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Abstract

When pseudo-spectral methods are used with domain decomposition procedures i
the numerical solution of partial differential equations, the use of multiple domains can
significantly effect the accuracy of the approximation. If large gradients occur near
the boundaries of the domain then the accuracy can be enhanced, while if the rapid
variations occur in the interior of the subdomains then the accuracy can be degraded.
We have developed an adaptive multi-domain method. In this method we employ func-
tionals, defined within each sub-domain, which measure the error in the pseudo-spectral
approximation. Using polynomial interpolation, these functionals can be evaluated for
arbitrary location of the interfaces. The location of the interfaces can then be deter-
mined so as to minimize the maximum error in all of the subdomains, or to equalize the
errors within the subdomains. We have implemented an adaptive multi-domain pseudo-
spectral method for the solution of one-dimensional wave equations. Computed results
demonstrate that the use of adaptive multi-domain methods can result in significantly
enhanced accuracy for a fixed number of collocation points.

1. Introduction. The accuracy of Chebyshev pseudo-spectral methods in approximat-
ing solutions to partial differential equations, can be degraded when used to approximate
solutions which have localized regions of rapid variation. Such problems occur in many
application areas, for example combustion, fluid dynamics, solid mechanics and wave prop-
agation. The approximations can exhibit spurious oscillations which can lead to nonlinear
instabilities. The accuracy is also sensitive to the location of regions of rapid variation.
There is significant evidence, for example, that pseudo-spectral methods are more effec-
tive in approximating functions where rapid variations or large gradients occur close to the
boundary of the region, as opposed to the interior, e.g. [5, 14].
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One approach to improve the accuracy of spectral and pseudo-spectral approximations
to rapidly varying functions is to employ mappings which have been determined adaptively
to minimize a functional of the solution which measures the error in the approximation
[1, 2, 3, 4, 10]. This adaptive procedure has been employed in the study of a variety of
problems where the solutions exhibit localized regions of rapid variation, for example in
combustion, and has been found to be effective when there is only a single region of rapid
variation or when there are multiple regions which are not widely separated.

When there are multiple regions of rapid variation which are widely separated, the ef-
fectiveness of many families of mappings degrades. In this case the accuracy of Chebyshev
spectral and pseudo-spectral approximations can be improved by employing domain decom-
position techniques in which the domain is sub-divided into two or more subdomains. If
the subdomains are properly chosen, for example to have each domain include only a single
region of rapid variation, accurate approximations can be obtained [5].

However, when pseudo-spectral methods are used with domain decomposition proce-
dures the accuracy of the approximation can be very sensitive to the location of the sub-
domains. If, for example, the regions of large gradients occur near the boundaries of the
subdomains then the accuracy can be enhanced, while if the rapid variations occur in the
interior of the subdomains then the accuracy can be degraded.

In many problems the behavior of the solution, in particular the location of regions of
rapid variation, can change significantly in time. In these cases the use of multi-domain
pseudo-spectral methods, with interfaces which are fixed in t{ime can result in inaccurate
approximations, even if the interfaces are chosen initially to provide adequate resolution of
the initial data.

In this paper we describe a procedure to determine the location of the interfaces adap-
tively based on properties of the solution. The procedure utilizes functionals which have
been previously employed in single domain adaptive procedures to estimate the error in the
pseudo-spectral approximation. In these applications the functionals are used to determine
coordinate transformations in which the error is minimized. In this paper the functionals
are employed to determine interface locations in which the errors are either minimized or
equally distributed among the different subdomains. The adaptive procedure is described
in section 2. In section 3 we illustrate the method with computations for a linear system of
equations describing wave propagation.

2. Numerical Method. We first describe the standard pseudo-spectral method. This
description will be brief, more details can be found in [6, 7, 9]. For concreteness we consider
a one-dimensional model equation

&) U = Uge + R{w), ~1<2<1,

where R(u) represents a nonlinear term not involving derivatives. We-assume that the
problem has been scaled to the interval I, {—1 < z < 1}. The solution is approximated by
expanding « as a finite sum of Chebyshev polynomials

J
(2) uuy =Y a;Ti(z).
7=0

In the pseudo-spectral method the expansion coefficients a; are obtained from collocation,
that is the function u; is forced to solve (1) at a set.of J + 1 points x;, called the colloca-
tion points. The unknowns of the problem are the values of us at the collocation points.
Pseudo-spectral methods are particularly well suited to nonlinear problems because the
nonlinearities are evaluated directly in terms of function values at the collocation points.
The expansion (2) is used only for the purposes of computing spatial derivatives. Typically
the collocation points are the Gauss-Lobatto points,
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z; =cos(jn/J) (§=0,...,J).

The major advantage of pseudo-spectral methods over finite difference methods is en-
hanced accuracy for a fixed number of collocation points. In fact pseundo-spectral methods
exhibit infinite order accuracy. That is, the error e = u — uy satisfies, in an appropriate
norm,

llell = O(J™7)

for all r > 0 provided u is sufficiently differentiable. This is in contrast to finite difference
methods where the error is of a fixed order, for example O(J~2) for a second order method.
In practice spectral methods have been shown to be significantly more accurate than finite
difference methods for a variety of problems in application areas such as fluid dynamics and
meteorology [6, 7, 9].

Pseudo-spectral methods, however, are prone to inaccuracies and oscillations when used
to approximate functions with localized regions of rapid variation which occur in many
application areas. In addition there is evidence that these methods are significantly more
accurate when the region of rapid variation is located close to the boundaries, for example
[5, 9, 14]. However even boundary layers can exhibit oscillations if the layers are sufficiently
thin.

One approach to enhance the accuracy of pseudo-spectral methods is to employ co-
ordinate transformations so that in the transformed coordinate the function varies more
gradually and so can be better approximated by a polynomial expansion. Specifically as-
sume that a family of mappings,

(3) 2 = q(s,3),

is introduced. Here z represents the physical coordinate, —1 < s < 1 is the transformed co-
ordinate, and & denotes one or possibly more free parameters. The pseudo-spectral method
can then be applied to the transformed equation to approximate the transformed function
u(g(s, &@),t). The effect of the mapping can be regarded as transforming the function to
be approximated to u(g(s,&)) from u(z). If the mapping is properly chosen u(q(s, &)) will
vary more gradually and so be more readily approximated by a polynomial expansion.

In applications involving the solution of partial differential equations an appropriate co-
ordinate system is generally not known beforehand and must be determined adaptively from
the solution. An adaptive procedure was described in [2]. In this procedure a functional
which monitors the spectral interpolation error is introduced and the coordinate transfor-
mation is chosen so as to minimize the functional. A family of such functionals was derived.
One member of this family is

(4) In(g) = ( /_ 11(529)2/1”(3)(13)%,

where d
w(s)=V1-3s2, L= w(s)d—s.

If we consider the expansion of a function in terms of Chebyshev polynomials
o0
(5) w= 2 a;Ti(),
7=0

where
o = 2/(re;) [ (o)) wls)is,

and
c=2,¢=1J>0,
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then it can be shown [2] that I3(g)/;j? leads to an upper bound on the size of the coefficients
aj,ie.

(6) | a5 1< 2/(mej)a(u)/5°

It was further shown in [2] that (6) leads to gives an upper bound on the maximum norm
of the error in approximating « by either its spectral or pseudo-spectral approximation.
Therefore assuming J is given, (4) can be used to estimate the size of the error (alterna-
tively with (4) known and an error level given the number of collocation points, J, can be
estimated.

This method is effective in enhancing the accuracy of approximations for solutions with
a single region of rapid variation, or for solutions with multiple regions of rapid variation
which are not widely spaced. However single domain computations using adaptively cho-
sen coordinate transformations are less effective in approximating functions with multiple
regions of rapid variation which are widely spaced, such as a function consisting of several
separated spikes [5]. This procedure is less effective because the mapping families depending
on a small number of parameters can not generally increase resolution in widely separated
spatial regions. In such cases a possible approach is to employ multiple domains.

We first describe a spectral multiple domain method. In such a method the interval T
is divided into one or more subintervals and the problem solved in each subinterval with
appropriate interface conditions connecting the solution across the subdomain boundaries.
At the interface points, appropriate interface conditions are imposed, for example continuity
of 4 and u, for problems involving two spatial derivatives or characteristic conditions for
hyperbolic problems. Discussions of appropriate interface conditions can be found in [7, 8,
12, 13]. In the applications described in Section 3, we solve a linear hyperbolic problem
and each characteristic variable is taken from the appropriate subdomain, depending on the
propagation direction.

Multiple domain approaches offer several advantages. One major advantage is the pos-
sibility of parallel computation in which the computations associated with the different
subdomains can be partitioned among different processors. In addition they often allow
better conditioned matrices and larger timesteps than single domain calculations. Another
important effect of multiple domain approaches is that they can significantly enhance (or
degrade) the accuracy of the approximation.

The use of multiple domains can lead to an improvement in accuracy by (a) resolving
small scale structures in the problem by introducing domains corresponding to the length
scales appropriate of the small scale structures (b) choosing the interface so that the small
scale structures or rapid variations occur near the boundary, and (c) isolating different
regions of rapid variations within each subdomain and then employing mappings within each
subdomain as described above. These properties depend on the choice of the subdomains
and a poor choice can lead to a significant degradation in accuracy. In this paper we describe
adaptive procedures to determine the location of the interfaces based on properties of the
solution and the functional (4). The principles are based on either minimizing the maximum
error within each subdomain or equalizing the error within the different subdomains. The
methods are described here, more details can be found in [11].

We consider, for simplicity only, the case with two subdomains with interface point @,
although the methods have been implemented using more than two subdomains. Assume
that we nave Ny points in the first subdomain and N, points in the second subdomain. If w
is a function fo be approximated then we denote by w!, w2, the function w restricted to each
subdomain. Each subdomain can be mapped into the interval I by a simple linear mapping.
We can therefore consider w! and w? as functions of s where —1 < s < 1. Within each
subdomain we can then construct the functionals (4) to monitor the error in the subdomain,
ie. Iy(w')/N}, I(w')/N}. We note that these quantities depend on both w and Q.
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Generally there are many parameters to consider in an adaptive domain decomposition
procedure. In addition to the locations of the interfaces, the number of domains must be
determined and the number of points within each subdomain. In this paper we consider
the case where there is an equal number of points in each subdomain, This restriction is
generally preferable for parallel processing as the load can be equally balanced among the
different processors.

The computational resources will generally be used most efficiently if the errors within
the two domains are comparable. The errors within each subdomain can be equalized by
determining ) so that .

) | L(w!) - Iy(w?) |

is minimized. We note that if the function w is given the value of (7} is a function only of Q.
An alternative formulation is to minimize the largest error within the different subdomains.
This strategy can be implemented by choosing @ so that the maximum of L(w!), I(w?)
is minimized. This approach can also lead to a significant improvement in the accuracy of
the approximation although we have found that equalizing the errors tends to be somewhat
more flexible and robust, particularly when there are more than two subdomains. In the
remainder of this paper we will concentrate on the implementation of {7) to adaptively
determine the location of the subdomains.

3. Results. We consider the hyperbolic system

(8) Us = Vg, v = Cup,—1 < 2 < 1.

This system models the propagation of one dimensional waves with speed C(z). If C is
constant the waves travel with constant shape, i.e. the wave propagation is non-dispersive,
while if C is non-constant the propagation is dispersive. At the boundaries z = +1 we
impose the boundary conditions

v+ C(Du=0,z2=1,
v—C(Qu=0,z=-1.

These boundary conditions assume that the data corresponding to characteristics entering
the region from the exterior is zero. Both v and v are specified as Gaussians at ¢ = 0. The
precise relationship between u and v depends on whether we want the solution to describe
only a single pulse propagating in one direction or two pulses propagating in different
directions. In the first case we impose

u=1v=g(a),g(x) = exp(—02>/2),

while in the second case u and v are different multiples of g(z). We have obtained results
for o = 50 and for o = 100.

The system (8) is solved using a Chebyshev pseudo-spectral multi-domain method. We
assume an equal number of points in each subdomain. The equations are updated in time
using a three stage, low storage Runge-Kutta scheme. At the domain interfaces, the solution
is patched using characteristic variables from the appropriate domain [12].

The locations of the interfaces are varied dynamically during the calculations in order
to equalize the error, as measured by the functional (4), in each sub-domain. We describe
some details of the implementation. Further details can be found in [11}. Consider first the
case where there are two subdomains with an interface point z = . Each subdomain is
mapped to the interval —1 < s < 1 using a linear mapping. Letting w denote some specified
combination of » and v, we can compute L(w') and L(w?) At selected intervals of time,
we search for a new interface. The interface is determined so that
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| L(w') - I(w?) |

is minimized. This is done as follows. Consider a trial value for the interface point §. The
solution w can be interpolated to the collocation points in the subdomains determined by
@ using the global Chebyshev expansion for w. We denote the interpolated functions as wt
and %2. We then compute :

(9) | (@) - I(5) |-

Thus (9) can be computed for any value . We then employ a bisection method to minimize
(9). Generally we have found that only a crude minimization is necessary in order to obtain
significant improvements over single domain and fixed multi-domain calculations.

We have also implemented this method with three subdomains. In this case we have two
interface points @1, Q2. The new values of the interface points are obtained by proceeding
from left to right. That is we first hold @, fixed and obtain a minimum by varying Q1 and
attempting to equalize the values of (4) within the subdomains on either side of Q3. We
then hold the new value of ¢); fixed and find a new value of Q.

We first illustrate the method for the case of a single Gaussian pulse initially centered
at = 0 and propagating to the left. In this case we set C(z) = 1 so that the pulse should
propagate without distortion. We used two subdomains. In Figure 1 we plot u(z,t = 0.5)
for the adaptive two domain calculation with 9 points in each subdomain, a two domain
calculation with the interface fixed at £ = 0 and 9 points in each subdomain, and a single
domain calculation with 17 collocation points. In view of the coarse grids, we have interpo-
lated the solution to a fine grid for plotting purposes using the Chebyshev interpolant. This
was done in all of the graphs presented in this paper. The reduction in numerical dispersion
with the adaptive multi-domain procedure can be clearly seen from the figure.

1.00 -
0.80 1 —— ADAPTIVE TWO DOMAIN
----------- SINGLE DOMAIN
0.60 1 —— FIXED TWO DOMAIN
0.40 -
0.20 -
0.00 - —
; \/
A
-0.20 T — r g
-1.00 -0.60 -0.20 0.20 0.60 1.00

T
1. Single pulse with C = 1.

We next illustrate a case with variable propagation velocity. In this case C(z) = 1+22%.
We compare the computed solutions using two domains with a single domain fine grid
solution which we take as exact. This solution was obtained using 65 collocation points.
In Figure 2a we plot u(z,t = 0.4) for both the fine grid and the solution obtained using
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the adaptive multi-domain procedure with 9 points in each subdomain. In Figure 2b we
compare the fine grid solution with solutions obtained from a single domain calculation with
N = 17 and a two domain calculation with the interface fixed at z = 0 and with 9 collocation
points in each subdomain. The adaptive multi-domain solution is nearly indistinguishable
from the fine grid solution while the nonadaptive calculations exhibit noticeable differences.

0.80 - —— FINE GRID SOLUTION
------- - ADAPTIVE TWO DOMAIN

0.60 4
o 0.40 -

0.20

0.00 1

-0.20 T J j )
-1.00 -0.60 -0.20 0.20 0.60 1.00

T

2a. Computation with C = 1 + z? comparing fine grid solution with adaptive two domain
calculation.

0.80 - —— FINE GRID SOLUTION
- SINGLE DOMAIN
0.60.- —— FIXED TWO DOMAIN

> 0.404

0.20 1

0.00 —]

/,..
"'0.20 T T T T
-1.00 -0.60 -0.20 0.20 0.60 1.00
T

2b. Computation with C = 1+ z? comparing fine grid solution with single domain and
fixed two domain calculation.



202 BAYLISS ET AL.
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3a. Two pulse calculation, comparing exact solution with adaptive three domain calcula-
tion.

1.40 -
1.20 -
— EXACT
tooy O} SINGLE DOMAIN
~— FIXED THRE
0.60 | E DOMAIN
= 0.60-
0.40 -
0.20 -
0.00 § N
—0'20 T T T T
-1.00 -0.60 -0.20 0.20 0.60 1.00

T

3b. Two pulse calculation, comparing exact solution with single domain calculation and
fixed three domain calculation.
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As a last example we consider a three domain calculation. In this case C = 1 and we
set u = g(z),v = g(z)/2 at ¢ = 0. Thus there are pulses which emanate from z = 0 in
both directions. We have considered the cases ¢ = 50 and o = 100. The adaptive pro-
cedure improves the accuracy in both cases. We present results for the case o = 100. In
Figure 3a we compare u(z,t = 0.5) for the fine grid exact solution for u with an adaptive
three domain calculation using 9 points in each subdomain. In Figure 3b we plot the exact
solution, the results of a single domain calculation with 25 collocation points and a three
domain calculation with 9 points in each subdomain and the interfaces fixed at = = £1/3.
The improvement in accuracy due to the adaptive procedure is evident.
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