CHAPTER 47

A Domain Decomposition Method for Elliptic
Boundary Value Problems: Application to Unsteady
Incompressible Fluid Flow!

Einar M. Rgnquist?

. Abstract. A consistent variational discretization of the time-dependent Navier-Stokes
equations typically leads to a Poisson-like equation for the pressure which needs to be solved
at each time step. The fact that the pressure is in L? makes this operator more difficult to
invert than the standard (H') Laplace operator, In this paper we propose a new pressure
solver with the following key ingredients: domain decomposition; a global coarse system to
take care of long-range interactions (solved directly); a global fine system to solve for the
difference between the final solution and the coarse “skeleton” solution (solved iteratively);
a local decoupled preconditioning system (solved directly for each subdomain). Numerical
results suggest that the number of iterations is independent of the number of subdomains.

1 Introduction

In this paper we discuss a hybrid direct-iterative method for inverting the consistent pressure
Poisson operator arising from discretization of the time-dependent incompressible Navier-
Stokes equations based on variational forms (spatial) (Brezzi, 1974; Girault and Raviart,
1986; Bernardi, Maday and Métivet, 1987), and operator splitting techniques (temporal)
(Maday, Patera, and Rgnquist, 1991). Many domain decompostion methods are based on
the idea of combining the solution of independent systems for subdomains of the original
domain with a global iterative procedure to properly propagate information between these
subdomains (Dryja and Widlund, 1989; Mandel, 1989). The method we propose here
combines these ideas with ideas from multigrid methods (Brandt, 1977; Hackbusch and
Trottenberg, 1982; Bank and Douglas, 1985; Rgnquist and Patera, 1987; Maday and Mufioz,
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1988), however, we believe the way these are combined is new, and suggests a new way of
inverting other elliptic operators as well.

The fact that the consistent pressure Poisson operator is an L? operator makes it harder
to invert than the standard (H') Laplace operator. A domain decomposition approach
yields a pressure operator which enforces no continuity conditions for the pressure across
subdomain interfaces, however, there still exists couplings between the subdomains via the
incompressibility enforcement. In the context of non-overlapping subdomains, the pressure
operator does not even have any shared interface nodes. Hence, there exists no natural
interface operator similar to the Schur complement associated with the standard discrete
Laplace operator, which again excludes an iterative substructuring approach (Bjsrstad and
Widlund, 1986), and the use of some of the recently developed interface preconditioners
(Chan and Keyes, 1989).

To illustrate the method we start with the pressure system derived using a domain
decomposition approach. As a particular example we use a spatial discretization based on
the spectral element method (Patera, 1984; Maday and Patera, 1989; Rgnquist, 1988), and
we shall in the following treat each element as one subdomain. The original pressure system
is then decomposed into two new pressure systems. The first set of equations is a consistent
global coarse system which serves the purpose of computing a global “skeleton” for the
solution, in our case, the constant pressure levels inside each element or subdomain. The
dimension of this system is small (equal to the number of subdomains), and is solved directly.
The second system is a consistent global set of equations for the difference between the final
solution and the global “skeleton”. In this respect the method is almost like a reversed
multigrid procedure in which the difference is computed from the coarse system rather than
the fine system (coarse grid correction). This second pressure system is solved iteratively
using block preconditioned conjugate gradient iteration (Golub and Van Loan, 1983).

A consequence of this type of decompostion is that the global coarse system inherits
the original boundary conditions, however, in the case of the the consistent pressure Pois-
son operator there is no pressure boundary conditions; the imposition of Dirichlet velocity
boundary conditions implicitly results in a Neumann operator for the pressure. Further-
more, since the second set of equations is associated with computing differencesin the nodal
solution values, it naturally suggests the use of a local decoupled preconditioner, resulting
in no communication cost associated with a parallel implementation.

The method described in this paper is quite general, and applies fo other elliptic
operators as well, e.g., the standard (H*') Laplace operator. Another application where
this method should prove useful is for non-conforming finite element methods (Strang,
1973; Anagunostou, Maday, Mavriplis, and Patera, 1989), in which case methods based on
interface operators become more complicated.

The paper is organized as follows. In Section 2 we briefly review the consistent spatial
discretization of the Stokes system based on variational forms, and explain the necessary
notation. In Section 3 we describe the method as applied to the discrete consistent pressure
Poisson operator, and in Section 4 and 5 we give some numerical results for the one- and
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two-dimensjonal case, which suggest that the number of iterations is independent of the
number of subdomains,

2 The Stokes and Navier-Stokes problems

We first consider the steady Stokes problem in d space dimensions: Find a velocity n and
a pressure p in a domain @ € R such that

—vAu+ Vp
V-.u

f in Q, ¢))]
0 in Q, @

subject to homogeneous Dirichlet velocity boundary conditions, u = 0, on the domain
boundary Q. Here u is the velocity, p is the pressure, f is the prescribed force and v is the
kinematic viscosity,

The equivalent variational formulation of (1)-(2) is: Find (u, p) in (X9, M) such that

#(Va,Vw) - (p,V.w) = (f,w) VYwe XY, )]
(V ‘u, Q) 0 Vge M, (4)

where the proper spaces for u and p such that (3)-(4) is well posed are (Brezzi, 1974; Girault
and Raviart, 1986)

X
M

i

H5(%) (5)
L3(Q) = IA(R) n {¢ € L¥(Q); /ﬂ $dQ = 0} )

Here L3() is the space of all functions which are square integrable over  with zero average,
while H}(f) is the space of all functions which are square integrable, whose derivatives
are also square integrable over Q, and which satisfy the homogeneous Dirichlet velocity
boundary conditions,

‘We consider here numerical approximations to the Stokes problem based on the vari-
ational form (3)-(4): Find (ws, pi) € (X§, M),) such that

#(Vur, Vo), — (o, V- W) = (£, W) Vw € X3, ]
(V.o = 0 Vg € My, ®)

where for each value of the parameter b, X3 € X and M, C M are compatible subspaces
of X and M (Brezzi, 1974; Babuska, 1971; Girault and Raviart, 1986; Bernardi, Maday
and Métivet, 1987) that approach X and M as the discretization parameter h goes to
zero. In (7)-(8) (,-)x and ((-,-))s denate evaluation of the continuous inner product (-,-)
by numerical quadrature (note however that the (-,-) and ((-,))s may be different).

Choosing appropriate (compatible) discrete spaces X and M), with associated bases,
we arrive at a set of algebraic equations given in matrix form as

AE;-Q,TI_) = EL7 i=1,..,d, (9)
Diw; = 0, (10)

t
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where 4 is the discrete Laplace operator (v = 1), B is the mass matrix, D = (Dy,...,03)
is the discrete gradient operator, and underscore refers to basis coefficients. In (9)-(10) we
agsume that the homogeneous boundary conditions are imposed by eliminating appropriate
rows and columns.

By employing a Uzawa decoupling procedure (block Gaussian elimination) to the saddle
Stokes system (9)-(10), we arrive at the following discretely equivalent pressure system

DA Dfp=-D;A7f,, (11)

which is well conditioned and can be solved efficiently by employing a global (nested)
iterative procedure (Maday, Meiron, Patera, and Rgnquist; 1991).

The extension to solve the full unsteady Navier-Stokes equations is done most efficiently
by combining the above spatial discretization with an operator splitting approach in time
(Maday, Patera, and Rgnquist, 1991). Such an approach requires, at each time step, the
solution of the following pressure system,

DB 'Dfp=g, (12)

where g is a vector representing the known (nodal) inhomogeneities. Unlike the steady
Stokes pressure operator in (11), the unsteady Stokes/Navier-Stokes pressure operator in
(12),

= :Qiﬂ-l-Qz’Ts (13)
is ill-conditioned. The operator E is, in fact, the consistent discrete pressure Poisson oper-
ator with a spectrum which scales roughly like the standard discrete Laplacian, 4

2.1 Spectral Element Discretization

In the following we limit our discussion to the conforming spectral element method (Patera
1984; Maday and Patera 1989; Rgnquisi 1988), in which the domain ( is broken up into K
disjoint subdomains,

= Uk, (14)
The approximation spaces (subspaces) can be expressed as
Xy = XnPyx(f) (15)
My = MnNPy_gk(R), (16)
where
Py x() = {® € 1*(Q); 31, € Pv()k =1,..,K}, (1)

and Py () denotes the space of all polynomials of degree less than or equal to N in each
spatial direction. We refer to Maday, Patera and Renquist {1987), and Bernardi, Maday
and Métivet (1987) for a justification of the choice of discrete spaces. By choosing different
polynomial degrees for the velociy and pressure, the main conclusions from the theoretical
analysis can be summarized as: (i) the discrete solution is unique, that is, there exist no



ELLIPTIC BOUNDARY VALUE PROBLEMS 549

spurious pressure modes, and (ii) spectral convergence is obtained as the polynomial degree,
N, is increased for fixed number of elements (or subdomains), K.

In order to arrive at (9)-(10) we also need to choose appropriate bases for X; and My,
in (7)-(8). Within each element Q¥ we express the velocity and pressure in terms of high-
order Lagrangian interpolants through the tensor-product Gauss-Lobatto and Gauss points,
respectively, The inner-products in (7)-(8) are evaluated using Gauss numerical quadrature
(Davis and Rabinowitz, 1985), Gauss Legendre for ((:,-))s and Gauss-Lobatto Legendre for
(+)n. Choosing appropriate test functions we arrive at a set of algebraic equations of the
form (9)-(10).

3 Domain decompostion pressure solver

The discrete pseudo Laplace operator E is more difficult to invert iteratively than the stan-
dard discrete Laplace operator A. This is mainly due to the fact that E is a discrete version
of a mixed L2/H-operator in the sense that the pressure p € L3(Q2), while the velocity
u € (H}(R))?, and that both the compatible subspaces X; and M, are needed in order
to define E. A pressure p € L%(Q) also implies that no pressure boundary conditions are
imposed; the imposition of homogeneous Dirichlet velocity boundary conditions implicitly
results in a Neumann operator for the pressure. A consequence of this is that the discrete
system (12) is singular (the pressure is determined only up to a constant), and hence, for
solvability, the right-hand-side g must be orthogonal with respect to the constant vector
(Tg=0).

The fact that p € L3(R2) also implies the complete lack of a natural interface operator
similar to the Schur complement associated with the standard (H') discrete Laplace opera-
tor, A, which excludes an iterative substructuring approach (Bjgrstad and Widlund, 1986),
and the use of some of the recently developed interface preconditioners {(Chan and Keyes,
1989). Note however that, although the pressure p € L?, the resulting discrete pressure
system (12) still couples subdomains via the incompressibility enforcement.

We will now describe a method to invert E which employs the following key ingredients:

¢ domain decomposition
¢ a global coarse system to take care of long-range interactions (solved directly).

¢ aglobal fine system to solve for the difference between the final solution and the global
“gkeleton” solution (solved iteratively).

o a local decoupled preconditioning system (solved directly and independently on each
subdomain).

Although the technique here is applied to the discrete (L?) pressure operator, the idea is
more general and can be applied to other elliptic (Z? or H*) operators as well. A more
complete description and analysis is given in Rgnquist (1991).
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The objective here is to develop a solver for the system

Ep=g (18)

where g is a known inhomogeneity; this solver can then be used to solve (12) at each
time step, We take a function decomposition approach in which we decompose the finite-
dimensional pressure space M), into two disjoint parts, i.e., we search for a solution

Ph = Pho + PuN € My = My o ® Myn (19)
where
Mo = L3(2)NPox(®) (20)
My = Lip(Q)NPn_2k(Q) (21)
and
L) ={se () k=1,.,K} (22)

With this decomposition we can develop an efficient solver which has two main parts.
One part is used to find a py g € My, ¢ in order to establish a global “skeleton” for the solution,
consisting of finding the constant pressure levels inside all the elements or subdomains. The
other part is used to compute a local variation ppny € My n around this skeleton, where
local means on an elemental or subdomain level. The final solution pp = pro + pav is
then found by an interaction of these two parts, involving both iterative and direct solution
techniques.

We proceed by writing (18) as

E(EN + 120) =9, (23)

where p,, are the nodal values associated with ppn, and p, is a vector containing the
pressure levels inside all the elements. The operator [ is an interpolation operator which
expresses these constant pressure levels in terms of the basis for M;. Nofe that

dim(M,) = KV -1)¢-1 (24)
dim(Mun) = KN -1)°-K (25)

while
dim(Mpo) =K -1 . (26)

We can now derive the set of equations for the pressure levels p; by multiplying (23)
from the left by J7, to arrive at

Eopp=¢, > 27
where

E,=IEL (28)
and

=1 (g - Epy)- (29)
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Note that in deriving the coarse system (27) we still keep u, € X¢. In Rgnquist (1991) it
is shown how the the matrix E, can be derived in a much more efficient way than is done
in (28).

By formally solving (27) for p, and substituting the result into (23), we can also derive
the set of equations for p,,

Enpy =9y > (30)
where
Ey=E~ELE;'I'E, (31)
and
gy=9-ELE'"g. (32)

The algorithm now works as follows. First, we form the right-hand-side g,, in (32),
involving a single inversion of of the coarse pressure operator E;. We then proceed with
solving (30) for p,, using preconditioned conjugate gradient iteration (see below). From
(31) we note that each conjugate gradient iteration also requires the inversion of the coarse
pressure operator. Once the solution Py has been computed, the right-hand-side g, for the
coarse pressure system is computed from (29), and p, is found by solving (27) using a direct
solver,

3.1 Solvability

As mentioned earlier the original pressure operator E in (18) has one zero eigenvalue cor-
responding to the hydrostatic mode (constant eigenvector). After the decompostion (19)
this mode will be inherited by the coarse pressure operator Ey in (27), which can easily be
verified by multiplying (26) from the left by 17 and using the symmetry property of E.
Due to the decompostion (19) the dimension of the nullspace for Ey will be K, the
number of subdomains, This can be verified by multiplying (30) from the left by IT. Hence,
the corresponding eigenvectors are the vectors which are nnity within one subdomain and
are zero in all the other subdomains. In order to ensure convergence in the conjugate
gradient iteration we must make sure that the residual stays orthogonal to this nullspace.

3.2 Additional remarks

In practice, the nullspace of Ey also allows us to construct a block(E) preconditioner con-
sisting of the elemental local E-matrices, effectively corresponding to imposing homogenous
Dirichlet velocity boundary conditions on all the external and internal elemental (or subdo-
main) interfaces. Each of the local E-matrices will therefore be a local Neumann operator,

and
ker(block(E)) = ker(Ey) . (33)

We now make several comments regarding this approach. First, the fact that we are
able to use a decoupled block(E) preconditioner, suggests the use of a direct solver (or
any fast elemental solver) for the preconditioner, implying that (for fixed geometry) only
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elemental back-substitutions are necessary in order to perform a preconditioning step (one
per conjugate gradient iteration). This preconditioning step is also readily parallelizable
as it involves no communication between the subdomains. Due to the decomposition (19)
the block(E) preconditioner is spectrally close to Ep, and preliminary numerical results
suggests that the convergence rate for the system (30) is independent of the number of
elements K.

Second, in solving (30), the computational cost per conjugate gradient iteration is
essentially the cost to compute a matrix-vector product Enpy, which is roughly twice
the cost to perform a matrix-vector product Ep, see (31). Hence, using tensor-product
sum-factorization techniques (Orszag, 1980), the cost per iteration scales like KN+ in
R

Third, the inversion of E; in (27) and (31)-(32) can be done efficiently by emplying
a direct solver due to the relatively small dimension of this system (E, € RE*K), For a
fixed geometry this inversion is done during the initialization, and only back substitutions
are required during the transient simulation.

Finally, although we here only consider 2 domain decompostion resulting from a spec-
tral element discretization, the approach is equally applicable to other types of discretiza-
tions and other elliptic operators as well.

4 One-dimensional results

We consider here the spectrum and condition number of the discrete pressure operators L,
Epn, and Ey in the one-dimensional case. The domain is @ =]—1,1[, which is broken up into
K spectral elements (or subdomains), each of order N. Homogeneous velocity boundary
conditions, 4 = 0, are imposed at 2 = &1,

We first compute the eigenvalues of the pressure operators with respect to the mass
matrix B asscociated with the pressure mesh (unpreconditioned case),

ﬂx; = ASE& 3= 1,00, K(N - 2) ’ (34)
.ENZ(_J = ’\j_-é&j yIi=1.., K(N - 2) » (35)
Eox, = MBox, Sk=1..K. (36)

In Fig. 1 we plot all the non-zero eigenvalues for a spectral element discretization K = 10,
N = 6, recalling that E and E; each has an additional zero eigenvalue (hydrostatic mode),
and Ex has an additional K zero eigenvalues. We note that the part of the specirum of
E which is associated with the low wavenumbers roughly coincides with the spectrum of
the coarse pressure operator E,, while the spectrum of Ey is clustered with a condition
number which is much smaller than for the original pressure operator, E. Due to the small
dimension of the coarse pressure system, the decompostion (19) allows for a very efficient
way of removing the low wavenumber error components, and in this respect is similar to a
multigrid-like procedure,
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Figure 1: The spectra for the one-dimensional discreté pressure operators E (Q), Eg (4),
and Ey (O0) with respect to the mass matrix (unpreconditioned case), for a spectral element
discretization K = 10 and N = 6.
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Figure 2: The condition number for the one-dimensional discrete pressure operators E (Q),

Ey (), and Ep (O0) with respect to the mass matrix (unpreconditioned case) as a function

of the number of spectral elements, K, each of fixed order N = 6. The condition number

for By preconditioned with block(E) is also plotted (W).

In Fig. 2 we plot the condition number of E, Ey, and E, as a function of the number
of subdomains, K. Similar to the standard (H!) discrete Laplace operator, the condition
number of F and E; with respect to the mass matrix (unpreconditioned case) scales like
K?. Note, however, that the condition number of En with respect to the mass matrix
(unpreconditioned case) is a constant which depends only on the order N of each element.
We also plot the condition number of Ey with respect to block(E) (preconditioned case)
in order to demonstrate that the local decoupled preconditioner block(E) suggested by our
domain decompostion approach is sufficient to reduce this condition number to unity, and
thus allow for perfect preconditioning in the one-dimensional case.
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5 Multi-dimensional results

We now consider an unsteady Stokes calculation in a two-dimensional domain § =] —1,1[?
with homogeneous Dirichlet velocity boundary conditions, kinematic viscosity » = 0.1, and
a body force f = (fz, f,)¥ = (~0.6y,0)7, which mimic a natural convection problem in a
square cavity, The domain is broken up into K similar quadrilateral elements, each of order
N. The time step is At = 0.1. All the two-dimensional calculations were performed on an
Intel i860 hypercube.

In Table 1 we show the number of preconditioned conjugate gradient iterations required
in order to reduce the initial pressure residual with 5 orders of magnitude when solving the
system (30) (the first time step). We give the number of iterations for different number of
subdomains K, each of fixed order N = 7, For completeness we also give the fotal number
of pressure degrees-of-freedom. The numerical results suggest that the convergence rate is
independent of K,

Table 1
K | No. iterations | No, pressure d.o.f.
4 25 100
16 25 400
64 28 1600
144 28 3600

Next, we repeat the last experiment, but now keeping the number of subdomains {or
spectral elements) fixed to K = 16, while varying the order of the elements, N. From Table
2 we see that the number of preconditioned conjugate gradient iterations increases with N,
and the growth rate is approximately linear. This dependence is due to the simple form of
our preconditioner which consists of independent local Neumann operators, and thus does
not correctly account for the modes along inter-elemental boundaries.

Table 2
N | No. iterations | No. iterations/N
5 17 3.4
7 25 3.6
9 31 3.4
1 35 3.2
13 40 3.1
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