥)),

and formulas (5) and (6) provide a link between the tangential part of a (call it ag and nxcurla
as determined from outside: nx curla=(1/2 + H)j, ag=G j. These are not the same operators H
and G as above, of course, but it is useful to stress the analogy by this notational abuse (we shall
be mf)re rigorous below). Let us therefore set R = (1/2+ H)G™ in accordance. We shall call this
the (inverse of) the "vector” P.-S. operator, the previous R being the "scalar” one. Now n x h=
Rag with R as in (5), also can serve as boundary condition on S, as follows: solve

) cudth®*+cula)=0 in D, nxcula=Rag on S,

where R is obtained by solving the Fredholm's equation R= (1/2 + H)G™ for the unknown

surface current j. (Note that a is not unique in (7), but this hardly matters, since h=h*+ curl a,
the desired result, is unique.)

So the method first sketched was not the only conceivable hybrid one. There are at least two
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such methods, corresponding to two different Poincaré-Steklov operators, the "scalar” and the
"vector” one.

But now, if there are two ways of doing things, is that all? Are there other ways? The point
of the present paper is to answer this question. Doing this will require a detour, a change of
viewpoint. Our approach will consist in first trying to understand why formulas (3) and (6) look
so much alike. We shall see that, from the correct perspective, they are in fact two versions of the
same formula, and that no other variants exist in three dimensions. We shall also realize that
besides (4), there exists another formula which can be used to compute R. Therefore, all in ail,
there are four basic algorithms, involving the two P.-S. operators, which can serve for the kind of
transfer of boundary conditions we have been considering, and more generaily for domain
decomposition procedures.

The "correct perspective” is in our opinion the one given by considering vector fields like h,
b, etc. (and, in other areas of interest, vector fields like the heat flux, the flow of fluid, etc.), as
differential forms (DF). More to the point, we contend that physical entities which are usually
represented with such vector fields are better represented by DF. We first make this point, while
giving definitions (Section 1), then we investigate the algebraic structure of the theory of the
potentials of forms (Section 2). This results in a classification of integral methods which can serve
to compute Poincaré-Steklov-like operators (Section 3). Some indications about the discretization
of these methods will then be given (Section 4).

1. Fields and their Potentials, as Differential Forms. Consider for instance j, the above
surface current, Let v be a small vector tangentto S. Then, (nx j). v is the flux of electric
charge which crosses the line element v during a unit of time. Thus, the real mathematical nature
of j is that of the mapping v — (n x j) . v, which tells about the current flux through any
tangential line element (and, by integration, through any line drawn on S). A mapping of this kind
is called a differential form over S. It may be represented via a vector field, as here j, but the
vector field is no more than a representation, an auxiliary: if the dot- and cross-products were to
change, for instance because of a change of units, the vector field j would change, but not the DF
which it represents. This last mathematical object is therefore the most appropriate one to stand for
the surface current density. Induction b is a DF, too (over IR®): it is the mapping {v,w} »b.
(v x w), which tells about the induction flux through a surface element {v, w}, and by integration,
through any surface. Here, there are two vectors as arguments, so b is "a DF of degree 2", or
"2-form", while j was of degree 1. It can be shown by similar arguments that h and a are
1-forms, and that q is a 2-form over S.

Let us now give definitions. (One may refer to [ 6] or [9] for serious study.) In dimension
n, a p-covector (0 < p<n)is amapping {v,, ..., vp} -» IR, multilinear, and alternating (meaning
that to permute two v,'s will invert the sign of the result). A p-form is a (smooth) field of
covectors. If n= 3, and for a given metric with dot-product "." and volume-element "det" (the
determinant of a triplet of vectors), a vector field h (resp. b) generates a I-form v — h(x) . v
(resp. a 2-form {v, w} — det(b(x), v, w)). A scalarfield ¢ yields a O-form (the function itself,
by convention), or a 3-form {u, v, w} — ¢(x) det(u, v, w). Differential geometry defines an
operator d, the exterior differential, which maps p-forms into (p+1)-forms, and appears as
generalizing the classical grad, cur, div, because the d of the 1-form h is the 2-form generated
by curl h, the d of the 2-form b is the 3-form coming from div b, etc. It also features the
Hodge operator +, which transforms p-forms into (n—p)-forms. Its definition is as follows. Let
o be ap-form, let w, be its value at point x. If {v,, ..., v,} is adirect orthonormal basis at
point x, *@(x) is the mapping {v,,y, ..., v }— ox)v, ..., v,), which can be extended to
non-orthonormal (n—p)-uples of vectors by linearity. Remark that »'h="h, and +»="b. In
dimension 2, starring a 1-form amounts to rotate the vector field it comes from, 90° around the
normal. (Hence ** = -1 in this case. There are unavoidable minus signs all around the place in this
theory.) Besides d, there is a codifferential &= *d* (again, up to sign). Last, we need a notion
of trace of a DF on S: the trace to of o is the field of mappings {v,, .., v,} =& a(X)(v,, ...,
v ), forall x in S and all vectors v; tangent to S. Nothing more natural, but there are surprises
when we come back to the representative vector- or scalar-fields: th is represented by the
tangential part of h (noted hgy), but tb (a surface 2-form) is represented by the scalar field n . b,
the normal part of b. One has td =dt.
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2. Algebraic structures of the theory. Now let us look at Fig. 1. It displays familiar entitics
in this new notation. For instance, b=da and dta=tb would read as b=curl a and curlga; =

n.b in conventional notation. It also features both operators called R above, which here are
more properly labeled R, and R,.
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Figure 1. The interplay of forms h, b, their potentials, their traces, and the two
Poincaré-Steklov operators. The notation corresponds to the case n=3,p=2.

Itis well known that ¢ and a, in Fig. 1, can respectively be obtained as the potential of a
charge g, as in (2), and of a current density j, as in (5). This applies also to DFs. Let o bea
p-formon S. Its potential is by definition the p-form © whose value , atpoint x (not
necessarily in S) is given by the mapping

8) {Vir o Vo) 2 @) [ dy Uy - xD 7 a(y)y,, ..., V).

We shall note this @ = GP o, where p is the degree of « (to be omitted when there is no
ambiguity). Formulas (2) and (5) correspond to the cases p=0and p=1. If p=2,andif a is
represented by the function y,  is represented by a vector field u the values of which are

u(x) = (4m)" [ dy (ly - x1)” w(y) n(y).

This is sometimes called a "curl-potential”.

There is again a complex interplay between charges, the potentials of their Hodge duals, and
the traces of these potentials (Fig. 2). The nomenclature in this figure (j, a, etc.) corresponds to the
case p=2. Notethat j= 8y correspondsto j=—n x grad v, in standard notation (y is the
so-called "stream-function” of the surface current J);and 8j=0 to divj = 0. The algebraic
content of Fig. 2 is the simple formula 68 = 86, which is easily derived from (8) and from the
definitions of & and «. (Note that §j=0 thus implies 8a=0,i.c. a is divergence-free, as a
vector field.)

B But there is more, because the two diagrams are separately displayed only for
readability. In fact, they merge into a single structure: the two circles in Fig. 2 are supposed to
correspond to the ones similarly placed on Fig. 1, and serve as bridges between the two diagrams.
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The algebraic justification for this merger is the formula d+dG = (-)? *dB3, also provable from first
principles. Fig. 3 is an attempt to display the two interconnected diagrams as a whole.

n-p+1 0 0 0 p-2
4
d ) é
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n_p_1 Yy —P xY —- U p
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\

Figure 2. The interplay of charges and their potentials. The diagram is
"commutative”, as was that of Fig. 1: if two nodes can be joined by two different
chains of arrows, each of which corresponds to an operator, the two operators
obtained by composition along the way are equal. For instance, G, ;8= 36,
(The notation fits the case n= 3, p=2.)

There is a third basic formula: [t*dG] = *. It connects together the charge density o and the
jump through S of a quantity, namely t+*dGe, which can be called the "normal derivative” of the
potential @ = Ga. There are two paths in the combination of Figs. 1 and 2 along which one
encounters operators B, d, #, t, in this order (cf. Fig. 4), so there are two possible applications of
this formula. One yields [n x curl a] = - j, and the other one, [@} = . For p = 1, these relations
are [n.grad ] =q and [nx ag= k.

The reader is invited to redraw Fig. 2 for p=1. This will simply consist in a change of
labels, according to the following substitutions: q for j, k for v, ¢ for a, a for ¢. The
I-form k has a physical interpretation as a "surface magnetic current”, and q = - divek isa
magnetic charge. The corresponding substitutions in Fig. 1 should be: h for b, b for h, etc.
(that is, a simple central symmetry). Note however that contrary to h and b, a and ¢ are not the
same in both sets of diagrams: they differ by something whose d is zero. InFigs. 1--2, or Fig. 3,
a was the potential of a "single layer" of currents, j, and ¢ that of the "double layer” w of
electric charge. In the new drawing, ¢ will appear as the single-layer potential of g, and a as the
(vector) potential of the double-layer k.

We have enough to grasp the generality of the situation: for each value of p, there is a couple
of Hodge dual forms of degrees p and n - p, which are the potentials of a single layer of degree
n-p and of a double layer of degree n — p— 1 respectively. The relations between them are
summarized in the formulas 65 = §6 and d+dG = (-)?*dG3, and are graphically displayed, in the
case p=2, by Fig. 3. Aside from p = 1, there are no other non-trivial possibilities in dimension
3. Now, by looking at relations between traces on S of the various forms displayed above, we
shall obtain equations which will enable us to compute R i for p=1and 2. Since there are two
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possible potential representations (single and double layer) and two interesting values of p, we
may expect 1o find four feasible integral methods, as announced in the Introduction.

Figure 3. The two diagrams of Figs. 1 and 2, as a whole. G, istb,.)

3. Integral Methods. Let us set G,=16,,and H = 1~d(3P - *f2. (The indexing is such that
the subscript refer to the degree of the form the operator is applied to.) The introduction of a factor
172 should not surprise those accustomed to boundary integral methods. Thanks to it, H, hasan
integral representation. This representation is the one which appears as the last term on the right in
(3) for p=2 and in (6) for p = 1, when the forms are represented in terms of functions or vector
fields. Seen from the present viewpoint, (3) and (6) are the same formula.

‘The next step consists in deriving the following formulas;
R‘H G;H =2+ Hp_l, RHH (*2+ Hp) =(-Fd GPA1 S.

These are literally read off Fig. 3, by following appropriate paths of arrows (cf. Fig. 4).

Rearranging the indices for the case n =3, we find the four formulas by which R; and R, canin
principle be computed:

© Ry=(+22+ Hy) G, ", R,=(+2+H))G,",

10 Ry=d G, 8(+/2+ Hy)'", R =-dGy8(+2+H)™"

Those in (9) were reca_lled in the Introduction (cf. (4)). Those in (10), which imply the resolution
of Fredholm second kind problems, may be interesting alternatives. To get a feeling for these
problems, which respectively consist in finding w such that (+/2 + H,)w = ¢¢ and k such that
(+/2 + H)k = a;, better revert to conventional notation, which results in

an VM2 + @) s dy Uy - D n(y) . (¥ - x) w(y) = (x),

(12) k(x)/2 + (4n)’ Is dy (ly - x)” n(x) x ((y - x) x k(y)) = (n x a)(x).



POINCARE-STEKLOV OPERATORS AND THEIR DUALITY 25

- (Compare with (3) and (6). The change to n(y) in (11) is not a misprint.) Solving eq. 11 for the
electric double layer y [resp. eq. 12 for the magnetic double layer k] will allow one to get the
P.-S. operator R, [resp. R,].

—>

Figure 4. Paths across Fig. 3, which yield formulas (9) and (10).

4. Finite elements implementation. Still within the standard framework of vector fields and
functions, we now hint at the way to obtain discretizations, associated with variational
formulations, for the four methods. It will be enough to give the procedure in detail for (3), which
corresponds to the first formula in (9), and is well known. Letus call Q and & the finite
dimensional approximation spaces (not yet specified) for q and ¢ Primes denote test-functions.
The variational form of (2)(3) is

Jsax o(x) q'(x) = (4m)" [l dx dy (y - x)™ q(y) ¢'(x) vV qeQ
fsdx R@)(®) (%) = (sdx q(x) N2 + ...
et @m) g dxdy (ty -x)7 0 . (y -0 q) () V ¢ € @
To make this manageable, let us introduce matrices which express these various integrals in terms
of the degrees of freedom (whatever they willbe) of q, q', ¢, ¢'. Brackets {,) will stand for

the scalar product in a space of degrees of freedom. Vectors of freedoms and matrices will be
underlined. With these conventions, what we just wrote is

Ry@ ¢)=Bg@W2+H,q ) Ve,

®B'e 9)=(G,q. Q) vV deQ
(where @ and Q stand for the spaces of degrees of freedom), whence
R, =sym((B/2 + H) G, B),

(where t stands for "transpose” and sym for "symmetric part").

From this example, how to implement the three other methods should be clear. The only
difficulty lies in the choice of finite-element bases. For this, we shall follow a heuristic approach
which has been proved efficient in numerical electromagnetism [5]. There are, according to
concepts of differential geometry which date back to Whitney [ 11], specific finite elements for
functions and vector fields, depending on the degree of the forms they are supposed to represent:
“"edge"-elements for fields €, h or a, "face”"-elements for b and j, etc. (Cf. [4].) Something
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similar exists in dimension 2, from which the right choice of finite elements for the entities .
introduced above as q, j, k, v, ¢, a, has been inferred. Here follows a brief account.of this.

Assume a triangulation of S. To anode n, assign the standard hat-function of finite- )
elements theory (continuous, piecewise affine, equal to 1 at node n, to 0 at other nodes), which we
denote by w,. Toanedge e connecting nodes n and m, assign the "edge-element” bagls (a
tangential vector field) w_=w, gradgw - w, gradgw_, and also what we shall call a "twisted"
edge-clement, wA_=nx w_. To a triangle t, assign the function w, obtained by dividing the
characteristic function of t by its area. Call W, W, W, the finite-dimensional spaces spanned by
the w, w_, w,_respectively, and ‘W, the one spanned by the twisted edge-elements.

Now, we propose the following implementation principle. The approximation spaces for

the above entities will be as indicated below:

Name of the function " 0N j k ag q
or vector-field:
Approximation space: W, w, W, W, w, W,

For example, the entries of the matrix analog of H, in (9) will be, for all edges e and ¢,
LI_I“' =] Is dx dy (y-x)7 n(x)x ((x - I x wh(y) . w(x).

Conclusion. Poincaré-Steklov operators should be studied within the framework provided by
differential geometry. They operate on forms of degree p -1 overa hypersurface, giving forms
of degree n- p as images (cf. Fig. 1). In three-dimensions, p = 0 and 1 are the only relevant
values, so there are two such operators; the "scalar” and the "vector” one, respectively called

and R, above. (The standard P.-S. operator of, for instance, ref. [2], is Ro".) It has been
shown that each can be obtained in two different ways, by solving a Fredholm's equation of either
the first or the second kind, and that there are essentially no other possibilities. Poincaré-Steklov
operators are useful 1o set artificial boundary conditions at finite distance in the case of PDE
problems in unbounded domains. There are thus four ways to do this in dimension 3, at the price

of solving a boundary integral equation. Finite elements for the discretization of these equations
have been suggested.
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