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A Multiblock Multigrid Solution Procedure for
Multielement Airfoils
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Abstract. A block-structured grid formulation is presented and discussed. The compress-
ible Euler equations are solved on the decomposed domain with a multigrid method based on
Runge-Kutta time stepping and centered spatial differencing.- The flexibility of the multiblock
approach is demonstrated by computing low speed inviscid flow over two different multiele-
ment airfoil configurations.

introduction. In the past few years substantial progress has been made in the devel-
opment of effective algorithms for solving the Euler and Navier-Stokes equations. Yet the
generation of an appropriate grid on which to compute the flow over complex aerodynamic
configurations continues to be a major obstacle. One approach for resolving this problem is
the use of block-structured grids. With this method the domain is partitioned into a number of
subdomains or blocks. The blocks are generally determined so as to allow the construction of a
body-fitted grid, having as much regularity as possible, around each component of the config-
uration being considered. Such grids facilitate the implementation of boundary conditions and
the resolution of the flow field near the body. The flow solver is applied to each block, and the
blocks communicate at the interface boundaries. If the block interface boundarics are treated
appropriately, then they are transparent to the numerical scheme, and the scheme behaves the
same as it does for a single-block formulation. This domain decomposition approach permits
a single computer program to be used for computing the flow over a wide variety of complex
geometries, without requiring modifications in the program for each new configuration.

In this paper we consider a block-structured grid for calculating the inviscid flow over
multielement airfoil configurations. A combination of algebraic and hyperbolic grid generation
techniques is employed to construct the grid in the domain. Although we enforce Cyy continuity
of the mesh lines at the interface boundaries, the present computational technique allows the
number of mesh intervals at the intersection of adjacent blocks to be different. This provides
greater flexibility in generating regular grids as well as a capability to introduce local mesh
refinement. Moreover, the framework exists so that one can easily remove the requirement
of Cp continuity. The compressible Euler equations are solved in each subdomain with a
multigrid method. An explicit Runge-Kutta scheme is the driver of the multigrid method.
Spatial derivatives are approximated with a cell-centered, finite-volume method.
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Numerical Method.  The spatial derivatives in the time-dependent Euler equations
are approximated with central differences. A cell-centered, finite-volume technique, which
is described in (Swanson, 1991), is used to obtain the spatial discretization. For sufficiently
smooth meshes the discretization is second-order accurate. Adaptive numerical dissipation tenms
are appended to the resulting semidiscrete formulation. These terms, which are a blending of
second and fourth differences, are included to provide shock capturing capability and to give
the necessary background dissipation for convergence. In smooth regions of a flow ficld the
dissipation terms are third order. Additional discussion of the numerical dissipation is given
in (Swanson, 1987). The semidiscrete equations are integrated in time with a modified five
stage explicit Runge-Kutta scheme presented in (Jameson, 1985). On the first, third, and fifth
stages there is a weighted evaluation of the dissipation terms, which results in a good parabolic
stability limit. The decoupling of the temporal and spatial discretizations makes the scheme
amenable to convergence acceleration techniques, which are very beneficial in the computation
of steady flows.

Three techniques are employed to accelerate convergence to steady state, The first one
is local time stepping, where the solution at any point in the domain is advanced at the
maximum time step allowed by stability. This results in faster signal propagation, and thus,
faster convergence. The second technique is variable coefficient implicit residual smoothing. Tt
can be regarded as simply a mathematical step applied after each Runge-Kutta stage to extend
the local stability range. The third technique is multigrid. A multigrid method involves the
application of a sequence of meshes to a discrete problem to accelerate convergence of the time-
stepping scheme. Successively coarser meshes can be generated by starting with the desired fine
mesh and eliminating every other mesh line in each coordinate direction. An eguivalent fine
grid problem is defined on each coarse grid. Appropriate operators are introduced to transfer
information between the meshes. In the method applied here a fixed W-type cycle is used
to execute the muliigrid strategy. The efficiency of the multigrid process depends strongly
upon effective high frequency damping characteristics of the driving scheme, Such damping
behavior is provided by the five stage Runge-Kutta scheme. The good smoothing of the highest
frequencies on the coarser meshes allows rapid removal of the Jow frequency errors in the
fine grid solution. There are two additional advantages of the multigrid method. First, less
computational effort is required on the coarser meshes. Second, information is propagated
faster on the coarser meshes due 1o larger allowable time steps. To provide a well conditioned
initial solution, a Full Multigrid (FMG) method is used.

Grid Generatlon and Multlblock Strategy. For a multielement airfoil configuration,
we construct a C-type boundary curve around each airfoil element, which defines the blocks
of the domain (see Figure 1). We also prescribe grid point distributions along these boundary
curves and the surfaces of the airfoils, An algebraic grid generation procedure, which is based
on transfinite interpolation, is used to determine the interior grid lines. To generate the remaining
portion of the grid, the outer boundary curve of the entire configuration is defined as an inital
data surface for a hyperbolic grid generator. The C-type topology for the airfoil elements
facilitates good resolution in the leading edge region, which is needed to properly capture the
leading edge suction peak. Embedding C-type grids in a global mesh does produce singular
points in the flow field. In general, one must ensure that these singular points do not occur too
close to the leading edge of an airfoil element, since this can cause significant deterioration in
the accuracy of the-stagnation flow prediction. Such a loss in accuracy would give an incorrect
prediction of the lift of the element.
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Figure 1 Block Structure for Karman-Trefftz Airfoil with a Flap.

Although we have obtained fairly reasonable grids with the process just described, we have
imposed constraints in the present work that do limit the quality of the grid. These constraints
are as follows: 1) use as few blocks as possible, 2) apply simple interface condition (i.e.,
Cp continuity). &t should be emphasized that these conditions were introduced to facilitate
development and keep computational time as small as possible, and they are not inherent to
the multiblock method.

At this point we briefly outline the solution strategy with the block-structured grids. Each
block includes two additional or auxiliary cells normal to its boundaries. These auxiliary cells
are required to treat the fourth difference numerical dissipation in the same manner as it is in the
interior of the domain. The solution procedure is as follows. First, we calculate auxiliary cell
flow quantities for a given block from values existing in adjoining blocks. Then the solution
is updated in the given block, and the convective flux across each cell face at an interface
boundary is stored. The stored fluxes are used in the boundary conditions for the next block to
be considered. This strategy is equivalent to computing auxiliary cell information directly from
the adjacent block if Cy continuity exist at the interface. Also, it guarantees conservation across
interface boundaries when grid refinement is applied. The solution in all blocks is updated at a
given stage of the Runge-Kutta scheme before moving on to the next stage; and thus, there is no
time lag between the blocks. This also means that all blocks are updated at a given multigrid
level before going to the next muliigrid level, which minimizes the effect of the multiblock
strategy on the multigrid performance.

Results. The first case considered is that of flow over a Karman-Treffiz airfoil with a
flap. An incompressible analytical solution exists for this case (Williams, 1973) and can be
used for comparison purposes. The computational domain was broken up into three blocks, as
shown in Figure 1. The first block is a C-grid around the flap, the second is a C-grid around
the main airfoil, and the third is a C-grid around both elements. Figures 2 and 3 show a portion
of the computational grid. The computed surface pressures for this case, which was run at a
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Figure 2 Grid for Karman-Trefftz Airfoil with a Flap.
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Figure 3 Detail of Flap Area.

free-stream Mach number of 0.125 and zero degrees angle of attack, are compared with the
exact solution in Figure 4. Good agreement between the solutions can be seen in this figure, as
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Figure 4 Comparison of Computed Surface Pressures
with the Incompressible Analytic Solution.

well as in a comparison of total lift and drag for the configuration, which is presented in Table
1. Table 1 also includes results from a highly adapted unstructured grid calculation (Mavriplis,
1990). Finally, the convergence history for this calculation is shown in Figures 5.

Scheme Cl Cd
Multiblock 2.0297 -0.0001
Unstrucured 2.0362 -0.0016
Analytical
Incompressible 2.0281 -0.0001
Solution

Table 1. Comparison of lift and drag for Karman-Trefftz configuration,
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Figure 5 Convergence History for Karman-Treffiz Configuration.

The block structure for the second test case, flow over a three element airfoil, is shown
in Figure 6. As before, a C-grid is constructed around each clement, and a final C-grid is

BLOCK 3 (432x16) BLOCK 2 (384x16)

BLOCK 1 (288x16)

Figure 6 Block Structure for 3-Element Configuration.

positioned around the overall configuration. Notice, however, that the grid around the lower
surface of the main element does not extend to the farfield boundary, but instead joins to the
outer boundary of the grid around the center element. Figures 7 and 8 detail a portion of the
computational grid. The flow conditions for this case are a free-stream Mach number of 0.20
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Figure 7 Grid for 3-Element Configuration.
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Figure 8 Detail of Grid in Flap Region.

and an angle of attack of 8 degrees. Figure 9 shows a comparison of the computed surface
pressures with those obtained by solving the full potential equation (Mavriplis, 1990). Even
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Figure 9 Comparison of Computed Surface Pressures
with Full Potential Solution for 3-Element Configuration.

though there is some nonregularity in the grid, the convergence history for this case is similar
1o the one shown for the two-clement airfoil.

Concluding Remarks. A multiblock formulation has been combined with a multigrid
method to produce a versatile solver for the Euler equations. Low speed flow around two- and
three-element airfoil configurations has been computed. The predicted pressure distributions in
both cases have compared well with exact or highly resolved potential flow solutions, Good
convergence behavior has been obtained for each problem.
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