CHAPTER 51

A Parallel Algorithm for an Investigation of
Self-Focusing Singularity of Higher KdV Equations™*

Thiab R. Tahaj

Abstract. An accurate numerical scheme based on the inverse scattering transform (IST) is used
to investigate a self-focusing singularity, which means the solution blows up in finite time, in the higher
Korteweg-de Vries (KdV) equation:

4
Up + Uy + Uppe = 0

It has been shown in part by the author that the IST schemes compare very favorably with other
known numerical methods. The implementation of the IST numerical scheme leads to a huge periodic
banded system of equations to be solved at each time step. A parallel algorithm for the proposed
IST scheme is designed and implemented on an intel iPSC/2 hypercube, and the numerical results are
discussed.

1. Introduction. It has been shown that the higher nonlinear Schrodinger (NLS)
equation

(1) ig + oo + Alg|Pg =0, p>2

under certain conditions admits a self-focusing singularity [1], which means that the
solution of Eq. (1) blows up in finite time. This suggests that the higher nonlinear
KdV equation

(2) us + APty + Ugee =0, p> 3
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has a self-focusing singularity [2].

Recently, there has been a lot of theoretical and numerical research in order to
investigate this phenomenon (see Bona et al. [3], and the references therein). Numerical
simulations of solutions of Eq. (2) (see Fornberg & Whitham [4], Bona et al [5]) confirm
that its solitary-wave solutions are unstable if p > 4, and in fact, that neighboring
solutions emanating from smooth initial data appear to form singularities in finite time.
This paper deals with a numerical investigation of the blow-up for the higher KdV
equation

(3) U + vty + Ugpg = 0

using an accurate numerical scheme based on the IST. The proposed numerical scheme
is based on an IST numerical scheme derived by Taha and Ablowitz for the KdV and
MKdV equations. Experiments have shown that the IST numerical schemes compare
very favorably with other numerical methods [6,7].

In order for the singularity to be properly resolved, the mesh sizes in the directions
of £ and ¢ have to be taken very small. It is to be noted that the implementation of
the IST numerical scheme leads to a huge periodic banded system to be solved at each
time step. Therefore the implementation of the proposed numerical scheme on a serial
computer requires a large amount of computing time.

In this paper a parallel algorithm for the above scheme is designed and implemented
on an Intel iPSC/2 hypercube, and the numerical results are discussed.

2. The proposed numerical scheme. The proposed numerical scheme for Eq.
(3) which is based on the IST for the KdV equation [6]

“4 Ut + Uty + Uggr = 0
is:
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The truncation error of this scheme is O((At)?)+O((Az)?). This scheme is applied
to Eq. (3) subject to a Gaussian profile of the form

(%) Cwm +u:::2>}1(

(6) u(z,0) = ne"(‘:‘)ﬁ,
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with 7 = 3, and v = 8 as an initial condition, and periodic boundary conditions on the
interval [-40, 40] are imposed.

3. A parallel implementation of the proposed scheme. Eq. (5) can be writ-
ten as

(M —up 4 3+ Jupt? — Suphl +ut = By,
where
_ 2(Ax)®
€T TAL
and
B, = —upy, +(@+euy —3up, +up,

1 m
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2 L CUpR e sy
moyyy [t
® ~ ) ()
One way to implement this scheme is to solve a periodic banded system of equations at
each time step:

[« -3 1 —17 U_N
-1 o -3 1 U.N+1
-1 a -3 1 Ul N2
-1 a -3 1 UN -3
1 -1 a -3 UN_2
! -1 o | | un-1 ]
r B._N “
B_n41
B_nj2

- . |l

Bn_s
By_s
| Bwn_1

where o = 3 4 €. The above system can be solved on a hypercube by using a modified
version of an efficient parallel algorithm for periodic tridiagonal systems [8].
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3.1. Description of the algorithm. Consider the following general form of Eq.
(9) AX = B, where

i ay c1 dl bl ]
by ay ¢ dy
bs a3z c3 ds
A= )
bnv_2 an—z cN-—2 dn—2
dya by-1 an-1 cN-1
| CN dn by an
[ Ty ] 5 B] ]
Ty B2
I3 B3
X = . , and B =
IN-2 Bn_
TN-1 BN—I
| N | By

Assume that the number of processors p divides the order N of the above system.
Partition the original system into p subsystems; each processor works on % equations.

The first subsystem has the form:

] a; ¢ d1 0 b] i Ty ] B1 T
bz Az 2 dz 0 0 Ig B'z
bn-1 @m-1 Cm-1 dm-1 Tm—1 B
L bm Gy, Cm dm 0 ] Tm | Bm i
Tl
Tom+2
L IN |

the i-th subsystem (1 < i < p) has the form
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. .
T;-1
b a; ¢ d; z; B;
bivi @p1 Cipr dip Tt Bjs
b1 Gy Cra1 dry Ty~ B,
i b, Gy . ] Ty L B, i
Trt1
| Tri2 ]
and the last subsystem has the form
ey
T2
Tj-1 }
0 0 bj a; Cj; dj T4 Bj
0 0 0 b1 a1 ¢ din Ti1 Bj
dN-1 bv-1 an-1 CN-1 TN-1 By
CN dN 0 bN 7 N L BN

where j = (i~ 1)m+1,m = N/p, and r = im. Each of the above subsystems has three
variables more than the number of equations. Following the algorithm given in [8,9], we
introduce three variables as parameters and then the above subsystems can be written
as

1 1
A'X' = B'—ang' — Tpul — Tmias,
(10) AX' = B —g;4¢ — Zopr — 208, 1<i<p,
APX? = BP— g, 1q° — 217? — z28°,
_ . - - . -
a ¢ d T By
b2 dy € d2 o _82
Al = . . . . v X' = 3 B' = »
b1 @m-1 Cm-1 L1 B
L b Gm | Tm ] | Bm ]
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3.2. Implementations. Any of the systems given in (10) can be solved by solving
one banded linear system with four different right hand sides. (Without loss of generality
we take the ith subsystem.)

(11) At = Bl Alvt = ¢}, Aly' =t A2 = ',

and the X* becomes a linear combination of the four partial solutions

(12) Xi = ti - xj__l‘lli — :c,+1y" - a:r+2zi

Each processor can solve its system (11) independently without any communications
with other processors. In this paper a modified version of Gaussian elimination for
banded systems is used. Before finding the global solution, the parameters must be
determined first. Taking the first two equations and the last equation from each sub-
system, a new subsystem of order 3p X 3p arises. The new subsystem has the following
form:

Coy 1 o= 1 0 ]
V2 Y2 %2 1
Vm Ym Zm 1
1 0 vny1 Ymit1 Zmpr
1 op42 Ymez Zmiz

1 0 V(p-1m+1  Yp-1)m+1 Z(p—1)m+1
1 Yp-miz Yo-umiz Zp-mt2
{ 1 uN YN Zn
C oy ] ] 3 7
Trmtl 2"
Tm4+2 | tm
Tm tm—l—l
Tam+1 tny2
. = . (13)
T (p-1)m Lp-1)m+1
zy tp-1)m+2
| T2 K L 35 R

which can be solved efficiently by using a modified version of Gaussian elimination or
the LU decomposition methods for banded systems provided the size of the system (i.e.,
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the number of processors) is small. It is worth mentioning that the system of parameters
(13) is not necessarily diagonally dominant even if the original system of equations to
be solved is diagonally dominant. In this paper one of the processors is used to solve
the system of parameters. It is to be noted that if the number of processors is large
then solving the system of parameters efficiently will be worth looking at in the future.

4. Numerical Experiments. The proposed numerical scheme is implemented on
an intel iPSC/2 hypercube with a > 5. The system given in (9) is solved at each time
step by the method described above. At each time step each processor will calculate its
share of the right hand side of (9) with very little communications with its immediate
neighbors in a ring topology. In practice it is found that this algorithm is efficient
and is about four times faster when four processors are used than when one is used.
According to employing this algorithm, with Az = 0.0391 and At = 0.00005 the
solution of the higher KdV equation (3) blows up at ¢ = 0.12045. The main unresolved
problem with this algorithm is to find an efficient parrallel algorithm for solving the
system of parameters when the number of the utilized processors is large and a partial
pivoting is needed.
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