CHAPTER 24

A Domain Decomposition Method for Eigenvalue
Problems

Jenn-Ching Luo*

Abstract. With the advent of highspeed multiprocessor computer, the domain
decomposition method has become perhaps the preferred technique for dealing with
large scale problems and parallel computing. This work presents a domain decom-
position method for numerical solutions of eigenvalue problems based upon two
quotient iterations of the author. An innovative method for solving eigenvalue
problems is developed, by which an eigenpair can be efficiently computed by solv-
ing a system of related subproblems. A mathematical foundation for manipulating
a procedure of domain decomposition is also discussed.

Introduction. Many engineering and scientific problems are defined as eigen-
value problems. Solving an eigenproblem is one of the most time consuming proce-
dures. The domain decomposition method provides an important idea to partition
an entire problem into a system of related subproblems so that independent sub-
problems can be implemented in parallel. The importance of domain decomposition
has been shown in many areas of applications, for example [1] which illustrates two
types of decomposition, overlappped decomposition and nonoverlapped decompo-
sition. In the overlapped decomposition, each pair of adjacent subdomains has a
common region; while in nonoverlapped decomposition the intersection of adjacent
subdomains is only the common edge. This study, based upon the successive pro-
jection approximations [2], falls into the scope of overlapped decomposition of which
the Schwarz alternating method is a well known technique for solving elliptic equa-
tions. In the Schwarz alternating method, the governing equation in a subdomain
is a restriction to the subdomain. Such a definition of governing equation limits
the Schwarz alternating method to particular problems, because the restriction to
a subdomain cannot generate a convergent procedure for a general type of partial
differential equations. The domain decomposition method studies mathematical
foundations for manipulating a procedure of domain decomposition and defining
the subproblems. This work will use the successive projection approximations {2} to
manipulate a procedure of domain decomposition and will use the author’s quotient
iterations ([3] and [4]) to define the subproblems. It should be emphasized that both
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the successive projection approximations and the author’s quotient iterations can
be applied to a decomposition with arbitrarily shaped subdomains.

The original version of successive projection approximations is derived from the
concept of extractable projections, each of which maps a finite dimensional space
onto a subspace. In the original version of successive projection approximation,
a subproblem is defined in a subspace which can be termed space decomposition
[6]. The successive projection approximation will be extended by the concept of
subdomains so that a framework for manipulating a procedure of domain decom-
position can be developed. The author’s quotient iterations have been successfully
formulated into four methods ([3], [4], and [5]) by the technique of space decompo-
sition. These four methods have demonstrated to be robust techniques to compute
real eigenpairs, and also have the potential to deal with parallel computations. An
application of them to mode—shape analysis was reported by [7]. This work will
formulate the quotient iterations into algebraic equations by the method of do-
main decomposition. A method for solving eigenproblem is developed, by which an
eigenpair is computed by solving a system of related subproblems.

Domain Decomposition. In this section, a mathematical foundation for ma-

nipulating a procedure of domain decomposition in a finite dimensional space will
be developed. Consider a domain  of a partial differential equation bounded by a

closed boundary 9. (2 is partitioned into a set of overlapped subdomains {Q(i)}iv’
where N, is the number of subdomains. The subdomain Q) has a closed boundary
0@ which contains a new edge and probably a portion of the original boundary
0. Denote by aﬂgéw the new edge of Q) and denoted by Bﬂggi a portion of the

original boundary 99 along Q). Then, 8Q® = Bﬂgéw + 3le),i. It is possible

that Q) = aﬂgéw if Q) does not attach to Q. A subdomain may be a collection
of the supports of some elements of basis if an appropriate finite dimensional space
is provided. The support of an element of basis is a subdomain where non—zero
interpolations are defined. For example,

X—Xn-—
Xn —-Xn-11’ Xa1 S X < X,
— X—Xn
N(X) = o vl Xn <X < Xnp
0, otherwise

can be an element of basis (or called shape function) for one-dimensional piecewise
linear approximation, whose support is the interval [X,_1,X,41] in which non-
zero interpolations are defined. An interval is one kind of subdomain. In an N—
dimensional space, grouping supports of elements of basis can generate a set of
subdomains. )
Generating finite elements in the domain of a partial diﬁ'erentizftl equation in-
cluding nodes and edges is the essential step in finite element analysis. There exist
many ways to mesh a domain into finite elements. When dealing with the t‘ecl}—
nique of domain decomposition, however, one condition that every subdomain is
the collection of supports of some basis elements has to be satisfied. Therefore,
there exists an additional requirement to generate meshes so that a set of appro-
priate finite elements can be obtained. For a given set of overlapped subdomains
{Q(i)}iv‘“ , there exists a set of new boundaries such as {691(;()3‘,, iv" . In order to
meet the additional requirement, each new boundary has to place element nodes.
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After obtaining a set of appropriate finite elements, i.e. a set of nodes and edges, a
basis {B;}{' (so called shape functions) with proper order of interpolations can be
written in accordance with the considered problem. This sets up an N—dimensional
space @ in which every ¢ € ® can be written in the form

N
$=> A;B; 1)
=1

where Aj (j =1,2,...,N) are coefficients to be determined.

Once an N-dimensional space ® spanned by basis {B;}Y has been constructed,
the subdomain Q) can be generated as a collection of supports of some elements
of basis, denoted by () which is a subset of {B;}Y¥. The subset ) spans a
subspace of ®. There exists an extractable projection P which maps @ onto

the subspace spanned by (). A similar argument can be applied to define the
extractable projections corresponding to the other subdomains. Denote by T, an

available fundamental subset [6], which is the collection of {P(i)}iv” . T, has finite
number of extractable projections. In order to derive an iterative procedure by
using the finite set Y, let n be a subscript such that P, is the n—th employed
projection of an iterative procedure. Therefore, P, = P() for some i where the
superscript (4) indicates the i—th extractable projection in Y,. For a ¢ € @ in the

form of equation (1), with P, = P, the projection P,¢ is written as:

N
P = Z A;B;. (2)

Bj Eb(‘.)

By successive projection approximation, a ¢ € ® can be approximated by a sequence
{¢,} where ¢, is written as [6]:

zn = (I - Pn) an-—-l + Pn’?nv (3)

in which Py, is the solution to a guide denoted by G(4,) = G(Pana) = 0. Once
the solution to G(Punn) = 0 has been obtained, a new approximation 6, can be
updated by equation (3) where ¢,,_, is the previous approximation. An admissible
trial ¢, satisfying the boundary condition is necessary (please see [6]).

A coefficient with respect to a basis element is called a degree of freedom,
which must be determined such that a governing equation subject to the boundary
conditions can be satisfied. Each element, in an N-dimensional space ® spanned by
{B;}¥', has N degrees of freedom. All the N degrees of freedom are in the domain
(2, because an admissible trial satisfies the boundary conditions. However, for the
subdomain Q(), both Q® and Bﬂgéw have degrees of freedom. The degrees of
freedom with respect to Q(‘? and Bﬂgéw have to be discussed separately, because
the subspace spanned by Ig(‘) contains only the degrees of freedom in Q¥ i.e. the
degrees of freedom on Bﬂgéw cannot be updated by equation (3) when P, = Pfi}.

Denote by {A%] all the degrees of freedom associated with ) and Qs
where the subscript » indicates the iterative step. Denote by Ny the number
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of degrees of freedom in Q) and denoted by N so)  the number of degrees of
) ) new
freedom on Bﬂg()aw. {Ag:) } has (Nge +Nggey ) degrees of freedom. There are two
new

separable sets of coefﬁment which can be denoted by [Z (i)]{A(i)} and [Z (')]{A(’)}

with respect to aﬂnew and QO where [Z?] and [Z()] are Boolean matrices of
order (Nyom X N) and (Ng) x V), respectively. There exist many possible ways
Ynew

to order the entries of {AS:) }. For the purpose of convenience, let [[Z OIRVAO) ]

be an identity matrix, i.e. the entries of {Ag)} begin with the degrees of freedom

on aﬂgéw, and then are followed by the degrees of freedom in Q.

For every degree of freedom in 29, there exists an element in (), called shape
functions, which defines an approximation associated with the degree of freedom.

For every degree of freedom on 393()3“,, however, there does not exist an element in
5@ to support the degree of freedom. The associated shape functions for the degrees

of freedom on 69%23“, are defined by elements of basis of the subdomains adjacent to
2, Denote by { N} the collection of shape functions associated with the degrees

of freedom on Bﬂgéw and in Q) with the same ordering of entries as {ASP} such
that [[2(")]T[Z (i)]T] is an identity matrix. If the subdomain Q) is viewed as a
substructure, then the vector {NV(9} is the whole shape functions, except the ones
associated with the degrees of freedom on Bﬂggi. An approximation associated with
the degrees of freedom in Q(9, i.e. in the subspace spanned by b, can be written

- 7.29) = (NOY 2O 20140}, @

Similarly, an approximation associated with the degrees of freedom on aﬂnew can
be written as:

$a(008kw) = (NOYZOTZO1{4D}. (5)
Using equation (3), with P, P, = P,, we can obtain
P, n.‘;n = Ialn. (6)

Since P, = P® maps an N-dimensional space onto the subspace spanned by b9,
n¢ is defined by the degrees of freedom in Q) so that Pnd> can be written as
P¢,. = 6,.(2®). With equation (6),

Ppijn = gn(ﬂ(i))' (7)

Since the projection of P, is defined by the degrees of freedom in Q®, the pro Jectmn
of (I — P,,) will be defined by the degrees of freedom in (2 — Q) and on 3Qnew

so that _ _
(I = Po)fny = Brn-1(0082w) + Bueyr( — QD). (8)

Substitution of equations (7) and (8) into (3), the successive projection approxima-
tion [2] becomes

T = 3a(2D) + 5, -n(2 — QD) + 3,1 (090w). ©
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Equation (9) updates the approximation in the subdomain QG A similar result can
be obtained from every subdomain. Equation (9) is a mathematical foundation to

deal with an approximation of subdomains. The notations that G($,) = G(Pnin) =

G($,(29)) = 0 with P, = P® can be easily verified. A mathematical foundation
for manipulating a procedure of domain decomposition can be summarized below.

For a given partial differential equation defined in a domain 2 partitioned into a set
of overlapped subdomains {Q(i)}iv’ , with an admissible ¢, satisfying the boundary
conditions, a domain decomposition procedure can be achieved by iterating the
following equations:

For n =1,2,..., until convergence
Solve G(¢,(2%) =0 (10)
Update ¢, = 6,(2D) + .4 (2 — 0D +3,_,(00{y (1)

where the superscript (i) indicates the subdomain considered at step n. Each iter-
ation step has a subproblem in a subdomain solved.

Luo’s Quotient Iterations. As introduced previously, equations (10) and

(11) are the fundamental equations for manipulating a procedure of domain de-
composition. An approximation of subdomains has been shown in the form of (11).
The underlying goal is to find a guide to make a convergent decomposition. Two
guides for decomposing an eigenproblem into a system of related subproblems have
been studied by Luo ([3] and [4]). Let

Lé+Afd=0 inQ subject to Mp=0 on o (12)
be an eigenproblem where £ and M are differential operators, f is a given func-

tion independent of ¢. The first guide for partitioning the problem in the form of
equation (12) is written as:

G ($u(29)) = 6(£F, £5,) + Cy - 6(£F,, £8,) = 0 (13)

C+ - (£$n-—17 ‘Can—l)
#—1"" - T
(£¢n—-11 f¢n—1)

with a sufficient condition for convergence

(14)

(H(8.) - 6°¢F(8,) >0 (15)

where (F(6,) = (£8n, £6,) + C_y - (£LF,, f6.), (o, 9) indicates an inner product,
and the variation is taken with respect to the approximation ¢,.. A guide contains
the degrees of freedom in the subdomain Q9. This shows the nature of domain
decomposition. The sufficient condition for convergence in the form of equation (15)
becomes a criteria to define a convergent region. When {§,} approaches ¢, (F(4) =
0 and equation (15) is satisfied. This implies that a convergent region contains at
least one element in a finite dimensional space. Obviously, Some solutions may have
large regions of convergence; while others may have small ones. Repeatedly solving
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equations (13) and (14) for n = 1,2,..., yields a sequence of {4.} and a sequence
of {C;_,}. It has been proved [4] that the limit of #,, is an eigenfunction and the
limit of C_; is a corresponding eigenvalue. Substituting equation (14) into (13)

yields _ _ _
5(‘6_‘7_5_7;’ qu) — (‘Cﬁn—-l 3 Jcﬁn—l )
5(£¢n7 f¢n) (£¢n-17 f¢n—-1)

which is linear in ¢,,(Q()). The procedure to repeat the equation (16) leads to the
author’s first quotient iteration:

(a) Select an admissible trial ¢,. _
(b) Repeat the following procedure for solving ¢, where n = 1,2,..., until

convergence _ _ _ _
5(‘Cfm£§_bn) —_ (‘Cfn—hﬁfn—l) .
6(£¢n7 f¢n) (£¢n—17 f¢n—1)

The negative value of the limit of quotient is an eigenvalue of equation ( 12) [Note
if equation (12) is written into the form L£¢ = Af¢ then the limit of quotient is
an eigenvalue]. An admissible trial has to satisfy the following requirements: (a)

&y # 0; (b) §, satisfies the boundary condition; (c) g, = Ef;l a;B; where o # 0
for all j; (d) @, is defined in a convergent region. This study will use such a quotient
iteration to define the subproblem in a subdomain. Once an admissible trial has
been selected, an eigenpair can be computed by the first quotient iteration. The
second guide for decomposing an eigenproblem is written as:

G(Putin) = 6(Ln, ) + Cry - 6(f by fb) =0 (18)
_ (L§n~17f§n——1)' (19)
(f¢n—-1’ f¢n—1)

Substituting equation (19) into (18) yields

5(‘C§n7 fgn) — (ﬁgn-—b f_(t—fn—l) (20)
6(f¢n’ f¢n) (f¢n—-17 f¢n—1)

which leads to the author’s second quotient iteration:
(a) Select an admissible trial @,. _ .
(b) Repeat the following procedure for solving ¢, where n = 1,2,..., until

convergence: _ _ _ _
5(£¢n7 ffén) — (Efn-—lﬁ f?in—l) . (21)
5(f2£n7 f¢n) (f¢n—1’f¢n—~1)

Both the first and second quotient iterations can be used to solve an eigenvalue
problem in partial differential equations. For the purpose of computing, the second
quotient is better than the first quotient. Because for some oper?,tor L and function
[, the required order of elements of basis for formulating a guide can be reduced.
For example, if L = T - T where 7 is self-adjoint and f is a real constant, then

(/an, fgn) = f(Tzn, T Zs—n) in which the required order of elements of basis {B J};v

to define ¢,, can be reduced so as to simplify the computations. Luo [4] showed that
the absolute value of the first quotient is always greater than the one of the second

(16)

a7

Coi=
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quotient until convergence. The difference of the two quotients can be used as a
criterion to examine accuracy and terminate a computing procedure. This paper
will use the quotient iterations to define subproblems in a decomposition procedure.

Finite Element Formulations. First, let the second quotient iteration be
formulated into a finite element equation. It can be easily verified that

Gt = Fn1(0D) + 8, _1(Q - QD) +F,_1(0052w). (22)

Adding ¢,_1(Q®) — 4, _,(2D) to the right side of equation (11), with equation
(22), yields L _ o '
b = Pus + 8a(20) = .1 (Q0). (23)

Using equations (22) and (23), we can obtain that
(Cha £32) = (Lhnsy FBna) + (£3,(29), £3,00)) -
(£80-1(09), 3,_1(29)) +
(£34@0) = £8,2(29), 3,1 (098w)) +
(£80-1(098k), 13,0 - £F,2(29)). (29)

Using equations (4) and (5), we can obtain

(£60(29), £3.29)) - (£F,a(@9), fBua(@D)) =0 (25)
(£8(29) - L3, 1(QD), £3,1(00w)) +

(£8a-1(0980), £3,0D) = 3,1 (29)) = 7 (26)
where
o0 ={A4DY 12OV [KONzOH24D - AADY (27)
7 =2{A40Y 2O [RONZON AL} (28)
{249} ={4D} - (4D, (29)
[K®] =[29][sD)[zO]"
== the i~th subdomain stiffness matrix (30)
[RO] =[20)[sO|Z"
= the i~th carryover stiffness matrix (31)
. 1 . oo T 1 - o T
(O] . ) @) = (4) ()
59 =5 (CANOLHNOY) + 2 (FIVOLLNOY). ()

Substituting equations (25) and (26) into equation (24) yields

(£8nr Fb0) = (Lbp1, fbny) + 0P +7D. (33)
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Using a similar procedure to derive equation (33), we can obtain

(Fbn> Fbn) = (fBn1s Fbny) + (P + 0 (34)
where
¢ = {A4QY 1207 M ONZOH24( — 4P} (35)
) =2{AADY 2O MDZONAD 1} (36)
M) = [Z2ONWD)ZD]" = the i-th subdomain mass matrix  (37)
[Z/\l\ (i)] =[Z (i)][W(i)][Z (i)]T = the i-th carryover mass matrix (38)
WO = (F{NO}, FINOY. (39)

Taking variation of equations (33) and (34) with respect to 6,(Q()), with equations
(27), (28), (29), (35), and (36), yields
6(‘63117 f;;n) "_‘60‘5:) + 67’,9)
=26 ({AQY 297 (KOO AP} +
2.8 ({AQY1290") [RON1Z01{4D.,} (40)
8(fbns [ 8n) =6¢) + 608
=25 ({AQY[297) IMONZON AP }+
2.8 ({A9Y1207) FTOZO4L,}. (41)

. ). T inT .
Substituting equations (19), (40), and (41) into (21), since § ({AS,)} [Z ) is
arbitrary, yields

[[ED] + Cry [MD]] 2O {AP}+
[[RO] + ¢, [MO]] [ZOHAD,} =o0. (42)

I [[KO] 4+ O, [M®]]7! exists, equation (42) becomes

[ZOHAD} = — [[KD] + O, [MD]] 7 .
[[RO] + Cy [4D)] [Z91{4D,} (43)

which defines the subproblem in subdomain Q). Each subdomain has a govern-
ing equation in the form of equation (43) which allows it to be a homogenous

decomposition. Once [Z D){ADP} has been obtained from equation (43), En(ﬂ(‘?)
can be defined by equation (4) and ¢, can be updated by equation (11). This
procedure will be repeated for any n until convergence. For the situation where

(K + UM (117! does not exist, the iterative procedure just skips to solve
another su‘t;‘p_roblem because there is no particula:r order for selecting an extractable
projection P, employed in equation (21), i.e. if an extractable projection in T,
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causes a singular subproblem, we can use another projection in YT, to define an-
other subproblem.

The first quotient iteration in the form of (17) also can be formulated into a
finite element equation for defining a subproblem which will lead to a result similar
to the second quotient iteration except for the definitions of Cjf_,, stiffness and
mass matrices which may be written as:

[SO] = (L{N D}, L{NO}") (44)
[W(i)] %(ﬁ{N(')}, f{N(’)} )+ %(f{N(i)},,C{N(i) }T) (45)

The following discussions will focus on the applications of the second quotient iter-
ation.

Computational Considerations. A domain decomposition procedure solves
a group of subproblems, each of which has an individual subdomain with a set
of degrees of freedom and data. It may be a burden for an analyst to arrange a
procedure to solve a group of subproblems. In order to avoid such burden and
for the purpose of convenience, an appropriate arrangement to a computational
procedure is necessary so that it would be better to label each computational step
physically, i.e. give each computational step a physical name. Physical labels can
help analysts in arranging computational procedures. This section will label the
computational steps physically and simplify the mathematical notations.

Let us rearrange equation (43) into the system

[ZOAD} = — [[KD) + 0y MO 8 (46)
{ria} =[IRO]+ 07 (MO (ZOHAL, (47)

where the right sides of equations (46) and (47) are all known values at step n.
Equation (46) can be rewritten in the form

[ZOUAADY = —[[KD]+ O MO {0 3 - (204D} (9)

A notation convention is made so that all the equations are computed from their

right sides and result in the left side vectors. The subscript » and n — 1 can

be neglected if an equation is rewritten so as to meet the notation convention.

Furthermore, let

A9} = 4 (')]{A(i)} = a carryover

{AAG)} = {Z(’)]{AA(i)} = an increment
{49} =

[2¢
A= C7 = an approximation to eigenvalue.

. (49)
N{AD} = an approximation to eigenfunction

Using the notation convention, with equation (49), equations (47) and (48)
become

{r®}  [[RO] + N {AO) (50)
{AAO}  —[[KO]+ AMO) 7 {rO} — {29} (51)
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respectively. Equation (50) is termed receiving procedure which receives a carryover
{A®} from its cooperating subproblems. Equation (51) is termed solving procedure
which computes an increment {AA®} if {r(?} provided. Once a {AA®} has been

obtained, an approximation {A®} can be updated by equation (29) which can be
simplified into the form

{AD}  {AD} 4 {AAD} (52)

Equation (52) is a step of updating procedure. An updating procedure also contains
the step to update ) defined by equation (19). The procedure to update an eigen-
value is more complex than the one to update an eigenfunction. Using equations
(27), (28), (33), (34), (35), and (36), a procedure to update an eigenvalue contains
the following seven equations:

o® — [AADYKD{2AD — AAD}
¢ (AADY IMD]{2A0 —~ AAY
D 2. [AADY[RO){RGY
n® 2 {AAOY OHAR) (53)
(L6, f8) — (L8, F ) + 0@ +70)
(£, f8) — (§8, 1) + (P +n®
_ (.1
(f8,19)

with a set of previous (£4, f¢) and (f¢, f6). The updating procedure begins with
equation (52) and is followed by equation (53). The receiving-solving-updating
procedure is considered under the situation a {A()} has been received, i.e. the
procedure is activated by its cooperating subproblems. Similarly, the subproblem in
Q@ also can activate its cooperating subproblems by sending them corresponding
carryovers. Denote by [Cy;] a Boolean matrix which transfers an approximation
{AD} to a carryover of the subproblem in subdomain Q). Then a carryover to
the cooperating subproblem in Q) can be written as

(AW} — [Cril{AD} (54)

which is termed sending procedure. In an asynchronous system, only the new car-
ryover {K(")} is valid, i.e. an old {5(")} has to be discarded no matter it has
been proceeded or not when a new {A®)} has arrived. Subdomain Q) may have
more than one adjacent subdomain. For every {A(D}, each cooperating subprob-
lem should be sent one set of corresponding carryovers. Since [C’kg% is a Boolean
matrix, some advantage for computing the right side of equation (54) can be taken
of. A realistic computing procedure does not really generate a Boolean matrix. An
alternative to (54) can be made for example in a Fortran code
DO S=1,U
T=MAP(S)
AD — D
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END DO
where U is the number of degrees of freedom transferred from the i—th subdomain

to the k—-th subdomain, Kg") is the S—th entry in {K(k)}, Ag) is the T—th entry
in {A}, and MAP is a map for transferring degrees of freedom. For example, a
Boolean matrix [Cy;] is written as:

[Cri] =

OO O
OO OO
O OO
-0 OO

then U= 3, MAP(1) = 1, MAP(2) = 3, and MAP(3) = 4.

‘With these physical labels, a computing procedure in a subdomain is just a re-
peated application of receiving-solving—updating-sending procedure until an eigen-
pair converges. The initial procedure needs to select an admissible trial and compute

(L3, f$), (f$, f$) and A. Using equation (22), we can obtain the result with respect
to subdomain Q)

(8, £9) = (£B(Q9), £3(29))
+ (£3(29), 13(0980w)) + (FHQD), £3(008))
+ (€7 - £3@9), 3 - f309)). (55)

If each overlapped region contains a layer of finite elements, equation (55) can be
written into the form

(L3, F3) = (LHQD), FH(QD))
+ 5(EHOQD), B0 + H(FHOD), LHEEw )]
+[(£8 — LHQD), £6 - FHQD))
1, =)y 7ranG i s e
+ 3EHQO), FHOUL) + (FHOO), LHOD ). (50)
Denote by u{¥) the quantity in the first brace of the right side of equation (56).

The quantity in the second brace of the right side of equation (56) can be further

rewritten in terms of the remaining subdomains. Therefore, equation (56) can be
written as:

Ny
(L3P =3 u® 7
i=1
where _ o
p = {AOYIKOHAOY 1 (APYRHRD). (58)
Similarly, we can obtain
NP
(B D=3 v (59)

=1
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where

v = (AOYMOYAD} + {AOY[ITOYRDY.
The initial procedure is to select {A(i)} where (i = 1,2,...,N,), then by equation
(54) to transfer each initial {A(D} to its cooperating subproblems, and finally to
compute (£¢, fd) = Ef\_]jl p® and (4, f) = Zf\i’l v® and A. This new approach
not only has the capability of dealing with large scale problems but also provides a

high potential to parallel implementations. A domain decomposition procedure for
eigenvalue problems is shown in Table L.

Examples and Discussions. Two examples will be used to demonstrated the
procedures shown in Table I. The first example is defined as

y"+Ay=0  where <z €[0,7]and A =w? (60)

subject to y(0) = y(7) = 0. It can be easily carried out that an eigenpair of equation
(60) can be written in the form w and sin wz where w is an integer. In this example,
the interval [0, #] is divided into 3 equal length subintervals. Each subinterval is
an element. Since (y,y") = —(¥',y’'), equations (32) and (39) require a linear
interpolation, i.e. piecewise linear interpolations are sufficient for approximating a
solution to equation (60). Each internal node has an interpolation so that there
are two unknowns y; and y» to be determined. For subinterval [z,,—1, %] where
Tm = m7 is the coordinate of the m—th node, the interpolation N,,(z) and N,,—;(z)
can be written as

3 3
Np—i(z) = ;(mm —z) and  Np(z)= ;_-(m — Tp—1), (61)
respectively. Then
Nm_1 . :3_ Tm — T i Nm__1 =§ —-1}
{ N, }_W{m—xm_l} and dz N T 19{"
Using equation (32), an element stiffness matrix can be written as:

fm 3 1 -1
element stiffness matrix = — / (;)2 [_1 1 ] dz
Tm1

STE!

Using equation (39), an element mass matrix can be written as:

element mass matrix = /z ::(%)2 [(:vm _(:31:13&(; i):m_l) (:L'm(; i)gfn::;?—l)] d
-5l 3] *

where the property Tm — Zm—1 = = has been used. The generated 3 ﬁ.nite elements
are then grouped into 2 subdomains for defining subproblems, which are ranged

within [zg, z2] and [z;, 23], respectively.
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Table I. A Domain Decomposition Procedure for Eigenproblems
(a) Select {AP} in each subdomain.
(b) For every i, send {A®Y} — [CrLl{AP}

to its neighboring subdomains.

iti _ N, .
pazitial | (c) Compute (£, f) =Y " u®.

i=1
(d) Compute £ f‘alfa) = 221 v
() r o —L8TE)
(fo,f9)
In each subdomain, repeat the following procedures until convergence.
Receivi i (i T ONBING
Procedure | {7} = [[R®) + \MW]] (RO},
Pooeeg 8, | {AAD} « —[[KO]+ AMO] ! (rO} - {AD},
(a) {A0} — {AD} + {AA D}
(b) ¢ — {AADYEKO2AD — AADY,
(c) (@ — (AN [MD{2AD — AADY,
a) 7P . N ROAOT,
Undating | (© 7 =2 1AMV IROEO)

Procedure | () n® « 2. {AADYTAIOARD],
(£) (L8, F$) — (£6,f8) + 0@ + 7D,
(&) (f8,£9) = (8, £8) + ¢ +10.
() A L8 S9)
(f,f¢)
Psrgxéiliz%e Send {A®} — [CLil{A®} to subdomain Q™ adjacent to Q.

The superscript () indicates a local variable in subdomain Q).

_ The first subdomain [#o, %] has two degrees of freedom y; and y; to be deter-
mined where y, is assigned to the first degree of freedom and y, is assigned to the
second degree of freedom so that

Zo=po,  E=p o so=-2 4 ),
wol=5 7 i) wer=-s ROI=g, (©)
(M) = 3, 0] = .

The second subdomain [z, z3] contains two finite elements [z1, #2] and [z, z3] with
two degrees of freedom y; and y, where y; is the first degree of freedom and yz is
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the second degree of freedom so that

Z@=p0,  1z®)=p 1, s@--2[} ],
W@ = = [? i] , K] =-% [R®)=3 (65)
[M®] = 2n, (M) = £,

Since {AM} =y, and {A@} = y; in this example, with the procedures shown
in Table I and equations (64) and (65), the governing equations for these 2 sub-
domains are shown in Table II. By the trial that y; = y2 = 1, we can obtain an
eigenpair that y; = 1 and y2 = 1 and A = w? = 1.094269, which is the least eigen-
value with the exact value w = 1. A good approximation to the least eigenvalue
can be obtained by refining mesh, for example A = w? = 1.003663 when the interval
[0, 7] is divided into 15 finite elements with initial y; = y3 = ... = y34 = 1. Simi-
larly, using the trial y; = 1 and y, = —2 obtains the eigenpair with A = 5.471346.

The framework shown in Table I can be used to solve an eigenvalue problem
in the form of (12) where Q can be a one—dimensional, two—dimensional, or higher—
dimensional domain. For example, let us consider the second example defined as:

Vi¢+ A =0 in Q the square (—1,1) x (=1,1)

¢ [anz 0.

 is meshed into 20449 square elements which are then divided into 28 overlapped
subdomains. Since (B, V*B) = —(vB, VB), piecewise bilinear interpolations are
sufficient to formulate the stiffness and mass matrices defined by equations (32) and
(39), respectively.

A computer code based upon the procedures in Table I has been developed
for numerical solutions of eigenvalue problems. Using an admissible trial with unit
coefficients, an eigenpair with A = 4.935176, which is the least eigenvalue with the
exact value A = 4.9348022. . ., can be obtained in 305 iterations. An admissible trial
is required by the author’s quotient iterations, which has to satisfy the requirements
introduced previously. It is easy to realize that different admissible trials can lead
to the same eigenpair, for example using the trial y; = 2 and y; = 5 to solve the
first example leads to the pair with A = w? = 1.094269 which also can be obtained
by the trial y; = 1 and y; = 1. This means that when computing multi-eigenpairs,
the presented method would waste some computing time because different a:dmis—
sible trials can converge to a similar eigenpair. Selecting an admissible trial for
a particular eigenpair is theoretical difficult for nonlinear iterative schemes for ex-
ample the Newton method, and is a common problem to nonlinear analyses. The
presented method also suffers from this disadvantage. An efficient numerical pro-
cedure to find an admissible trial for a particular eigenvalue is under study. It is
still at early stage for dealing with eigenvalue problems by the technique of domain
decomposition. Four methods of Luo ([3], [4], and [5]) were derived by using a
different technique, space decomposition [6], to formulate the two author’s quotient
iterations. Among them, the third method ([3] and [4]) can efficiently compute
multi-eigenpairs. .

This work uses the author’s quotient iterations to define subproblems, which
leads to an innovative procedure to deal with eigenvalue problems as shown in Table
I. The procedures shown in Table I are well suited in a parallel environment, because
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most computing procedures require only local variables the ones with superscripts
(2) and (k). Only the steps (f), (g), and (k) of the Updating Procedure need global
variables (L@, f¢), (f¢, f¢) and X which can be modified locally. The presented
method not only provides a procedure to deal with large scale problems but also
shows a procedure with high potential to deal with parallel computations. Parallel
implementations of this approach report by [8].

Table II. Governing Equations of the First Example

" Subdomain I: [z,,z,] Subdomain II: [z,,,]
6 3 6 3
W__2,242 @ _ _ 22
Initial p= ﬂ_yl + 7l_y1yz gr= ﬂ,yz + ﬂ_yly2
Procedure @ _ 27 5 N k3 @ _ 2% 5 T
v - 9 y1 18y1y2 v 9 y2 + 18y1yz
Eegeiv%ng 3 + Aw 3 + P
Progezlurﬁ Ay, = __—2%_1287?% W |An _‘%‘—1287?91 Y
— + A —+A—
s 9 7w 9
@)y, « v +Ay, (@ y, « y,+Ay,
(0) (L4, ) — (Lo, fo)+ | (B) (Lo, fd) « (Lo, fo)+
6 6
ot A%';' Ayz.;r..
pdating -
Procedure ("_291__"‘ Ay, +gz)_ ("_2312 + Ay, +9,)
(c) (f6,18) « (Fb.fo)+ | (o) (fé, 1) « (fo,fd)+
LN T Ay
9 yl 9 y2
(4311 _2'Ay1 +y2) (4y2_2'Ayz +y1)
For a set of trial y, and y,, compute (L@, f¢), (f¢, f$) and A by initial
procedure. Then, alternatively compute subproblems until convergence.
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