CHAPTER 22

A Saddle-Point Principle Domain Decomposition
Method for the Solution of Solid Mechanics Problems

Charbel Farhat*

Abstract. A stationary variational principle is used to derive a finite ele-
ment domain decomposition method for the solution of structural mechanics prob-
lems. A given mesh is partitioned into disconnected submeshes where a local so-
lution for the displacement field is first evaluated. Intersubdomain field continuity
is enforced via discrete, polynomial, and/or piece-wise polynomial Lagrange multi-
pliers. In the static case, each floating subdomain induces a local singularity and
triggers rigid body (zero energy) mode effects . The interface problem associated
with this domain decomposition method is in general indefinite and of variable size.
A dedicated preconditioned conjugate gradient algorithm is developed for solving
the latter problem when it is not feasible to explicitly assemble the interface opera-
tor. At each iteration, the zero energy modes are filtered out via a suitable projector
which somehow limits the scalability of the methodology. To alleviate this problem,
the rigid body modes are preprocessed with a QR factorization which results in
a simpler expression for the projector. The proposed methodology is intrinsically
parallel. Tt offers attractive features for local memory multiprocessors, and is also
suitable for shared memory parallel/vector computers. Numerical and performance
results are reported. They demonstrate the potential of the methodology for real-life
solid mechanics problems.

1. Introduction. In this paper, a finite element domain decomposition
method is derived from a saddle-point variational principle. In many cases, the
proposed method performs fewer operations than other global and subdomain based
solution techniques, which makes it interesting even as a serial algorithm. It is also
characterized by a small amount of communication requirements, which makes it
particularly attractive for local memory parallel processors. Preliminary versions of
this method were introduced by Destuynder and Roux [2], then Farhat and Roux
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[8]. In a companion paper, Roux [12] establishes an interesting duality between the
proposed methodology and the domain decomposition algorithm of Bjordstad and
Widlund [1], and points out some important consequences.

Here, the basic method introduced by Farhat and Roux in [8] is refined in
view of: (a) augmenting it with a model reduction algorithm, and (b) improving
its scalability to a large number of subdomains, and therefore to a large number of
processors. For this purpose, the remainder of this paper is organized as follows. In
Sections 2 and 3, a subdomain-by-subdomain finite element method is derived from
a stationary variational principle where an inter-subdomain continuity constraint is
removed via the introduction of discrete, polynomial, and piecewise polynomial La-
grange multipliers; its essential computational and parallel features are highlighted.
- Singularity issues associated with the methodology are raised and resolved in Section
4. A preconditioned conjugate projected gradient algorithm (PCPG) is developed in
Section 5 for the solution of the corresponding indefinite interface problem. Section
6 deals with scalability issues that are raised by the PCPG’s projector. Section 7
illustrates the method with the parallel solution of real-life structural problems on
an iPSC/2 hypercube. Finally, Section 8 offers some conclusions and outlines future
work.

2. A saddle-point variational principle.  The variational form of the
three-dimensional boundary-value problem to be solved is as follows. Given f and ,
find the displacement function « which is a stationary point of the energy functional:

I(@) = 5a(®,0) ~ (v, ) (v, W)r

where
a(v,w) = /ﬂ VU(,5)Cij kW (k1) S 1)
(v,f) = /vif,- a2
Q

(v,h)r = / vih; dT
Th

In the above, the indices 1, j, k take the value 1 to 3, v = (vij + v5,:)/2 and
v;,; denotes the partial derivative of the i — th component of v with respect to the
J — th spatial variable, c;ijir are the elastic coefficients, { denotes the volume of the
elastostatic body, T' its piecewise smooth boundary, and T', the piece of I' where
the tractions h; are prescribed.

'If Q is subdivided into N, regions {Q,}:=M (Fig. 1), solving the above elasto-
static problem is equivalent to finding the displacement functions {u,}*=)* which

are stationary points of the energy functionals:
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Jo(vs) = %a("’a,”s)ﬂ. — (vs, Fla, = (vs, h)r,

where

a(vs, ws)q, = / Vs(i,j) CijkiWs(k,1) d§2
2, (2)

(oS, = [ veifs a9
Q.
(ve, h)r, = / vashi dT
Fhl
s = 1,2,...,N,
and which satisfy on the interface boundary I'; the continuity constraints:
8=N,,q=N,

uUs = ug onTy = U  {2.N9Q} (3)

s=1,gq=1

FIG. 1 Tearing in N, subdomains

Solving the N, above variational problems (2) with the subsidiary continuity
conditions (3) is equivalent to finding the saddle point of the Lagrangian:

8=N, a=N,,g=N,
J*(v13v2""7'vN,aula ,"2!"’7"‘t) = Z JS(U-‘J)+ Z (‘U‘, _vq;.iu'sq)rx
s=1 s=1,9=1
where ' Q)

(vs — Uq,l‘sq)f‘r = A l‘sq(vﬂ - ”Q) dr
1
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— that is, finding the displacement fields {u,}=* and the Lagrange multipliers
As¢ which satisfy:

J*(uth) o UN,s 1y 12, '"’/—Lt) < J*(ulyu% '-'auN,y)‘h}“Z, ) )\t)
S J*(’Ul,‘vz,...,'UN',Al,/\Q,..., /\t)

(5)

for any admissible {v, jif" and {p}¥=t. Among all admissible sets {v,}e=N

s==1

which satisfy the continuity conditions (3), the set {us}:= minimizes the sum
of the energy functionals J, defined respectively on Q,. Therefore, {u,}iziv * are
the restriction of the solution u of the non-partitioned problem (1) to {Q,}5=N:,
Indeed, Egs. (4) and (5) correspond to a hybrid variational principle where the inter-
subdomain continuity constraints (3) are removed by the introduction of Lagrange
multipliers. The utility of Lagrange multipliers specifically for domain decomposi-
tion has also been previously recognized by other investigators (see, for example,
Dihn, Glowinski and Periaux [3]).

3. Finite element adaptive approximation and parallel computing.

8.1. Galerkin solution and discrete formulation. The displacement fields
{us}:=1* are expressed by suitable shape functions as:

us = Nu, s=1,2,...,N, (6)

If the discrete subdomains are conforming and the continuity equations (3) are
enforced for the discrete problem at each degree of freedom on T, a standard
Galerkin procedure transforms the hybrid variational principle (4-5) in the following
algebraic system:

K.u, = f,—BTA
s=N,
> B, =0 (7)
s=1

s = 1,2,...,N,

where K, u,, and f, are respectively the stiffness maftrix, the displacement vector,
and the prescribed force vector associated with the finite element discretization of
Q,. B, is a signed connectivity boolean matrix which describes which degrees of
freedom in §, lye on T';. In particular when operating on a matrix or vector quan-
tity, B, does not involve any floating point operation; it simply extracts and signs
the interface components of that matrix or vector quantity. The vector of Lagrange
multipliers A represents the interaction forces between the subdomains {Qs}ﬁ—:fh
along their interface I'y (Fig. 2). If every subdomain has enough boundary condi-
tions to eliminate its rigid body motions, the above equations of equilibrium can be
transformed into:
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s=N,
F/A = Y BK;'f,
8=1
u, = K7}(f,-BTA) s=1,2,...N,
8
where ®)
s=N,
F; = » B,K;'BY
s=1

For large problems and fine mesh decompositions, it is not feasible to explicitly
assemble F; whose size, ny, is given by the total number of degrees of freedom on
T';. This implies that a direct method cannot be used to solve the above interface
problem. The only efficient method of solving (8) in the general sparse case is that
of conjugate gradients (CG), because once {K,}*=N* have been factored, matrix-
vector products of the form Fyv, where v denotes a generic ny long vector, can be

performed very efficiently using only forward and backward substitutions.

FIG. 2 Interconnecting with discrete Lagrange multipliers

3.2. Polynomial approzimalion.  Alternatively, the continuity conditions on
the interface (3) can be weakened in order to reduce the size of the interface prob-
lem and/or handle the case of non conforming subdomains. When accuracy can
be preserved, this improves the computational performance of the subdomain-by-
subdomain method. For example, polynomial expressions may be considered for
approximating pg, in Eqgs. (4) (see Dorr [4], for a theoretical justification). For
topologically one-dimensional interfaces, this is equivalent to “gluing” the subdo-
main interfaces with polynomial approximations of their interaction forces (Fig.
3):
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k=r k=r k=r
N(E) =Y Akek 22O =30k - MO =D M )
=0 k=0 k=0
where £ denotes a curvilinear abscissae on I'y, d denotes the number of degrees of
freedom at a node, r denotes the polynomial degree, and r x d is much smaller
than the number of interface degrees of freedom, ny. The superscript of A denotes
the directional freedom (z, y, or z displacement/rotation) of the corresponding
generalized traction component.

FIG. 3 Interconnecting with polynomial Lagrange multipliers

The constraint matrices {B7}:=1* are in this case non-boolean finite element ma-

trices which are assembled from their element level correspondents {B7(¥}3=M in
the usual manner:

By = Y B0 (1)
[

where e spans only the set of elements that are connected to the interface boundary

T'z. For a finite element e with ¢ nodes lying on I'y, Bg(e) is given by:

3 lB:(e) N
ZB:(E)

BI® = | - (11)

[ 4B1(e)

where IB:(e), l =1,2,..,q, is the submatrix associated with the [ — th node of
element e and has the following form:

B = [iBr@ Br® g | 1pgr)] (12)
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Each of the submatrices ka;(e), is a d x d diagonal matrix that represents the
contribution of the k — th monomial é* and is expressed as:

B = (| Nt I, (13)
()
where N is the shape function associated with the [ — th node of element e and I,
is the d x d identity matrix. An elegant and practical result is that increasing the
degree of the polynomial approximation of A\¥ involves only adding a few columns
to the existing element level matrices ’B:(e), as it is suggested by Eqs. (12-13).
As for the case of discrete interface tractions, the decomposed problem can be
re-arranged as:

s=N,
Fix = Y BIK;'f,
s=1
u, = K;Y(f,—-B’TA) s=1,2,..,N,
(14)

where
s=N,
F; = ) BIK;'B]"
s=1

F7 is the interface operator resulting from the approximation of the interface trac-
tions with r — ¢th order polynomials. With this approach, the size of F} is only
(r +1)d << ny. It is shown in Farhat and Geradin [7] that for sample structural
problems and one-way mesh decompositions, very accurate results are possible with
r X d = 10% x ny. For such problems, F7 is easily assembled and factored and
the interface problem is best solved with a direct method. However for more chal-
lenging structural problems (i.e. with high stress gradients in the neighborhood
of the interface), very high order polynomials may be needed to approximate the
interface tractions which results in a larger interface problem that must be treated
with an iterative solver. Unfortunately for large values of r, F} becomes highly ill-
conditioned and causes the overall performance of the solution algorithm to degrade.
An alternative approach for reducing the size of the interface problem when a rather
large number of Lagrange multipliers, Ny, is needed to enforce the intersubdomain
displacement continuity is presented below.

3.8 Piece-wise polynomial approzimation. LetT%, k=0, ..., ﬂdl — 2 denote a

partition P of the topologically one-dimensional interface boundary I’y defined as:
Ny

F? = [€k7 ék-i—l] k=0,.., 7_ 2 (1‘5)

where &, k=0, ..., A} —1, are the curvilinear abscissae of ﬂdl specified points on I'y

where the discrete surface tractions A}, are introduced. Within each subinterval Tk @

cubic polynomial expressions are defined for the Lagrange multiplier approximations
as;
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(O = iyt (€~ &)+ c3p(€ — &) +cip(€ — &)
M) = S+ (b =)+ (E—) + 2 (- &)

(16)
MO = e+ cfi(€— &)+ cfp(€ — &) + (6 - &)
where c{k, t=1,..,4, 7 =1,...,d, are determined by imposing;:
&) =X i M(G) = My,
dXi dM dM AN
‘Jé’(fk) = —d'g(fk) ; jd—{(fkﬂ) = -d?(ﬁkﬂ) a7
Ny
k= 0,...,—d——2
j=1,..4d

The first set of equations (17) imply that :\i(ﬁk_,_l) = 5‘?« +1(€k+1), so that all A are
guaranteed to be continuously approximated on I';. The second set of equations
(17) involve the derivatives of the Lagrange multiplier functions which are neither
available nor part of the weak form of the static equations of equilibrium. These
derivatives are approximated by:

ﬁ(f ) = Aﬁ'&;l()\kﬂ = M) + 7 (A ~ Ak-1) (18)
g \°F Agéy
where A€y and Ay, are defined as:
Al = Erp1— & (19)

Aglk = Lk41— &kt
Note that (19) requires the two additional points £_; and ¢ ~, which are chosen as:
d

€1 = &

Evue = Exy_, (20)

Substituting (16) and (18) into (17) determines the constants cl , as functions
of the discrete Lagrange multipliers:

dr = X
C§k = 0:3],)\‘,2_,_2 + ﬁ?»k)\i.{.l + 73f=)‘i + 53":)\‘}6—1
Cap = @ardpy + Burdiyg +var X + aedi_



A SADDLE-POINT PRINCIPLE METHOD 279

where asy, ask, Quk, Bok, Bsk, Bik, Y2k, Y3k, Yak, O3k, and 84; are constants that
depend only the curvilinear abscissae £x_1, £, {xy1 and €xqo.

As previously, equations (21) are substituted into equations (16) and (16) into
(4) to obtain:

K., =f, —B? Ap
s=N, (22)

> Blu, =0

where Bf is a sparse finite element matrix. The subscript/superscript P emphasizes
the dependence of these quantities on the partition P of the interface boundary I'y.

This matrix is assembled from its element level correspondents keBZ’(e) in the usual
manner:

B? = 3 wB?® s=12,..,N, (23)

where e spans only the set of elements that are connected to I';. The left subscript

k® emphasizes the dependence of ker(e) on the subinterval I‘if = [k, Ek+1] where
one edge of element e falls. For a finite element e with ¢ nodes lying on I';y, the

gd x Ny element level matrices - Bf(e), s =1,2,..., N, are given by:
_ 'P(e) -
}c‘ Bs

(e)
© 2.B?
ke BZ’ € = * (24)

ple)
| £.BP |

where 4. Bf(e), 1=1,2,...,q, is a d x N matrix associated with the [ — th node of
element e and has the following form:

() e e). e e
LBPYY = [0k 1 pP@ L pPe 1 pP 1 gP© o] (25)

where O%° and O% are respectively left and right dx (k*—1)d and dx(Nx—(k°+3)d)
zero matrices, and ’,Bf(e) is expressed as:
LBPY = ey (26)

where 1; is the d X d identity matrix and nre—1, ke, Mre+1 and nge42 are function
only of the partition P of 'y and are given by the following integration:

/I‘ © Xi,NléF = nk°~1)\'j7;e_1 + ke )‘ie + le"-i-l/\{;e.;_l + nk‘+2)‘£e+2 (27)
7 e
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It should be noted that while the symbolic derivation of equations (21-27) appears
to be somehow complicated, their computer implementation is straightforward and
their processing is inexpensive.

Approximating A with polynomials does not require the location of the cor-
responding physical surface tractions to be specified. On the other hand, using
piecewise low order polynomials such as the splines presented above requires the
explicit definition of a partitioning P of I';. This means that the locations of the
physical surface tractions along I'r have to be specified. Therefore from a practical
viewpoint, the polynomial approach seems more attractive, even though it is very
limited. However, specifying where a surface traction is to be introduced can be
transformed into an algorithmic advantage if one treats this issue as an additional
degree of freedom in the problem. For example, if the stress field along I'; could be
first predicted or estimated, the partition P would be dense in the areas of stress os-
cillation or high stress concentration, and coarse elsewhere. An iterative refinement
procedure for positioning the {s of the subintervals T% = [£;, £41] is outlined
below.

3.4. oItemtive refinement procedure. It is assumed that a reasonable initial
value N, is given. The following convergence criterion is selected:

(m+1) m
[t — w0 < ™)

2(m+1)  o(m) 2(m)
[ U oo < ef|u™ oo (28)

(m-+1) (m) m
[t — ™oy < el ™l

where the superscripts d and m refer respectively to the d — th component of the
solution at each node and to the m — th iteration, and e is a specified tolerance.
As indicated by equations (28), the convergence of each of the d components of
the displacement field is independently monitored. This is in order to avoid that
potential important relative errorsin a component of the solution whose magnitude
is relatively small — for example, the = displacement of a cantilever beam with a
load parallel to the y direction, are masked by an otherwise perfect convergence for
a component of the solution whose magnitude is relatively large — for example,
the y displacement. Such masked errors would ruin the accuracy of the stress field
(which is the derivative of the displacement field).

) Nim)
Let F’f(m » k=0,..., —3— —2 denote the partition P(™ of the interface bound-
ary I'; at iteration m:

£ (m) m)  p(m N{™
I = 6T N k=0, (29)

If at iteration m + 1 an additional discrete Lagrange multiplier is introduced, say
in the subinterval I‘]}*(m), the resulting partition P(™+1) becomes:
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(m)
(m+1) N
I (30)

where

gl(cm-i-l) = éfcm) E<k*

(31)
gt = M ks k1

It can be easily shown that the regeneration at iteration m + 1 of the constraint
matrices B?, s = 1,2,..., N, involves basically recomputing the coefficients ¢,

i =1,...,4, j = 1,...,d, of the polynomial expressions (16), only for those inter-
* 1 * L* m
face elements which intersect I'y inside P'I‘ ~1(mt ), or I' (m+1) +1( +1), or

yor I'}
* po(m+1) . .
7 . However, a refinement procedure for this case should also specify the
location where an additional discrete Lagrange multiplier is to be introduced during
the following iteration, — that is to define f,(ETH). In the present work, this loca-
tion is determined by the point of I'; where |Ju(™*+1) —u(™)||/||u{™||c and/or the
violation of static equilibrium prior to the averaging and improvement procedures
(see below) are the largest. The introduction at iteration m + 1 of more than one
discrete Lagrange multiplier is handled exactly in the same manner. Paragraphs

3.3 and 3.4 are summarized in figure 4.

k+1

k+1i k

FIG. 4 Interconnecting with adaptive splines

8.5. Intersubdomain smoothing.  Clearly, the finite element approximations of
the subdomain displacement fields, us, as computed by the solution of Egs. (22), are
in general discontinuous along the interface boundary I';. If the discrete subdomains
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are conforming, it is usually desirable to uniquely predict the displacement field at
the common interface nodes. In this case, an additional smoothing procedure is
required along I'y. For example, the interface boundary displacement field can be
post-processed in the following manner:

s=N, s=N,
RO =
ut = ulI‘J = [§ : BSBs] ! E : B.u, (32)
s=1 s=1

where B, is the unsigned counterpart of B,. Equation (32) above is simply an
=N, _ __,
averaging procedure. The quantity Y, B SBZ is a diagonal matrix which reports

for each interface degree of freedom tflelnumber of subdomains that are attached to
it. Therefore, it does not need neither to be explicitly computed, nor to be inverted.

Physical arguments can be used to postulate that the above averaged interface
solution u* is more accurate than each of the traces of the subdomain solutions,
u,lr,. Therefore, the enhancing effect of the averaging procedure (32) should be
back-propagated to the interiors of subdomains £, by solving the following N,
independent displacement-driven subdomain problems:

u, = K,,7'(f, - K,u*) s=1,2,...,N, (33)

where the additional subscripts s and I identify respectively interior and interface
degrees of freedom. The above improvement of the subdomain solutions u, requires
only one sparse matrix-vector multiply and one pair of sparse forward/backward
substitutions per subdomain. The triangular factors of K,, are embedded in those
of K, which are readily available.

3.6. Parallel computational features.  Clearly, the methodology is intrinsically
parallel as it involves mostly subdomain-by-subdomain independent computations.
Specific guidelines for carrying out the practical mesh decomposition are outlined
in Farhat and Roux (8]. It is worthwhile mentioning that in this formulation, inter-

processor communication is exclusively induced by the weak form of the continuity
constraint:

(vs — vy, F‘sq)Pz,q = / fsq(vs — vg) dT
Trg

Therefore, if 'y, , has a zero measure, then (vs — Vgs fhsg)T I, 18 identically zero and
no exchange of information is needed between subdomains ©, and Q,. Hence, the
subdomains which interconnect along one edge in three-dimensional problems, and
those which interconnect along one vertex in both two- and three-dimensional prob-
lems do not require any interprocessor communication. This is unlike Schur-based
domain decomposition methods where any subdomain interconnection induces in-
terprocessor communication.

The computational method presented here differs also from Schur-based meth-
ods in the formulation and numerical properties of the interface problem. Briefly,
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the eigenvalue spectrum of the Schur complement operator has an accumulation
point towards infinity. From a physical viewpoint, this corresponds to the fact that
the high frequencies of a stiffness-based operator are mainly mesh frequencies. On
the other hand, F; involves flexibility-like matrices; its eigenvalue spectrum has
an accumulation point towards zero, which is clearly advantageous for a CG al-
gorithm. Indeed, it can be shown (see Farhat and Roux [8], and Roux [12]) that
under some assumptions, F; and the Schur complement are dual operators. This
particular topic is discussed in details in the companion paper by Roux [12] where
the numerical advantages of the proposed method are demonstrated.

REMARK: Throughout the remainder of this paper, the notation used for
the case of discrete Lagrange multipliers is adopted. However, unless otherwise
indicated, the approaches, formulations and results are valid also for the cases of
polynomial and piece-wise polynomial approximations of the Lagrange multipliers..

4. Singularity issues. Here we focus on two singularity issues that may
arise in either a subdomain local problem, or in the interface global problem.

4.1 Local singularities. It is most likely that the mesh partitioning process
will result in one or several subdomains that do not have enough prescribed dis-
placement boundary conditions to eliminate local rigid body modes. For each of
these floating subdomains, the stiffness matrix is singular and special care is re-
quired for the solution of its local equilibrium problem. For example, if §2; is a
floating subdomain, uy is given by:

u; = Kj(fs — BfA) +Ryay (34)

where K}" is a generalized inverse of K that is not computed explicitly (see Farhat
and Roux [8] for computing K}' and Ry). Ry stores the rigid body modes of {1
(null space of Kf) and ay specifies a linear combination of these. The fact that the
rigid modes do not produce any internal energy can be expressed as:

RTKsu; = Rf(f;—BfA) = 0 (35)

Substituting (34) into (8) for each of the Ny floating subdomains leads after some
algebraic manipulations to the following indefinite interface problem:
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|

FI G[
g/ o

I

] = 2]

where

s=N,

Fr = Y B,K:BI
s=1

Gr = [R{ .. Ry,]

R! = B,R, s=1,..,N; (36)
s=N,

d = > BKf,
s=1

e, =RTf, s=1,..,N¢

a =[a; .. aNf]T

K: = K;' if Q, is not a floating subdomain

K; = K} if Q, is a floating subdomain

If the global domain € is not a floating domain, two floating subdomains Q; and
Q; will never interconnect with the global interface I'; at exactly the same set of
interface nodes. Hence, their corresponding rigid body modes R; and R; are always
linearly independent. Therefore, for any mesh partitioning, G has full column rank.
However, Fr may be singular as discussed below.

4.2. Global singularity.  Consider the triangular domain shown in figure 5

below. It is torn in three subdomains ©;, Q; and Q3. For the purpose of the
following analysis, the subdomain interfaces — excluding their intersection point d
— are labeled a, b and c.

=\

FIG. 5 Three-subdomain partitioning of o triangular region
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Using the unsigned connectivity matrices B,, the continuity constraints along 'y =
{a,b,¢,d} can be written as:

ﬁl W = ﬁz U9
Ez Uy = —B—3 Us (37)
Bsu; = By

More specifically, if B, denotes the unsigned connectivity matrix which glues ,
along the interface component I, the above equations can be expanded as:

_ﬁgul = E—guz
Bluw = Biu
Eguz = Eus
Bou, = Baug (3)
Bsu; = Biwy
Bous = -ﬁful
In particular, at the intersection point d, these equations are:
Blu, = B,
Bju, = Bous (39)
Bsu; = Biu

Clearly, the third of equations (39) is implicitly implied by the first two equations.

Therefore the continuity equations (37) are redundant and the interface operator
s=N,

Fr= Y BSK:BZ is singular at the point d. This demonstrates that wherever
8=1

more than two subdomains which effectively communicate (see Paragraph 3.6) in-

tersect at a node, a redundant interface equation is generated for each degree of
freedom at that node. Therefore for arbitrary mesh partitions with more than two
subdomains, the interface operator F is in general symmetric positive semi-definite,
and the Lagrangian matrix:

L = [(f;f:, Cé’] (40)

is singular. Of course, one can simply omit the last of equations (39) every time
a crosspoint-like interface node is encountered. This is equivalent to introducing
a cut between two — and only two — arbitrary subdomains at the crosspoint
interface node. While doing so removes the singularity of the interface system, it
un-necessarily complicates the implementation of the method. Indeed, even though
L is singular, it is consistent with its right hand side (see (35)), and therefore the
system of equations (36) admits more than one solution (A, ). However, A and
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are not interesting by themselves. Any combination of these variables which satisfies
equilibrium is acceptable. Moreover, even if Fy is singular, as long as it is positive
any CG algorithm is guaranteed to find a solution (A, a) that satisfies the interface
equations (36). This solution uniquely determines the subdomain displacement
fields and their corresponding stress and strain fields.

5. Numerical solution of the interface problem.  The Lagrangian
matrix L is indefinite, and therefore a straightforward conjugate gradient algorithm
cannot be directly applied to solve the system of equations (36). However since F;
is positive, the conjugate projected gradient (CPG) iteration (see, for example, Gill
and Murray [9]) can be used to obtain the sought-after solution. Basically, at each
iteration of the (CG) algorithm, the search direction is projected onto the null space
of GT so that for each floating subdomain f, the constraint (BfR f)TA = R?f ¥
is enforced. Using the standard notations for a CG algorithm, the resulting CPG
algorithm can be written as:

Iterate k = 1,8, ... unitil convergence

¢ = p=1)T (k1) (k=2)T ((k—-2) (¢® =0)
p® = k=D 4 (BpE-1) (1) _ (0

p®P = [I-Gi(GI"G)™ G, p®

B o =T (k1) 5T 50
OGO

f® = k=D _ L Bp 54

(41)
Frp

As in the case of the conjugate gradient method, the conjugate projected gra-
dient algorithm is most effective when applied to the preconditioned system of
equations. However, the entire Lagrangian matrix, L, does not need to be precon-
ditioned, even in the presence of floating subdomains; only F; needs to be treated.
In matrix form, F; can be written as:

K; 0 0 O 1[B?
O K} O O B!

Fr = [B; B, .. 2 2

I [ 1 2 BN.] o 0 0] (42)
O 0 O Ky ||B%,

which suggests as an approximate inverse:

Ki O O O BT

— T

F;' = [B, B, .. By,] g Ié? o g B
O 0 O Ky, | |BY (43)

a=N,
= ) B,K,BT

g=1
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The efficiency of Fr as a preconditioner is reported in Farhat and Roux [8]; its
numerical properties are discussed in the companion paper by Roux [12]. Here
it is briefly noted that the preconditioner F7 leads to auxiliary systems that are
easy to solve — actually these involve only matrix-vector products — and perfectly
parallelizable on both local and shared memory parallel architectures.

If two floating subdomains §2; and ; are not geometrically interconnected,
the products R} TR§ and Rf TR{ are identically zero. Therefore, GTG; is a sparse
symmetric matrix whose structure is determined exclusively by the subdomain in-
terconnectivity. Since there are at most 3 rigid body modes per floating subdomain
in two-dimensional problems and 6 in three-dimensional ones, the size of GT G is at
most 2Ny X 2Ny for two-dimensional problems and 6N x 6N 5 for three-dimensional
ones. Unfortunately, G}’GI is the only quantity in the presented computational
method that cannot be evaluated using only subdomain-by-subdomain computa-
tions. However, as long as the number of floating subdomains is kept relatively
small, say less than 128, the method is still very efficient on both serial and parallel
processors. Next, a preprocessing technique is examined in order to improve the
scalability of this domain decomposition method in the presence of a very large
number of floating subdomains.

6. Preprocessing the rigid body modes with a QR factorization. At
each iteration of the PCPG algorithm, the projector:

P=1- G](GITGI)_IGIT (44)

filters out the rigid body mode components of the solution. The matrix product
G;TGy is sparse symmetric positive definite and its Choleski triangular factors:

G/fg; = cc” (45)

are computed once, before any iteration begins. Subsequently, each matrix-vector
product p*) = Pp®) is evaluated as following:

x® = RIp® s=1,.,N;
Lower Solve C[y§’°)...y§\'f,)]T = [ng)"'xg\ll?]T

Upper Solve CT[z§k)...zg\',°f)]T = [ygk)...yg\’;!)]T (46)
s=Njy
p® = p® _ ¥ RIz®
s=1

where pgk) is the localization of p®) to Q,. The first and last steps of the above
procedure require only subdomain-by-subdomain sparse computations. The lower
and upper triangular solve induce long-range communication.

Here, it is assumed that the problems of interest and the mesh partitions are
such that the size of any subdomain interface is much smaller than the size of the
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subdomain interior. Implementations on highly parallel processors are considered
as long as they do not result in an element-by-element formulation of the proposed
computational method. Therefore, the additional cost incurred by the Choleski
factorization of GrY Gy is negligible when compared to the cost of factoring all
the subdomain stiffnesses K,. This factorization is parallelizable, and since it is
performed only once, its parallel efficiency is not an issue. However, the lower
and triangular solve in (46) are performed at every iteration and are known to be
very inefficient on both distributed memory parallel processors and shared memory
parallel /vector supercomputers. (see, for example, Farhat and Wilson [5], Storaasli,
Nguyen and Agarwal [13]). In practice, for a number of subdomains smaller than
128, the triangular systems may be solved in a serial fashion without affecting the
overall speedup. However, for finer mesh partitions, the serial solution of these
auxiliary systems may ruin the sought-after speedup.

Alternatively, one can note that any full rank matrix G that spans the same
proper subspace as Gy can be equally used to construct a suitable projector P.In
particular, if G is chosen such that:

span(Gy) = span(Gj) ()
GGy =0
then P simplifies to:

P = I-G/G; (48)
which presents two attractive computational features:
1. P does not involve any matrix factorization.

2. each product 13(’“) = —P—p(k) can be carried out using only subdomain-by-
subdomain computations:

— =Nt 7
p® = Pp® = 3" RIRI p® (49)

s=1
(Note that p'® is used in the above summation and not pgk).)

A Gy matrix that satisfies relations (47) is obtained by orthonormalizing all the
columns of Gy — that is, all the traces of the rigid body modes on I';. This can be
achieved, for example, via a QR factorization, which has been shown to be feasible
on massively parallel processors (Kratzer [11)):

G; = G/R (50)
The cost of this QR factorization is of the same order as the combined costs of
forming and factoring G?GI. Unfortunately, while Gy is sparse, G is in general
full. However, only one matrix R, which contains of at most six augmented rigid

body i.nodes (six columns) needs to be stored within one subdomain (processor) {s-
More importantly, the unscalable upper and lower parallel solve are avoided.
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7. Numerical examples. In this section, the saddle point domain decom-
position (SPDD) method is illustrated with the analysis of a submarine structure
subjected to a pressure shock wave. The submarine skin is modeled with thin shell
elements (thickness = 0.05 x radius of curvature) which produce ill-conditioned
finite element stiffness matrices (fig. 6).

FIG. 6 Finiic element discretization of a submarine structure

All computations are performed on an iPSC/2 with 4 Mbytes memory boards
and a maximum of 32 processors. Different meshes with different resolutions and
different element aspect ratios are designed for each subcube configuration. The
mesh decomposer described in [6] is used to create the mesh partitions. Table I
below summarizes the characteristics of the resulting problems (“size” refers to the
number of equations).

TABLE I Problem definition

Problem Problem size Partitioning Interface size Element aspect ratio

P1 4275 4 sub. 225 1
P2 16875 16 sub. 1125 0.25
P3 33675 32 sub. 2325 0.125

Since direct solvers are not in general very efficient on the iPSC, the measured
performance results are compared with those of a Jacobi preconditioned conjugate
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gradient algorithm (JPCG) for the same problems and the same multiprocessor.
This is not to say that JPCG is a particularly performing algorithm for structural
problems; however, it is often used in the computational mechanics community as
a reference point for iterative methods (see, for example, Hughes, Ferencz, and
Hallquist {10]). Each of the two algorithms uses optimal data structures and the
following stopping criterion:

Bl < 107 x (¢l (51)

where r(®) is the primary residual vector at step k. For all cases, only one subdomain
is assigned to one processor. In order to overcome the practical difficulties associated
with running a large problem on a single node of the iPSC-2, the parallel speed-up
SP, defined here as the ratio between the total time using one processor and the
total time using NN, processors, is computed in the following manner:

— NP
14N, x Lema

emyp

(52)

where N, denotes the number of processors, and Tl,,, and Temp denote respec-
tively the total communication time and total computation time associated with
the algorithm.

First, the SPDD method is applied with discrete Lagrange multipliers. The
measured performance results are reported in Table II below.

TABLE II Performance results on the iPSC-2

SPDD (discrete Lagrange multipliers)

Problem N, JPCG JPCG JPCG SPDD SPDD  SPDD

iterations CPU Sp iterations CPU SP
P1 4 601 499 secs 3.95 30 160 secs 3.96
P2 16 1965 1645 secs 15.50 ‘96 373 secs 15.80

P3 32 3974 3340 secs  28.80 219 759 secs  29.00

Clearly, very high speedup are achieved and the SPDD method is shown to be about
four times as fast as the JPCG algorithm. The number of iterations seems to grow
linearly with the size of the interface. However, the reader should recall that the
average element aspect ratio decreases from 1.0 in mesh P1 to 0.125 in mesh P2,
which injects an additional source of ill-conditioning when refining the problem.

Next, the SPDD method is applied with piece-wise polynomial approximations
of the Lagrange multipliers (Table III).
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TABLE III Performance results on the iPSC-2

SPDD (piece-wise polynomial Lagrange multipliers)

Problem N, Problemsize Interfacesize N, CPU

P1 4 4275 225 48 116
P2 16 16875 1125 380 280
P3 32 33675 2325 862 492

The above examples seem to indicate that a number of Lagrange multipliers that is
roughly equal to 35 % of the total number of interface degrees of freedom is sufficient
to assemble the subdomain solutions. The improvement in CPU consumption is
demonstrated.

8. Closure. A domain decomposition method based on a hybrid varia-
tional principle is presented for the parallel finite element solution of self-adjoint
elliptic partial differential equations. First, the spatial domain is partitioned into a
set of totally disconnected subdomains and a local finite element solution is com-
puted in each of these subdomains. Next, a set of discrete, polynomial or piece-wise
polynomial Lagrange multipliers are introduced in order to enforce compatibility
constraints between the subdomain finite element approximations. The interface
problem associated with this domain decomposition method is in general indefinite
and of variable size. Its numerical properties are discussed in a companion paper
by Roux [12]. A dedicated preconditioned conjugate gradient algorithm is devel-
oped for solving the latter problem when it is not feasible to explicitly assemble the
interface operator. At each iteration, the zero energy modes are filtered out via a
suitable projector which somehow limits the scalability of the methodology. To alle-
viate this problem, the rigid body modes are preprocessed with a QR factorization
which improves the scalability of the overall algorithm. Numerical and performance
results on an iPSC-2 hypercube are reported. They demonstrate the potential of
the methodology for real-life solid mechanics problems. Future work will focus on
the generalization of the piece-wise polynomial approximation of the Lagrange mul-
tipliers to topologically arbitrary two-dimensional interfaces (for three-dimensional
problems). Also, penalty formulations will be investigated to transform the inter-
face problem into an unconstrained minimization problem and therefore to further
improve its scalability.
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