CHAPTER 41

A Submerged Body Moving in a Stratified Medium
Via Domain Decomposition Technique

Hwar-Ching Ku*

Abstract

Numerical simulation of a submerged cylinder moving in a density-stratified fluid has
been conducted by the isoparametric pseudospectral element method in conjunction with
the domain decomposition technique. The computational domain is first decomposed into
two blocks with inter-overlapping areas where the overlapped grids are not located at the
same places. The solution of the pressure Poisson equation in each block is iteratively solved
by the preconditioned method. If the preconditioner is chosen such that it can be expanded
in terms of eigenfunctions, the solution of the preconditioner can be reduced to the simplest
algebraic problem. The iterative solution between blocks is then updated by the Schwarz
alternating procedure (SAP). The effect on the vortex wakes for a moving cylinder in 2
linearly stratified fluid at the Reynolds number 100 reveals that the vortex shedding, as
expected, is gradually inhibited by increasing the BV frequency.

1 Introduction

When a stratified region is disturbed, internal waves are generated and propagate within
the medium. The flow field becomes more complicated to analyze for the case of internal
waves generated by a submerged body moving in a thermocline because of their interaction
with the primary flow field, and the wake patterns around the moving body significantly
differ from those in a homogenous fluid. The inhibition of the vertical flow motion causing
a complex process can somehow affect the transport of mass, momentum and energy. An
understanding toward this nonlinear dynamic behavior mainly depends on the two key
parameters: the Reynolds number and the Froude number, Fr = U/NL, where U is the
body speed; L is the characteristic length; and N is the Brunt-Vaisili (BV) frequency. As
expected, when the Reynolds number becomes large, the effect on the primary flow field by
the stratified fluid will be minimized, while at the low Reynolds number the Froude number
plays a dominant role on the primary flow field. That explains why the patterns of internal
waves produced by the submerged part of a ship in the presence of a steep density gradient
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are strongest in the cross-tract section (locally low Reynolds number in the cross direction),
and only the momentum wake appears in the moving direction (high Reynolds number),
instead. Experimental data [1] will be used to verify the numerical results.

The pseudospectral element method (PSE), which extended the global pseudospectral
method to a multi-element scheme, has been applied to the solution of the incompress-
ible Navier-Stokes equations in two- and three-dimensional complex geometries [2, 8]. The
definition of complex geometries, however, is limited by their specificity, the cartesian co-
ordinates or the geometries which can be mapped onto the cartesian coordinates by an
algebraic or a simplified isoparametric mapping (rectilinear boundary). Thus, how io adapt
the isoparametric PSE method to the general curvilinear coordinates is the main object of
this paper and needs to be exploited. On the other hand, the SAP iterative scheme has
been applied successfully to those configurations where the overlapped grids are located at
the same places. But under some circumstances, due to the complexity of the geometrical
configuration the overlapped grids can not coincide all together. Therefore, the conjunction
of SAP with the isoparametric PSE method should provide great flexibility to deal with
complex geometry. As for the boundary conditions for the pressure at the overlapping in-
terface, the continuity equation [4] is still the best approach toward the pressure solution.
According to this scheme, the solution of the velocity field, if the convergence of the velocity
field in the overlapping area has been met by the SAP, will be exactly the same as that
solved by the global (non-decomposed) domain technique. The preconditioned conjugate
residual method will be applied to solve the pressure Poisson equation in general curvilinear
coordinates.

2 Isoparametric pseudospectral element

Methods which achieve an accurate representation of complex geometries with minimal
effort are quite important. We describe one such method here. Let us first define the
existence of a mapping function between the physical space (z,y,%) and the'computational
space (£,7,() (a transformed space with non-orthogonal, curvilinear coordinates ?hat are
Cartesian-like when viewed with respect to themselves). Once such coordinate relationships
are known, shape functions defining geometry can be specified in local coordinates and aone-
to-one correspondence between Cartesian and curvilinear coordinates can be established.
An isoparametric mapping, same order polynomials interpolating the geometry and };he
function (any variables), is applied to map a three-dimensional curved geometry (physical
space) onto a cube (computational space). o
The main objective of the present development was 1o provid:e the three-dimensional
computational grids around complex geometriesina structured fashmn. The pseudospectral
element grid generation scheme presented herein utilizes a multiple bkxfk st}'u(:%u.re, nz:,mely,
the global computational domain based on the geometrical configuration is divided into a
few blocks, and each block is then arbitrarily partitioned by the pseudos;)ect?al elements.
The grid generation is performed in two levels. First, each of these iﬂocks.xs defined as
a parent element, of which the shape function can be deﬁnfed by a curv?.& 1s?§arame;;mc
pseudospectral element. Next, appropriate family elements linearly (or fm’h higher order}
interpolating the shape function of their parent elements‘; are allocated within each ?\f thesi
blocks. In other words, a cubic element which contains NE + 1, N ’; + 1 and N{ + :
coliocation points (§ = coswi/NE, 7; = €08 xj{Nn, {k. = coswk[N(), in the tfansforme
space, —~1 < £ < 1,~1 <5 < 1,—1 £ ¢ £ 1(shownin Fig. 1), corres_gcmds toan Erregula,'r or
regular six-faced (hexahedral) element in the physical space. F.‘m' an 3saparametnt; ma,p;:mg,
once the collocation points (x,y,2) along the curvy %aund}aﬂes of each par?nt € en?e? da;e
known, the interior points (including the boundaries of family elements) are interpolated by
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deforming the (€,7, ¢) mesh into its (2, y, 2) image using the “trilinear blending function” [5],
i.e., the grid points (z,y, 2);j in the physical space are mapped onto (£ = &,n = 7;,( = ()
in the transformed space.

Let ¢ be any value of (z,y, 2), the interpolation translates the Boolean sum [6] into a
form

¢ = Pe(ﬁ + P.,]¢ + Pctﬁ - PeP,,qS - PgP(qS - P,,P((IS + PfP-,,P(¢ (1)

where the “projectors” P, Py, P; interpolate ¢ between two opposing faces of the six-sided
region, the double product projector, P;F,, interpolate ¢ in two directions from the four
edges along which £ and 7 are constant, and the triple product projector, Pz P, F; interpo-
lates ¢ from the eight corners. The detailed description of each projector can be found in
[7]. With the linear (or higher order) interpolation functions to constitute each projector,
Eq. (1) interpolates the surface boundary exactly.

3 Navier-Stokes equations

Time-dependent incompressible flow can be described as

du

—0—t+u-Vu=-—Vp+VV2u+S (2a)
V-u=0 (2b)

9p
E+u-Vp_O (2¢)

Here u is the velocity field, p the pressure divided by the reference density pg, » the
kinematic viscosity, p the density and § a source term which could be any external force
such as gravity, given by pg/pe, or an electromagnetic force. The Boussinesq approximation
assumes that variation of all fluid properties other than density are completely ignored.
Density variation is considered in Eq. (2¢) only insofar as it affects the source term §.
Egs. (2a, 2b, 2¢) describe the momentum, the incompressibility and the mass conservation
equations, respectively. For the nonstratified flow the density equation does not need to
be considered. The most difficult part of solving the Navier-Stokes equations lies in the
fact that the pressure field does not obey an evolution equation, but acts as a Lagrangian
constraint which links the continuity equation V - u = 0 to the evolution equations. The
best approach to date for the solution of Navier-Stokes equations is Chorin’s [8] time-step
splitting technique. The first step is to predict the solution to the momentum equation
without the pressure term

8" = 0"+ AtpVia+ S —u-Vu)* (3)

where the superscript n denotes the nth time step. The second step is to develop the pressure
and corrected velocity fields that satisfy the continuity equation by using the relationships

o™l = @t - AtV (4a)
V.urtt =g, (4b)

An equation for the pressure can be obtained by taking the divergence of Eq. (4a). In view
of Eq. (4b), it forms
V. .ﬁﬁ%—l
Vip= 5
= (3)
The pressure Poisson equation, Eq. (5), appearing in curvilinear (non-orthogonal) coordi-
nates contains a non-separable operator for which there is no easy way for a direct solution;
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this is especially difficult in three-dimensional cases. An iterative solution seems attractive
if a good preconditioner (approximate operator to the original one) can be found. A good
preconditioner requires (i) less memory and inexpensive effort to invert the resulting matrix
and (ii) a fast convergence rate. The second requirement implies that the preconditioner
Lqp should be close to the original operator L,p, i.e., the condition number of the matrix,
& = ||L;} Lsp|| (the ratio of max and min of the matrix), must not be large. It implies that
instead of solving L,,p= S, L ) Lypp = L7} S is solved.

The iterative scheme used to solve the pressure field is the preconditioned conjugate
residual method [9], which is valid for a symmetric or asymmetric operator. A certain
separable operator L, [3] is chosen and constructed from the original operator L,p, which
appears in Eq. (5) for the pressure solution. The solution of the pressure field Ly,p = S is
iteratively solved by the preconditioner until the criterion of residual is met.

The iterative procedure using the preconditioned conjugate residual method reads as
follows:

Given p°, compute 1% = § — L,p°,2° = L7110, h® = 2°. Then, for k = 0, 1, 2,..., until
Il 7* ll< e do

pk+1 = pk + akhk (63-)
r*Hl = ok oF L RF (6b)
S = 1gh (6¢)
Rk — Pt _ﬁkhk (6d)
Where k k+1 k
o = (T Loph®) gt = L2 Lph') )
(Laph*, Loph*)’ (Loph*, Lph*)
Here ( , ) denotes the inner product.
Let z* in Eq. (6¢), k > 1, be expanded in a series of eigenfunctions such that
2 = B¢ #* Eq B(T, (8a)
and similarly the residual r* is expanded such that
* = B¢+ Bt B(T. (86)

Then the three-dimensional preconditioner can be reduced to a simple algebraic equation
(0 + B +1)3E 0 = 50 )

where o;,8; and 7 are the eigenvalues with respect to separable derivative operfs,tors of
the preconditioner and E¢, En, E are the corresponding eigenvectors associated with e'ach
eigenvalue. Note that the overall memory for the pressure solution requires O(N 3, ie.,
only the field variables need to be declared.

4 Domain decomposition with Schwarz Alternating Proce-
dure

The solution of flow over a cylinder via the domain decomposition appm‘aefh consists. of
first dividing the computational domain into two blocks (or subdomains) with overlapping
areas, where the grids inside the overlapping area are not located at :{he same places.
Next implement the Schwarz Alternating procedure {SAP) for exchanging data b.etween
different blocks, i.e., solving the problem on each block separately and then updating the
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Figure 3. Two-dimensional grids for fiow over a cylinder
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Figure 4. Flow over a moving cylinder at Re = 100 with a) Fr = oo,
b) Fr = 1.15, c) Fr = 0.77
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velocity field on the overlapped interfaces. The advantages of this approach include (i)
less memory access, local rather than global memory and (ii) easy treatment of complex
geometry. The extension of the SAP technique for the solution of incompressible flow in
curvilinear coordinates will be straightforward by the proposed preconditioned method.

The SAP iterative solution of the incompressible Navier-Stokes equation in primitive
variable form for a two-dimensional stratified flow sketched in Fig. 2 is summarized by the
following algorithm:

1. First assume u™t! on AB. Usually u” will be a good initial guess.

2. Solve domain II employing the boundary conditions derived from the divergence of
velocity field on AB, where the pressure solution is obtained by the preconditioned
method.

3. With the interpolated solution of u"+! on domain III from step (2), solve domain
IUII employing the same type boundary conditions on CD to update u™*? on AB.

4. Repeat steps (2) & (3) until the velocity u™*! on AB, CD does not change.

In order to guarantee that consistent values of velocity (or pressure gradient) be gen-
erated in the overlapping domains II1, the divergence of velocity field V - u needs to be
actually computed in whichever domain IUITI or II is counted. Since u on domains III is
not known a priori, the divergence of velocity is only set to zero at the first SAP iteration
for step (2). According to this approach, the continuity equation is satisfied on domains
I and II but not on domain III, since the interpolation procedure somehow will produce
the nonzero value of the continuity equation. However, the error index of the continuity
equation on domain IIT will indicate how good the interpolation is.

5 Results and discussion

Fig. 3 provides the generated grids for flow over a cylinder with an aspect ration H/D = 20
based on the isoparametric mapping and domain decomposition technique. The radiation
boundary coundition with a uniform phase speed is applied on the downstream truncated
domain to ensure the minimal effect on the convective flow ont of the computational domain.
Fig. 4a shows the vortex shedding behind a cylinder at the Reynolds number 100 in a
homogeneous fluid (Fr = o0), and the secondary separation on the surface still persists.
The calculated drag Cp and lift Cy coefficients, 1.38 < Cp < 1.41, -0.27 < Cr, < 0.27
are in good agreement with published data [10]. As expected, when the stratified effect
is gradually increased (decreased Fr), the stratification will distort the wake and tend to
supress vortex shedding behind the moving cylinder. In a realistic enviroment, a moving
obstacle will be situated in one of the three different vertical regions: above (top mixing
layer), below (weak density gradient) or within a thermocline. Here we only focus on
the eylinder moving in a linear density-stratified region, With F'r = 1.15 the intensity of
voriex shedding clearly has been attennated due to the stratified effect as seen in Fig. 4b.
With stronger stratification, Fr = 0.77, Fig. 4c shows that the vortex shedding almost
disappears, except stationary separation exists. The calculated results compare well with
those investigated by the experiment [1].

6 Conclusions

An isoparametric pseudospectral element method combined with the domain decomposition
technique has been simulated for flow over a moving cylinder in a density-stratified fluid.
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The solution approach is first to divide the computational domain into two blocks with over-
lapping area where the overlapped grids are not located at the same places. The pressure
solution on the “0” domain is iteratively solved by the preconditioned conjugate residual
method. The data exchange between two blocks is then implemented by the Schwarz alter-
nating procedure. The numerical results show that the vortex shedding behind a cylinder
will be attentuated with increasing BV frequency (or decreasing Fr number).
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