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Abstract. In recent years, competitive domain-decomposed preconditioned iterative techniques have
been developed for nonsymmetric elliptic problems. In these technigues, a large problem is divided into
many smaller problems whose requirements for coordination can be controlled to allow effective solution
on parallel machines. Central questions are how to choose these small problems and how to arrange the
order of their solution. Different specifications of decomposition and solution order lead to a plethora of
algorithms possessing complementary advantages and disadvantages. In this report we compare several
methods, including the additive Schwarz algorithmn [3, 7, 10], the multiplicative Schwarz algorithm [2, 8], the
tile algorithm [13], the CGK [5] and CSPD [19] algorithms, and the popular global ILU-family of precon-
ditioners, on some nonsymmetric and/or indefinite elliptic model problems discretized by finite difference
methods. The preconditioned problems are solved by the unrestarted GMRES method.

1. Introduction. The focus of this paper is domain decomposition methods for the
solution of large linear systems of nonsymmetric and/or indefinite elliptic finite difference
equations. In the past five years, there has been gratifying progress in the development of
domain decomposition algorithms for symmetric elliptic problems, and a number of rapidly
converging methods have been designed for which the condition number of the iteration ma-
frix is uniformly bounded or grows only in proportion to a power of {1 +1n(H/h)), where H
is the diameter of a typical subdomain and % is the diameter of a typical element into which
the subdomains are divided. Such algorithms are often called “optimal” or “nearly optimal”
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algorithms, respectively, though we note that these adjectives pertain to the convergence
rate only, and not to the overall computational complexity. The computational complexity
of “nearly optimal” algorithms may still retain terms that are polynomial in 1/H or in
H/h, depending upon how the component problems are solved. For nonsymmetric and/or
indefinite problems, the theory to date is far less satisfactory. Yet, the solution of such
problems is an important computational kernel in implicit methods (for instance, Newton-
like methods) used in the solution of nonlinear partial differential equations such as arise
in computational fluid dynamics. Such a kernel is often CPU-bound or memory-bound, or
both on the fastest and largest computers available. Furthermore, it may often be the only
computationally intensive part of production finite difference codes whose efficient paral-
lelization is not straightforward, particularly when the distribution of data throughout the
computer’s memory hierarchy cannot be dictated exclusively by linear algebra considera-
tions. If the parallel solution of nonsymmetric and indefinite problems were truly routine,
many applications now customarily solved hy various types of operator splitting could be
handled fully implicitly.

An efficient iterative algorithm for elliptic equations requires a discretization scheme,
a basic iterative method, and a preconditioning strategy. There is a significant difference
between symmetric and nonsymmetric problems, the latter being considerably harder to deal
with both theoretically and algorithmically. The main reasons are the lack of a generally
applicable discretization technique for the general nonsymmetric elliptic operator, the lack of
“good”™ algebraic iterative methods (such as CG for symmetric, positive definite problems),
and the incompleteness of the mathematical theory for the performance of the algebraic
iterative methods that do exist (such as GMRES [18]). By a “good” method, we mean a
method that is provably convergent within memory requirements proportional to a small
multiple of the number of degrees of freedom in the system, independent of the operator.
Though GMRES seems as popular as any nonsymmetric solver, one has to assume that the
symmetric part is positive definite and be able to afford amounts of memory roughly in
proportion to the number of iterations, in order to obtain rapid convergence. The task of
finding a good preconditioner for nonsymmetric or indefinite problems is more important
than for symmetric, positive definite problems, since, first, the preconditioner can force the
symmetric part of the preconditioned system to be positive definite, and second, a better-
conditioned system implies both more rapid convergence and smaller memory requirements.

Domain decomposition methods are commonly classified according to a few orthogonal
criteria. “Overlapping” and “nonoverlapping” methods are differentiated by the decomposi-
tion into territories on which the elemental subproblems are defined. Overlapping methods
generally permit simple (Dirichlet) updating of the boundary data of the subregions at the
expense of extra arithmetic complexity per iteration from the redundantly defined degrees
of freedom. “Additive” (Jacobi-like) or “multiplicative” (Gauss-Seidel-like) methods are
differentiated by the interdependence of the subregions within each iteration. For the same
number of subregions, additive methods are intrinsically more parallelizable. Classified
according to convergence rate, there are “optimal” algorithms, for which the rate is inde-
pendent of the number of unknowns as well as the number of subregions; “nearly optimal”
algorithms, for which the rate depends on the number of unknowns and subregions through
a power of logarithm at worst; and “nonoptimal” algorithms. Compared in this paper are
optimal overlapping algorithms, both additive and multiplicative; a nearly optimal nonover-
lapping algorithm, partly additive-partly multiplicative; and a nonoptimal nonoverlapping
multiplicative algorithm.

Most of the theory concerning the convergence rate of domain decomposition methods
is in the framework of the Galerkin finite element method. In some cases the Galerkin
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results transfer immediately to finite difference discretizations, though from our experimen-
tal experience this is less true for nonsymmetric problems than for symmetric. Whereas
experimental papers for symmetric problems, such as [12] and [15], predominantly played
the role of verifying theory, in this paper we hope to stimulate it.

The outline of this paper is as follows. In Section 2, we describe five domain decompo-
sition methods. Because of space limitations we are unnaturally brief, relegating detailed
algorithmic descriptions and existing theory to the references and to a subsequent expanded
version. Section 3 contains the numerical results for four different test problems, followed
by some brief conclusions in Section 4.

2. Description of Algorithms. In this section, we briefly describe all the algorithms
under consideration. We give only the formulation used in our experiments but note here
that each is representative of a class. For theoretical purposes most of these algorithms are
best formulated in terms of the subspace projections defined by the elliptic bilinear forms.
Since we use only finite difference discretization here, matrix notation is more convenient.

2.1. A Two-Level Discretization and Notation. Let @ be a two-dimensional
polygonal region with boundary 89, and £ a second-order linear elliptic operator corre-
sponding to a homogeneous Dirichlet boundary value problem on . The finite difference
approximation of this Dirichlet problem is denoted by

(1) Bhuh = (Ah. + Nh)llh = fh7

where By, Ap, and Nj, are n X n matrices and & characterizes the mesh interval of the grid,
which will be referred to as the h-level or fine grid. Here A} represents the discretization
of the symmetric, posilive definite part of the operator £, and Ny, represents the remain-
der. The total number of interior nodes of the h-level grid of  is denoted as n. Two
finite difference discretizations are employed alternately, namely, the central and upwind
discretizations. In practice, multiple discretizations can be usefully combined in the same
iterative process; see, for instance, [16].

Our methods require a coarse grid over £, referred to as the H-level grid and containing
np interior nodes. By p is an ng X n¢ matrix representing the finite difference discretization
of £ on the H-level grid. Let €;,¢ = 1,---, N, be nonoverlapping subregions of { with
diameters of order H, such that | JQ; = £ and the nonboundary vertices of any Q; coincide
with the H-level nodes. We refer to {{;,i = 1,---, N} as a nonoverlapping decomposition
or substructuring of Q.

When the unknowns are ordered with respect to the substructuring of the region, the
stiffness matrix B;, can be written in the block form

By B Bre
(2) B, = | Bgr Bgg Bge |,
Ber Bep Bec

where Byy is a block diagonal matrix representing the discretization of the independent
subregion interior problems, Bgg corresponds to the problems on the edges {also called
interfaces) excluding crosspoiuts, and Bog corresponds to the crosspoints. The block ma-
trices with differing subscripts contain the h-scale coupling of the original discretization
between points in the different sets.

Followiug [7, 10], we can obtain an overlapping decomposition of €, denoted as {Qil =
1,---, N}, by extending each {; to a larger region Q;, which is, however, cut off at the
physical boundary of (1. Let n; be the total number of h-level interior nodes in Q: and let
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Fi1a. 1. The coloring pattern of 16 fine grid overlapped subregions and a coarse grid region. Color “07 is
for the global coarse grid. The extended subregions of the other colors are indicated by the dotted boundaries.

B,'m- denote the n; x n; stiffness matrix corresponding to the finite difference discretization
of £ on the fine grid in Q: The size of the matrix B;L,,i depends not only on the size of
the substructure £; but also on the degree of overlap. We reserve the subscript “¢” for
the global coarse grid and note that Q5 = Q. Let R; be an n, x n matrix representing the
algebraic restriction of an n-vector on Q to the n;-vector on Sl;. Thus, if v, is a vector
corresponding to the h-level interior nodes in Q. then R:vh is a vector corresponding to
the h-level interior nodes in Q;. The transpose (R;)t is an extension-by-zero matrix, which
extends a length n; vector to a length n vector by padding with zero. RB(E Ry),an ng X n
matrix, is somewhat special. It is the fine-to-coarse grid restriction operator that is needed
in any multigrid method.

2.2. Multiplicative Schwarz Methods (MSM). The original Schwarz alternating
method is a purely sequential algorithm. To obtain parallelism, one needs a good subdomain
coloring strategy, so that a set of independent subproblems can be introduced within each
sequential step and the total number of sequential steps can be minimized. A detailed
description of the algorithm can be found in [2, 8, 17]. ‘

The coloring is realized as follows. We define an undirected graph, associated with
the decomposition {Q;-}, in which nodes represent the extended subregions and the edges
intersections of the extended subregions. This graph can be colored with colors 0,:--,J,
such that no connected nodes have the same color. For example, a five-color strategy
(J = 4) is used as shown in Figure 1. This is optimal for this special case, in which the
total number of subregions (including the coarse grid on the global region) is ¥ +1 = I7.
It is obvious that the colorings are not unique. Numerical experiments confirm intuition
that minimizing the number of colors enhances convergence.

Letting B;L,O = Bhp and Ry = Ry, we describe the algorithm in terms of a subspace
correction process. If uf is the current approximate solution, then u}i“ is computed as
follows. For j = 0,1,---,J:
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(i) Compute the residual in subregions with the j* color:
e n+7-7—
m = o Bay, T

(ii) Solve for the subspace correction in all s that share the 7t color:

' n+7j—- 1 Nl
1 _ THT
Bh,ieh = _R,"l”h

(iit) Update the approximate solution in all Qis that share the j** color:

7L+%}t—11- n+_—,%1- 1y n+7_lﬁ-
y, = u, +(R))e,

At each iteration, every subproblem is solved once. For j # 0, applications of operators
R; and (R; ) do not involve any arithmetic operations. For j # 0, within each (i)-(iii), the
operations in regions sharing the same color can be done in parallel.

This algorithm can be employed in the stationary, Richardson sense or as a precon-
ditioner for another algebraic iterative process. Along with the other algorithms to be
described below, we shall normally employ it as a preconditioner for GMRES, but because
of its historical importance we also include the Richardson version in our tests. In this
paper, we shall use the abbreviation MSM for the multiplicative Schwarz-preconditioned
GMRES method, and MSR for the simple Richardson process.

2.3. Additive Schwarz Method (ASM). Following [7] and using the notation of
the preceding subsection, we can define the inverse of the matrix My, the additive Schwarz
preconditioner, as

(3) M7t = (Ro)(Bro) ™ Ro+ (R (Bh ) By + -+ (Ry)( By v) ™" Ry

The key ingredients for the success of the ASM are the use of overlapping subregions and
the incorporation of a coarse-grid solver. At each iteration, all subproblems are solved once.
1t is obvious that all subproblems are independent of each other and can therefore be solved
in parallel.

2.4. Coarse Grid Plus SPD Preconditioning (CSPD). For a symmetric, posi-
tive definite elliptic problem, many good preconditioners are available. Supplemented by
an additional coarse-mesh preconditioner, they may become good, sometimes optimal, pre-
conditioners for nonsymmetric problems, as shown in [19]. More precisely, let (fih)“l be
a spectrally equivalent symmedtric, positive definite preconditioner for Ay, which is in turn
the symuuetric, positive definite part of By,. Then the new preconditioner can be written as

) M = w(Ro) (Brp) " Ro + (An)~1,

where w > 0 is a balancing parameter. In this paper, the symmetric, positive definite

preconditioner ( A,)~! is taken as the symietric, positive definite additive Schwarz precon-
ey . 1

ditioner. For i = 0,---, N, we denote by Ap;an n; X n; matrix that corresponding to the

discretization of the second-order terms of £ in Q) with zero boundary condition. Then, we
have

(5) (A7 = (Ro) (Ano) ™ Ro+ (R (A4, ) 'Ry + -+ (Ry ) (Ap ) By-

To tha‘in the optimal w, one needs to know, in some sense, how good the preconditioner
(Ap)~" is. In our numerical experiments, using (5) in (4) as a preconditioner for Ap, the
choice of w = 1.0 is quite acceptable in comparison with other methods. The issue of finding
the optimal w in the general case is not yet understood.
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2.5. Tile Algorithms (GK90/GK91). The “tile” preconditioner, introduced in 1 3],
is a nonoverlapping multiplicative-type preconditioner formed as follows:

~1

By Bigp Bre I
(6) : A'I}:1 = Trr Bge I N
B QL

where the matrix Ty is the so-called tangential interface preconditioner, a block diagonal
matrix in which each block corresponds to the interface between a pair of neighboring subdo-
mains. The coefficients of each block can be obtained by the usual three-point discretization
of the “tangential part” of the underlying differential operator, that is, the set of terms that
remain when the operator is expressed in terms of local tangential and normal derivatives
and all normal derivatives are then set to zero. The matrices Q@ and I define a so-called
ramp-weighted averaging method used to calculate the right-hand side of the coarse-mesh
problem. I is diagonal with all positive elements, all elements of @ are nonnegative, and
the row sums of L and Q together give unity. A fuller description can be found in [13].

To perform the matrix-vector multiply, three sequential steps are needed: solution of
a coarse-mesh problem with a locally-averaged right-hand side; solution of the interface
problems with right-hand sides updated by the boundary values provided by the coarse-
grid solution; and solution of the interior problems with right-hand sides updated by the
boundary values provided by the coarse-grid and interface solutions. Note that the second
and third steps are composed of completely independent subtasks on each interface and
subdowmain.

A more recent tile algorithm (GK91) incorporates two refinements. The right-hand
side of each interface problems is modified prior to their solution using Tgg to include an
approximation to the non-tangential terms of Brp. These terms are formed from bivari-
ate interpolation of the coarse-mesh solution, quadratic normal to the interface and linear
tangential to it. The other modification is a fine-mesh correction to the crosspoint values,
which occurs as the last step of the preconditioner. This correction is based on the original
bottom block row of the stiffness matrix (2). A detailed matrix interpretation is furnished in
[6]. As is apparent from the tables, these additional sequential stages can have a substantial
impact on the convergence rate of the tile algorithm without requiring more than one set
of subdomain solves per iteration.

2.6. Substructuring Algorithm (CGK). A nearly optimal nonoverlapping-partly
additive-partly multiplicative method, proposed in [5], can be formulated as

Bji + B} BisK 5y BB} HB{’}‘BfEIx’g?E 0
g

(7) Mi' = (Ro)'BiyRo+ | —KgpBeiBi Kze 0
o 0

¥

where Kgg is a block diagonal matrix, each block corresponding to an interface. Each
block in Kgg has the form of the square root of the one-dimensional Laplacian along
the interface, with size equal to the number of interior interface nodes. For selfadjoint
problems, this historically important interface preconditioner is spectrally equivalent to the
Schur complement of the interface degrees of freedom in the submatrix corresponding to
each pair of adjacent subregions; see the survey paper [15].

To form the action of My u;, one needs to solve a coarse-grid problem and, at the
same time, solve sequentially three sets of subproblems: a first set of independent interior
problems; a set of independent interface problems; and another set of interior problems.
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3. Numerical Experiments. In this section, we present some numerical results ob-
tained by applying the aforementioned algorithins to

Lu = [ in Q
(8) { u = 0 on 99,

where different elliptic operators £ will be specified and Q = [0,1] x [0, 1]. In all cases, the
exact solution ¥ = e™¥sin(wz)sin(ry), and f can thus be sel accordingly.

The unit square is subdivided into two-level uniform meshes, with h and H representing
the fine- and coarse-mesh sizes. The elliptic operator is discretized by the usual five-point
central- or upwind-difference methods over both meshes. The full GMRES method, without
restarting, is used for all of the left-preconditioned linear systems (except for MSR) in the
usual Euclidean norm, and the stopping criterion is the reduction of the initial (precondi-
tioned) residual by five orders of magnitude in this norm. Double precision is used in the
entire computation.

3.1. The Poisson Equation. Our first test problem is the Poisson equation, Lu =
— A u. Although this is a symmetric problem, we still use GMRES as the outer iterafive
method. For symmetric, positive definite problems, the iteration matrices of ASM and
CGK are symmetric and positive; and therefore, with a suitable inner product, CG is more
efficient. The iteration counts are given in Table 1. (Entries that would have required
overlap greater than the coarse mesh size H are omitted.) Among all algorithms, the MSM
with a reasonable overlapping size takes the least number of iterations. Since MSR does
not depend on an outer algebraic iterative method, it takes the least amount of computer
memory.

With the minimal overlapping assumption (one fine-grid cell in each direction}, the
convergence of ASM and MSM are seen to be almost independent of h especially when H is
fine enough. In contrast, A-independent convergence of MSR requires that the overlap grow
in discrete size so that the same physical overlap is maintained. Thus for MSR, the number
of iterations is constant along the diagonals of the biocks labeled H = 1/4, H = 1/8, and
H = 1/16, as h and the discrete overlap successively double, whereas for MSM and ASM
the iteration counts are nearly constant even along the rows of the H = 1/8 and H = 1/16
entries. This fact suggests that the “sufficiently large” overlapping hypothesis used in the
Schwarz theory [7, 8, 10] can be weakened, at least for symmetric definite problems.

Because of additivity, which means less dependence between the subproblems of the
coarse-mesh solve and the interface/interior solves, the CGK preconditioner is presumably
weaker than that of [1]. However, the numerical results, at least for the present test problem,
do not reveal any weakness. In fact, the additivity offers more parallelism.

3.2. A Nonsymmetric Problem. Our second test problem is nonsymmetric with
constant coefficients, Lu = — Au+ §u,+ du,. We specify the constant 6§ > 0 in the Table 2.
The elliptic operator is discretized by two schemes, namely, the central-difference method
for relatively small é§ and the upwind-difference method for relatively large 6.

When using the central-difference method, for a fixed fine-mesh size h, we observe that
as 0 is increased beyond a certain number (near 10), all methods, except MSM with sufficient
overlap, show a sharp upturn in the number of iterations. MSR loses its convergence
if ¢ is larger than this transitional § for essentially all overlapping sizes. All GMRES-
stabilized methods continue to converge but at a reduced rate, especially the nonoverlapping
methods. The nonoverlapping methods have difficulty handling large convection terms. In
comparison, MSM converges in a surprisingly small number of steps that, with generous
overlap, is almost independent of §.
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Central-Difference Method
b= L] 5] 10] 50 100 150 1] 5] 10] 50] 100] 150
Methods H=1/4 H=1/8
MSR(ovlp=h) 19118 15] o 00 oo 10110 10| 13 o0 00
MSR(ovlp=2h) || 12 | 11 91 21 00 o ff T 07 71 14 0 )
MSR(ovlp=4h) 7] 8 81 22 00 ooifl 6] 6 6] 10 35 00
MSR{ovlp=8h) 61 7 81 24 oo xff b b 5 7 10 21
MSM(ovip=h) T 7 7] 10 10 9 51 5 [ 8 10 12
MSM(ovlp=2h) 6 6 6 8 8 8 41 4 4 7 8 11
MSM(ovip=4h) 5 5 6 7 7 7 41 4 4 5 7 9
MSM(ovlp=8h) 5] b 5 6 6 6 41 4 4 4 b 7
ASM{ovlp=h) 15 | 17 18 22 22 21 11y 12 12 20 26 32
ASM(ovlp=2h) 13115 15 20 20 21 )| 10| 10 11 18 23 27
ASM(ovlp=4h} |[ 12 ] 13 13 18 19 20 f} 10| 11 11 15 20 23
ASM(ovlp=8h) |[ 11| 12 12 16 17 17 10 ] 11 12 14 16 19
GK90 25125 26 35 39 42 119121 22 34 47 58
GK91 20 | 23 25 26 22 181 14| 16 19 39 42 45
CGK 13| 14 16 28 35 47| 11| 12 13 26 36 50
CSPD(w =1.0) || 11 | 13 15 37 57 73 {1 10 ] 12 13 26 42 55
H=1

1L, U(0) 8> | 88| 84| 59 41 28

TLU(1) 36 | 32 27 15 8 b

ILU(2) 56 | b6 52 35 23 15

Upwind-Difference Method
6= 10 {50 [ 100 T 500 [ 1000 J 10000 | 10 | 50 | 100 | 500 [ 1600 | 10000
Methods H=1/4 H=1/8
MSR{ovlp=h) 18] 14 13 18 18 18 J1 10 | 13 14 21 23 23
MSR{ovlp=2h) 14 | 14 15 16 16 16| 10| 13 16 17 16 15
MSR(ovlp=4h) 12 | 13 14 13 12 12 9112 12 12 12 12
MSR(ovlp=8h) | 10 ] 10 ] 10} 11 11 11 8] 9 9 8 8 8
MSM(ovlp=h) 91 9 8 7 7 T 7T 9 91 10 11 11
MSM(ovip=2h) 8] 8 7 7 7 7 7] 8 8 9 9 9
MSM(ovlp=4h) 717 6 6 6 6 717 6 6 6 6
MSM(ovip=8h) 51 5 5 5 5 5 57 5 b 5 5 6
ASM(ovlp=h) 1912071 19 18 17 1714719 211 22 22 23
ASM(ovlp=2h) | 17| 18| 16| 16 17 1714117} 19] 19 20 19
ASM(ovlp=4h) || 15| 16| 16| 16 16 161415 161 17 17 18
ASM(ovlp=8h) || 13} 14| 14| 14 14 1411314 157 15 16 16
GKI0 28 | 31 331 40 42 41221271 30 37 39 42
K91 281231 19| 12 10 81221241 20 16 15 15
CGK 17122) 251 41 47 49116123 38 41 50 60
H=1

1ILU(0) 85 | 62 Hl 23 16 6

ILU(1) 2101 17} 11 5 4 2

ILU(2) 521371 29| 13 9 4

TABLE 2

Tteration counts for solving the nonsymmetric model equation. The fine mesh size is uniformiy 1 Jh=128.
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h= /32 Ti/6a 1128 [ 1/32 [ 1/64 [ 1/128 ] 1/64 [ 1/128
Methods H=1/4 H=1/8 H=1/16
MSR(ovip=h) 7 11 19 6 7 10 5 6
MSR(ovip=2h) 6 7 11 5 6 7 4 5
MSR(ovlp=4h) 5 6 7 5 6 4
MSR(ovlp==8h) 5 6 [

MSM(ovip=h) D 6 7 4 4 5 3 3
MSM(ovlp=2h}) 5 5 6 4 4 4 3 3
MSM(ovip=4h) 4 5 5 4 4 3
MSM(ovlp=8h) 4 5 4

ASM{ovip=h) 1| 13 5] 10 10 i1 9 8
ASM(ovip=2h) [ 11 3 10| 10 10 8 )
ASM(ovlp=4h) 10 11 11 10 10 8
ASM(ovlp=8h) 10 il 10

CGK 12 13 13 12 11 11 10 10

TABLE 1

fteration counts for solving the Poisson equation.

The complexion changes when we switch to the upwind-difference method. The itera-
tion counts for the overlapping methods remain nearly constant even for large 6. It is seen
that with modest overlap, two fine-mesh widths in the test problem, the iteration counts are
independent of § for MSR, MSM and ASM. For the nonoverlapping methods, the iteration
counts continue to grow significantly as the constant é increases.

From these results, there is a strong connection between the stability of the discretiza-
tion scheme and the convergence rate of the domain decomposition methods. The current
Galerkin finite element-based domain decomposition theory for nonsymmetric problems
predicts very well the behavior of algorithms with central-difference discretizations; for ex-
ample, a finer coarse nesh leads to more rapid convergence. However, the situation is
different with upwind differencing; refining the coarse mesh may not always reduce the
number of Herations.

For the range of problems considered, MSM and ASM are the most robust schemes
and behave well in all cases. Unaccelerated MSR is too sensitive to the stability of the
discretization. However, if used with a stable discretization scheme, it not only provides a
competitive convergence rate, but does so while occupying the least computer memory.

The nonoverlapping methods do not behave well if the constant § is large with either
discretization scheme, We believe that this behavior is traceable to the interface precondi-
tioners. It should be noted that the flow direction has purposely been selected to confound
the interface preconditioners in this example, being skew to every interface. Alignment of
(half of) the interfaces with a predominant flow direction, which can often be arranged in
practice, is seen in [9] to lead to improved convergence rates for nonoverlapping methods.
The interface preconditioner employed in CGK makes no adaptation to the presence of the
convection terms regardless of their alignment.

The ILU resalts are rather interesting. For this particular constant-coefficient test
problen: on a fine grid of 1282 cells, global ILU methods do not perform well for the small-
convection problems that yield rapidly to domain-decomposed methods, but they work
very well for large-convection problems, especially ILU(1). ILU is sensitive to the signs
and magnitudes of the coefficients of the nonsymmetric terms, as well as the discretization
parameter . Some analysis was given in [11]. The central-difference ILI results begin to
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o= 0j30froj1i0]150] 300F 0730707 t10 ] 150 [ 300
Methods H=1/8 H =1/16

MSR(ovlp=h) W12 <!l = o 6] 6] 6 71 211 o
MSR{ovip=2h) T} 7118 >~} =c ol 51 51 5 5] 141 o
MSR{ovip=4h) 6| 614 o0} o ool 41 41 5 bl 12| oo
MSM(ovlp=h) 51 8] 7 9] 13 38 3] 4] 4 4 6 8
MSM(ovip=2h) 41 41 8 8 12 37 31 31 4 4 6 9
MSM(ovlp=4h) ] 41 41 5 8] 1I3i>100Qt 3] 31 4 4 6 9
ASM(ovlp=h) 1Imyi2ima) 19 23 624§ 8] 9 9 10] 11} 16
ASM{ovip=2h) | 1010} 14} 18] 23 61 81 81 9] 10}] 10} 16
ASM(ovip=4h) | 10 ] 10 | 13| 15| 22 80 %) 9110 10} 121 17
CGK 111131181 25 31 80 1 10107112 14 16 23
CSPD 91131144 I7T] 32 40 g1 iI1) 13 21| 33

TaBLE 3

Tteration counts for solving the Helmholtz equation. The fine-mesh size is uniformly 1/h = 128.

deteriorate once the cell Peclet number, & - h, exceeds 2 {which lies beyond the range of the
upper part of Table 2). ILU results for a variable-coefficient test problem are given in Table
4.

3.3. The Helmholtz Equation. Qur third test problem is a Helmholtz equation with
constant coefficients, Lu = — A u — ou. It is selfadjoint, but indefinite. The eigenvalues of
this equation are (i? + j2)x% — o, where i and j are positive integers. We choose ¢ s0 as
to avoid putting any eigenvalue in a small neighborhood of zero, but there may be several
eigenvalues of both signs.

For slightly indefinite (small o) problems, it is shown that in Table 3 that all methods
are similar to the case when o = 0. However, as ¢ increases with the grid held fixed, the
iteration counts grow rapidly. A finer coarse mesh (more coarse-mesh points per wavelength)
is needed to counteract high wavenumber.

With a sufficiently fine coarse mesh, the MSM is seen to be the most rapidly converging
among all methods. However, theoretical specification of a sufficiently fine coarse mesh size
is not (in general) easy, and our current method is simply to try a few different H’s. The
“sufficiently fine” hypothesis is seen to be extremely important for MSM in the two entries
with o = 300 with an overlap of 4h: with H = 1/8 more than 100 iterations are required for
convergence, while 9 suffice with I = 1/16. Curiously, increasing overlap seems to degrade
convergence in the strongly indefinite case, whereas it always improves the convergence of
definite operators. For instance, when H = 1/8 and o = 300, overlaps of h. 2k, 3h (not
listed in Table 3), and 4h lead to iteration counts of 35, 37, 43, and > 100, respectively.
Loss of orthogonality likely plays a contributing role in the upturn.

ILU preconditioners cannot generally be defined for discrete operators as indefinite as
these and do not appear in Table 3.

3.4. A Variable-Coefficient, Nonsymmetric Indefinite Problem. Our last test
problem has variable (oscillatory) coeflicients and is nonsymmetric and indefinite;
Lu = —((1+ Lsin(50mz)us), — ((1+ § sin(30mz) sin(50my)uy )y
+20sin( 107z ) cos( 10m y)u, — 20 cos(10mx)sin( 10wy )uy — 70u.

The diffusion coefficients oscillate but do not vary in sign. The coefficients of the first-order
terms represent a ten-by-ten array of closed convection cells, with no convective transport



234 CAI ET AL.

h = 1/32T1/6aT1/I28 1732 [ 1/64 [ 1/128 [ 1/64 [ 1/128
Methods H=1/4 H=1/8 H=1/16
MSR, o0 % o0 oo oC oo 00 o0
MSM 15 15 14 16 15 15 10 10
ASM 33 35 35 20 26 25 19 18
CSPD 35 30 30 33 30 29 21 19
GK90 36 41 50 52 60 69 29 38
GEK91 21 23 31 27 35 50 21 34
CGK 38 37 37 33 30 33 22 24
H=1

ILTU(D) 41 75 266

ILU(1) 86 69 161

ILU(2) 25 41 92

TABLE 4

Iteration counts for solving the variable-coefficient, nonsymmelric indefinite problem.

between cells. However, the subdomain boundaries do not in general align with the con-
vection cell boundaries, so this property is not exploited. The operator £ is discretized by
the five-point central-difference method. A fixed overlapping factor of 25% in both x and y
directions is employed in all overlapping methods. That is to say, the distance between the
boundaries of an extended subregion to the subregion is 25% (or greater, in corners) of the
diameter of the subregion, which is approximately H.

This problem is difficult for all of the methods, but the iteration count for MSM is
smaller than that of others by almost a factor of 2, or more. MSR diverges in all cases. For
a fixed coarse mesh size H, some methods tend to require fower iterations when the fine
mesh is refined; others require more. We believe that this behavior is related to oscillatory
coeflicients in the second-order terms of £. The discretization becomes more stable when ki
gets smaller relative to the oscillatory coefficients.

The nonoverlapping method CGK, which includes an interface preconditioner based
solely on the diffusive terms of £, behaves reasonably well, probably because the magnitude
of the convection is not large and averages to zero over the domain.

For this variable-coefficient problem, the ILU preconditioners are outperformed by the
domain decomposition-preconditioned methods.

4. Councluding Remarks. We have implemented and tested five domain decompo-
sition methods recently proposed for nonsymmetric, indefinite PDEs. In applications, a
number of parameters need to be selected for each algorithm, such as subregion geometry
and granularity, extent of overlap, exactness of subproblem solves, and balancing parame-
ter. The volume of parameter space renders a complete numerical comparison impractical.
As permitted by space, we have highlighted a few comparisons we consider interesting and
useful in suggesting theorems that may be provable.

Domain-decomposed preconditioners cannot be ranked in any uniform way. The perfor-
mance of some of the algorithms depends strongly on the discretization scheme, as well as
on the underlying differential operator. Even when attention is confined to a given problem,
the effect of the discretization scheme and the outer iterative method should be considered
along with the preconditioning strategy.

Finally, we note that attention has been confined in this paper to iteration count, as
opposed to overall computational complexity or execution time. Indeed, though the codes
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share the same basic data structure, they have received varying degrees of attention to
execution optimization. However, an extension of this work now in preparation addresses
complexity issues and parallelism in detail.

(1
(2]
(3]
(4]

9]

[10]

(1]
[12]
[13]

[14]

(16]

[17]

(18]

[19]

REFERENCES

J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The Consiruction of Preconditioners for Elliptic
Problems by Substructuring, I, Math. Comp., 47(1986), pp. 103 -134.

J. H. Bramble, J. E. Pasciak, J. Wang, and J. Xu, Convergence Estimates for Product Iterative Methods
with Applications to Domain Decomposition and Multigrid, 1990, Cornell University.

X.- €. Cai, Seme Domain Decomposition Algovithms for Nonselfadjoint Elliptic and Parabolic Partial
Differential Fquations, Ph.D. thesis, Courant Institute, Sept. 1989.

X.- C. Cat, An Additive Schwarz Algorvithm for Nonsclfadjoint Flliptic Equations, in Third International
Symposium on Domain Decomposition Methods for Partial Differential Equations, T. Chan, R.
Glowinski, J. Périaux, and O. Widlund, eds., SIAM, Philadelphia, 1990, pp. 232-244.

X.- €. Cai, W. D. Gropp, and D. E. Keyes, Convergence Rate Estimatc for a Domain Decomposition
Method, Technical Report 827, Depariment of Computer Science, Yale University, Oct. 1990, {to
appear in Numer. Math.).

X.- C. Cai, W. D. Gropp, and D. E. Keyes, A Comparison of Some Domain Decomposition and ILU
Preconditioned Iterative Methods for Nonsymmetric Elliptic Problems (in preparation).

X.- C. Cai and O. B. Widlund, Domain Decomposition Algorithms for Indefinite Elliptic Problems,
SIAM I. Sci. Stat. Comp. 13 (1992).

X.- . Cai and O. B. Widlund, Multiplicative Schwarz Algorithms for Nonsymmelric Elliptic and
Parabolic Problems, TR CCS8-90-7, Center for Computational Science, University of Kentucky,
Oct. 1990.

T. F. Chan and D. E. Keyes, Interface Preconditionings for Domain-Decomposed Convection-Diffusion
Operators, in Third International Symposium on Domain Decomposition Methods for Partial Dif-
ferential Equations, T. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., STAM, Philadelphia,
1990, pp. 245-262.

M. Dryja and O. B. Widlund, Towards @ Unified Theory of Domain Decomposition Algorithms for
Elliptic Problems, in Third International Symposium on Domain Decomposiiion Methods for Par-
tial Differential Equations, T. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., SIAM,
Philadelphia, 1990, pp. 3-21.

H. . Elman, 4 Stabidily Analysis of Incomplete LU Factorizations, Math. Comp., 47 {1986}, pp.
191-217.

A. Greenbaum, C. Li and Z. Han, Parallclizing Preconditioned Conjugate Gradient Algorithms, Comp.
Phys. Comm., 53(1989}, pp. 295--309.

W. D. Gropp and D. E. Keyes, Domain Decomposition with Local Mesh Refinement, 1990 (to appear
in SIAM J. Sci. Stat. Comp.).

W. D. Gropp and D. E. Keyes, Parallel Performance of Domain-Decomposed Preconditioned Krylov
Methods for PDEs with Locally Uniform Refinement, SIAM J. Sci. Stat. Comp., 13 (1992}).

D. E. Keyes and W. D. Gropp, 4 Comparison of Domain Decomposition Techniques for Biliptic Partial
Differential Egquations and Their Parallel Implementation, SIAM J. Sci. Stat. Comput., 8 {1987),
pp. $166-5202.

D. E. Keyes and W. D. Gropp, Domain-Decomposable Preconditioncers for Second-Order Ipwind Dis-
cretizations of Multicomponent Systems, in R. Glowinski, Y. A. Kuznetsov, G. A. Meurant, J.
Périaux, and O. B. Widlund, eds., Fourth International Symposium on Domain Decomposition
Methods for Partial Differential Equations, SIAM, Philadelphia, 1991, pp. 129-139.

P. L. Lions, On the Schwarz Alternating Method. I, in R. Glowinski, G. H. Golub, G. A. Meurant, and
J. Périaux, eds., First International Symposium on Domain Decomposition Methods for Partial
Differential Equations, SIAM, Philadelphia, 1988, pp. 1-42.

Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algosithm for Solving Nonsym-
metric Linear Systems, SIAM J. Sci. Stat. Comp., 7 (1986), pp. 865-869.

J. Xu and X. - C. Cai, A Preconditioned GMRES Method for Nonsymmetric or Indefinite Problems,

1990 (to appear in Math. Comp.).



