CHAPTER 53

A Multidomain Spectral Collocation Solver for the
Elasticity Problemj

Elena Zampieri*

Abstract

We present two different domain decomposition algorithms for the spectral col-
location approximation to the two-dimensional system of linear elasticity. Single
and multidomain iterative procedures are effectively combined with finite element
preconditioning,.

1. Introduction.

In recent years there has been a considerable development in domain decomposi-
tion methods for the numerical approximation of partial differential equations in
the framework of finite differences, finite elements and spectral methods. Several
reasons underly the diffused interest in these techniques. Among others, we mention
the possibility of defining effective algorithms for parallel implementations. More-
over, these methods are very convenient in order to handle complex geometries, non
smooth solutions, or equations containing different parameters in different regions of
the physical domain.These methods have concerned various fields of applications:
structural mechanics, fluid-dynamics, aerodynamics. Here we consider a domain
decomposition method for spectral collocation approximations to the linear elas-
ticity problem. For the same kind of problem, domain decomposition techniques
in the framework of finite element methods have been recently developed, e.g. in

(11,[71,(5],(10].
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In section 2 we formulate a multidomain problem in which the physical domain
) is partitioned into two non-intersecting subdomains, §}; and 2;. For the sake
of simplicity, we deal with the case of two subdomains, but the discussion can be
generalized to the case of several subregions.

In section 3 we introduce the spectral approximation to the multidomain problem.
This consists of enforcing the equilibrium equations at the interior Gaussian nodes
of each ;. Furthermore the boundary conditions are imposed at the nodes of
the physical boundary. Finally the transmission conditious (the continuity of the
displacements and of the normal stresses), are asked to be satisfied at the collocation
points of the common interface.

In the last two sections we propose two iterative methods to achieve the solution to.
the multidomain spectral problem.

In section 4 we generalize the Dirichlet/Neumann method to the case of the elasticity
problem (e.g. [1], [12]). Each local subproblem in §; is solved by gradient-like inner
iterations with a local finite element preconditioner defined by the finite element
matrix of the elasticity system involving the Gaussian grid in ;. ‘
In section 5 we define a global finite element preconditioner, associated to the grid
of all collocation nodes in 2, and define an iterative procedure for the global pre-
conditioner. Each step consists of evaluating the residual of the spectral system in
each €;, and then in solving a finite element problem for the global domain. The
latter task can be accomplished, e.g., by a finite element domain decomposition
approach as, e.g., in [15].

We also present some numerical results concerning the convergence’s properties of
the two methods. In particular, we show that the rate of convergence of both
schemes is independent of the number of collocation nodes in each ;.

2. The linear elasticity problem and its domain decomposition formula-
tion.

Let us consider an elastic body B occupying the domain © C IR?, whose boundary
99 is decomposed into two parts I'y and I'p. Let f = (fi, f2) be a surface load
on  and g = (g1,¢2) a boundary load on I'y. We assume that B is fixed along
the boundary I'p. We denote by u = (u;,u2) the displacement and by g =(o;)(u)
the stress tensor. We also introduce the deformation e(u) = (¢;;(u)) (strain tensor)
associated with u

1,0u; auj ..
(21) G,‘j(u) = 5(5}: —6-:?,.)’ $,7=1,2

The constitutive relation (Hooke’s law) holds between the stresses and the defor-
mations:

(2.2) Ugj(u) = A diva 5,'3' + e,-j(u), ,j =1,2

The positive constants A and p can be expressed as:

Ne Ev =___E___
= oa-zy " 1vv
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where E is the modulus of elasticity (Young modulus) and v is the contraction ratio
(Poisson ratio) of the elastic material of the body B. Furthermore we introduce the
equilibrinm equations:

2 80,-,-(u)

(2.3) (Lu); = — o

Zf,' n Q, ’&=1,2
J=1

together with the following boundary conditions:

(2.4) (Bu); =Y oi(wnj =g onTy, i=1,2
u=20 onI'p

Here n = (n;) denotes the outward unit normal to I'. We can also give a variational
formulation of the elasticity problem:
find u € V such that:

2
25)  a(u,v)= /Q (A divu divv + 5 ¥ ei5(w)ess(v)) do = F(v), Vv € V

t,j=1

where

(2.6) F(v)= i:/gf,v, dz + 22: [w giv; ds

i=1 =1

and V ={ve[HQ))P:v=00nTp}.

We consider a decomposition of ) into two non intersecting subdomains ; and
Qy (thus O=0UQand &, NQ, = 0); we denote by ' = 8Qy N Qs the
common interface between the two subdomains and by nr the unit normal vector
on T directed from ; to £,.

I u;,4 = 1,2, is the restriction of u to the subdomain ;, problem (2.3) — (2.4) can
be written in the following multidomain equivalent form:

Lu;=f inQ, i=1,2

Bu; =g on TnyNoQ;, i=1,2
2.7) u;=0 on TpnaQ, i=1,2

n = Ug onT

i oki(u)(nr)j = Loy oj()(nr); on T, k=1,2

Let V() be the space of functions of H({;) vanishing on {TUT'p} N 8%;, and
let Vr be the set of functions defined on I', which are traces of functions of V. The
variational counterpart of problem (2.7) reads as:

u; € [HY(Q))%,u; =00n 82 NTp, i =1,2

(2.8) a;(u;,v) = %izz fn; fivi dz + 22'=1 fr,,nan.- gjv; ds, Vv € [VH(%)P?
Uy = g on

Z?:l ai(u;, wi) = E?:—-l fﬂ,- E?:l fJ(Wr}J dz, Vw € Vp
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where a;(-, -) is the restriction of a(-,-) to Q;, , w* € V is any continuous extension
of w to Q such that Bw = 0 on 'y, and w} is the restriction of w* to ;.

3. Spectral collocation approximation.

A numerical approximation by the spectral collocation method consists of impos-
ing the equilibrium equations at Gaussian points internal to €2; and enforcing the
interface and boundary conditions at some selected points of 9Q2;. We confine our-
selves to the case of a plane rectangular domain 2, partitioned into two rectangles
Q;. Let D be the reference domain (—1,1)? and let (N, N,) be a couple of nat-
ural numbers. Hereafter we denote by N the common value of N, and N,.The
Legendre-Gauss-Lobatto collocation points in D are the roots {{im,0 < kb, < N}
of the polynomial

7] 0
— 221 — 4% )— —
(1 =21 - )5 Ln(e) 5 B (o)
where Lg(t) is the k-th Legendre polynomial in [~1,1]. Moreover we denote by

(3-1) C; = {(z},ym),0 < k,m < N} fori=1,2

the set of collocation points of Q; which are the images of the Legendre points in
D, through the linear transformation that maps D into ;.
For the sake of simplicity we also set:

(32) CM=0CinQ, C'=CindQ, CT =C\(C™uc?), i=1,2.

We denote by PP x(Q;) the space of polynomials of degree N in each direction, and
by IPn(T) the space of polynomials of degree N on T, vanishing at the endpoints
of I'. Finally {(w},wm), 0 < k,m < N} are the Legendre-Gauss-Lobatto discrete
weights in Q; (e.g,[4],[2]).

We can now introduce the spectral collocation approximation to problem (2.7). For
simplicity of notation we assume I'y = §. The spectral solutions u; y € Pn(:) ®
Pn(Q:), i = 1,2 verify:

Lu;y=f inCi"i=1,2
un =0 in Cf’ 1=1,2
3:3) W, N = Ug,N in CF
Buy y — Buy y = —(Luy v — f)w™ — (Lug y — ot in CT
Here we have set w™ = wl, wt = w§.

Obvious generalizations apply for the case of a nonhomogeneous Dirichlet data
and/or when Ty # 0.

Remark 3.1 Note that at each interface collocation point the jump of the normal
stresses balances a suitable linear combination of the residual of the equilibrium
equations from both sides. This matching condition makes the above collocation
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scheme equivalent to a Galerkin approximation to (2.8) with Gauss-Lobatto quadra-
tures, i.e.,for which the integrals are replaced by Gauss-Lobatto quadrature formu-
las and the bilinear forms a;(-,-) are substituted by discrete forms, in which the
integrals are still approximated by the same quadrature formulas.

It can be proven that there exists a unique solution to the multidomain problem
which is stable, in the energy norm, with respect to N. Furthermore, by generalizing
a proof carried out for Laplace equation, it is possible to give a convergence estimate
(see [2], Ch. XIII). Precisely, it can be proven that the error u; v — u; can be
bounded in the energy norm by CN~%, where C is a constant independent of N,
provided that u; € H*¥1(§,) for some s > 1,7 =1,2.

We report now some numerical results showing the spectral accuracy of approxi-
mation (3.3). The computational domain is = (0,2) x (0,2) and the boundary
9Q is split up into two pieces: I'p = [0,2] x {0,2} and 'y = {0,2} x (0,2). The
material’s parameters E and » are such that both the constants X and p are equal
to 1. The data f and g of the problem are chosen in order that the two components
of the exact solution to (2.3)-(2.4) be:

ui(z,y) = —sin(wy) + cos(wz)sin(my)

(yly-2) <15
uz(z,y) = { 3[;2(yx - 15)*y%/4 + y(y — 2) ; > 15

with a > 2, where the larger is @, the smoother is u,.In figure 3.1 we compare the
spectral accuracy of the single domain with that of the two-domain scheme (with
interface I' = {1.5} x (0,2)) for two choices of the real parameter a. We show
the logarithm of Err(u), the relative error between the spectral solution and the
exact solution (evaluated in the discrete maximum norm), as a function of the total
number of degrees of freedom (d.o.f.) that are used in .

01

Log(Err(u))
24
4-

51 ~—®— alpha=2 1-domain

—&— alpha=4 1-domain

—O0— alpha=2 2-domains

-84 =% alpha=4 2-domains
-107

.12 v - v x r - ,
0 500 1000 1560 2000 2500 3000 3500

d.of.

Fig.3.1 Single versus two-domain spectral accuracy.
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Remark 3.2 In the limit case o = 2, the corresponding surface load f is discon-
tinuous at ¢ = 1.5.In this situation, which is of remarkable interest in practical
applications, the single domain spectral approximation does not converge monoton-
ically to u as N goes to infinity. If we instead use a domain decomposition partition
in which the interface is set at the discontinuity point z = 1.5, numerical results
show that the rate of convergence of the error u; y — u; is now as fast as 1/NZ2.

4. A generalized Dirichlet/Neumann method for the solution of the
multidomain spectral problem.

The solution to problem (3.3) can be determined as the limit of a sequence of poly-
nomials u?y : Q; — R,7 = 1,2 which are obtained by solving Legendre collocation
boundary—value problems in Ql and (2,.This iterative procedure is a generalization
to the case of the elasticity problem of the Dirichlet/Neumann method formerly
introduced for the Poisson equation (e.g. [1], [8], [12]). According to this technique,
the transmission conditions at the interface points CT are attributed partly to €
(the continuity of the solution) and partly to Q» (the continuity of the normal stress
in the variational fashion emphasized in Remark 3.1). The iterative procedure reads
as follows: for a given d° € IPy(T") ® IPy(T") we look for a sequence uy,t=1,2
satisfying:

Luty=f inCim

(4.1) my=0 inC}
my=d* in ct

Lujy=f in C4r
(42) uzny =0 in C3
Buf,y - Buj y = —(Luf y — fjw” — (Luf y — Ot in C

where, for n > 2 d” is given by the recursive relation:
(4.3) d” = e,,ug’;,l{p +(1- (9,,)(:1”_:l

Here 6, is a relaxation parameter which is computed at each step in order to speed
up the convergence of the algorithm. -

Remark 4.1 The proof of the convergence of the iterative scheme (4.1)-(4.3)
can be carried out through a classical technique (e.g., [13]), by checking that the
spectral extension operators in €y and {2, are uniformly equivalent one another
independently of N. Precisely, for a given d € IPn(T'), the solutions w; n,7 = 1,2
to the collocation problems

LWi,N =0 in Ciint
(4.4) win=0 in C?

w;yn=d in CY
must have equivalent energy norms. Then convergence can be obtained by follow-
ing a technique similar to the one introduced in [12] for the multidomain spectral
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approximation of the Poisson problem.Moreover, as the equivalence holds with con-
stants independent of NV, it follows that it is possible to choose 8, in a way that the
rate of convergence of the iterative procedure is still independent of N.

We present now some numerical examples concerning the convergence of the scheme

(4.1)-(4.3). We set

- -1
| uf ny =iy lleor U5 N — 3N lloor

| us N floo,r ’ I uz N floo,r

(4.4) E(n) = maz{

where || V [|oo,r= maz{|v(P)|,P € CT}. In table 4.1 we report the minimum value
of n requested in order to satisfy E(n) < 1078, for different choices of the poly-
nomial degree N. These results show that the rate of convergence of the iterative
scheme does not deteriorate when the degrees of the polynomial N increase in each
subdomain.This theoretical property was emphasized in Remark 4.1.

N a=2 a=4
8 22 19
16 22 20
24 24 18
32 24 20

Tab.4.1 Convergence with respect to N, for the multidomain scheme (4.1)-(4.8) .
5. Local and global finite element preconditioners.

The multidomain formulation allows the reduction of the original problem to a
sequence of problems of similar type but with smaller size in every subdomain.
The latter can be faced by monodomain spectral solvers. At each step of the
Dirichlet /Neumann scheme we must solve two linear systems of the following type:

(5.1) L,-,Nu:N =F, ¢t=12,Vn2>0

where L; y, ¢ = 1,2, is the symmetric pseudospectral matrix including the equilib-
rium equations and the boundary conditions associated to the subdomain Q;. These
matrices are ill-conditioned, as their condition number grows as N*.Therefore a pre-
conditioned iterative procedure is mandatory for solving the linear system. Here we
use a finite element preconditioning . For this purpose, we introduce the piecewise
bilinear finite elements approximation associated with the grid of Gauss-Lobatto-
Legendre points in each subdomain,and we denote by S;; and M, ;, respectively,
the Stiffness and Mass matrix. In the case of a pure Dirichlet boundary value prob-
lem (e.g., this is the case of problem (5.1) if I'y = #), the preconditioning finite
element matrix is M, S; . When Neumann (or mixed) boundary conditions are
enforced, the preconditioner needs to be slightly changed as it must also account for
one dimensional mass matrices related to the edges. In all cases, the preconditioned
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matrix has a condition number independent of N. The preconditioned system is
then solved by gradient-like iterative procedures. We refer to [14] for further details
and numerical results.

This preconditioning technique suggests to define a new method in order to solve
the multidomain spectral system (3.3).This generalizes an idea presented in [3] for
Poisson equations. We define a global finite element preconditioner in which the
stiffness and mass matrices S, and M), are referred to the global grid of collocation
nodes Cy U C,. The corresponding iterative procedure reads as follows:

(5.2) Sp(uyt! —u}) =w. My RY
where u}le, = uly, i =1,2, and

0 in Cf
(8.3) Ry={f—Lu;n in Ci*
(f—Luy y)w™ +(f - Lug n)w* ~ (Bu; v — Buy ) in ct

When convergence is achieved, this method provides the solution to (3.3) as well
as the first multidomain approach outlined in (4.1)-(4.3). At each step of (5.2)
we need to evaluate the spectral residuals in each ;,which can be advantageously
accomplished on parallel processors. Furthermore, we need to solve a finite element
problem on the physical domain Q.This can be carried out, for instance, by applying
a finite element multidomain technique (e.g. {15]).
We present now an example showing the convergence of the global finite element
preconditioner for the same numerical problem described in sect.3. In figure 5.1 we
plot the logarithm of the discrete L2 norm of the preconditioned residual S;, * M Ry,
versus the number of iterations, for different choices of the polynomial degree N,
0
Log(res)

2

-3

_10 T T -3
0 5 10 Tieration number‘s

Fig.5.1 Convergence history for global Richardson iterations.
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fixed & = 4. The results show that the rate of convergence of algorithm (5.2) is
extremely fast and practically independent of the number of collocation points in
each ;.

The last example we present is the application of the two domain decomposition
methods to a partition of Q in which the material parameters £ and v have different
values in the two subdomains. We define E; = Elg,; and v; = v|g,. This is a case
of practical interest in structural mechanics (e.g., multi-layered problems).

The problem is (2.3)-(2.4), in = (0, 2)?, with interface I' = {1} x (0,2), f = 0; we
consider Dirichlet boundary conditions u = ® on the whole boundary 92, where
the two components of ® are: ”

®4(z,y) = sin (2nz) cos (47y)
®y(z,y) = cos ( wz) sin (6my)

In tables 5.1 and 5.2 we report the minimum number of iterations requested in order
to obtain convergence for the two schemes, fixed N; = N, = 24 in each subdomain.
Precisely, we require E(n) < 1072 for the Dirichlet/Neumann scheme (4.1)-(4.3)
([DN)), and || S; 'MuRY ||2,a< 1078 for the global finite element preconditioned
method (5.2) ([GP]), where || - ||2,4 denotes the discrete L%-norm.

In table 5.1 we report the rate of convergence for different values of the Young
modulus E; in Q;. We fix E; = 100,11 = v, = 0.25.

E/E, | 0 1 5 10 | 30 | 60 | 9 | 100
DN 8 18 | 28 | 30 | 3 | 3 | 3w | ¥
GP 12 8 | 8 9 9 | 10 | 10 | 10

Tab.5.1 Convergence with respect to Ey/Es, fized E; = 100 and v, = v, = 0.25.

In table 5.2 we report the rate of convergence for different values of the Poisson
ratio vy in ;. We fix vy = .25, Ey = E, = 100.

vi‘vy Vs tas | ssas | 1l es| 15 85) 95

DN 18 17 17 17 | 18 16 16 17 19

GP 8 81 8 8 8 9 10 12 17

Tab.5.2 Convergence with respect to v1/vs, fized vy = 0.25 and By = E; = 100.
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