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Abstract. The presence of disjoint zones, comprising shear
layers, separated regions, triple deck structures etc., necessitate use
of grid stretching or some type of grid adaptation to optimize the
number of grid points. Domain decomposition methods, wused in
conjunction with an efficient reduced Navier Stokes (RNS) fluid dynamic
representation and an adaptive multigrid algorithm, allow for provision
of optimal grid resolution. Adaptivity in the direction of refinement
is achieved by splitting the local grids, that result from the adaptive
multigrid procedure, into several subdomains. This splitting is based
on normalized truncation error estimates of key derivatives. Questions
in regard to conservation at grid interfaces are addressed. The result
is an efficient, composite multigrid procedure. The quality of

solutions obtained and gains in computer resources requirements are
highlighted.

1) Introduction. Discrete solution procedures that are designed
to accurately compute high Reynolds number flows, necessitate the use
of local grid refinement, in regions of the flowfield wherein the
velocity or pressure gradients can be very large, e.g., boundary or
shear layers, shocks waves etc., to efficiently capture these flow
gradients. These regions are generally confined to relatively small
portions of the overall flow domain and are not known a priori.
Therefore an adaptive grid, domain decomposition procedure is most
suitable for identifying and resolving such 1local but globally
important phenomena.

Local directional refinement that is driven by specified flow
parameters and accuracy limits can be achieved by sequentially
splitting the overall flow domain into a varietv of subdomains. In the
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present analysis this domain decomposition strategy is applied, in
conjunction with an adaptive multigrid algorithm in order to achieve
the appropriate level of grid refinement. In this approach, each grid
in the multigrid hierarchy, is of equal or lesser extent than of all
the coarser predecessors. The subgrids are split into several
multidimensional subdomains that are defined by specified directional
and global resolution requirements. A similar approach has been
presented in [9], although in this formulation no attempt is made to
meet the the disparate need for refinement in the different coordinate
directions. In the present investigation this concept has been included
by basing the subdomain process on requirements that allow for varying
grid resolution in multiple (two) directions and segmentally throughout
the flow field.

For the current analysis two dimensional, steady, incompressible,
laminar flow examples has been considered. The reduced Navier Stokes
(RNS) equations are used to compute the trailing edge flow past a
finite flat plate and in the reversed flow region associated with a
trough geometry. The use of the RNS system leads to a precise
prescription of surface normal boundary conditions on the 1local
subdomain boundaries. This ensures that global mass conservation
requirements are satisfied automatically. This is generally not the
case with characteristic based, time dependent Navier Stokes schemes
where special care has to be taken in order to satisfy global mass
conservation. The primitive wvariable RNS system 1is also directly
applicable on non-staggered grids, unlike other incompressible
primitive variable Navier Stokes formulations that require pressure
Poisson solver or artificial compressibility concepts.

2) Governing equations and Discretization. The RNS system of
equations in sheared cartesian coordinates can be written in
non-conservation form as follows.

ug + vn =0 Continuity.
2

ua, +uy’ (V+ yu),. + V [{(1+y’Du +y’ V. 1 + =1u ~momentum.

¢ yb( v )g [( Yy T YL 7I] pg 2 Y €~momentum

u(V + y;)u)g + V(V + y;u)n + p_q = 0 n~-momentum.

E=x; =Yy - yb(x) ;s V=v - y;u is the contravariant velocity
component in the 7 or normal direction (for y;(x) << 1) and yb(x) is

the surface definition. (u,v) are the cartesian veloclities in the (x,y)
directions. This system of equations is obtained by neglecting the
£-diffusion terms in the £-momentum equation and all diffusion terms in
the ’'normal’ or np-momentum equation. These terms are higher order in
the parameter expansion of the full Navier Stokes equations. The
resulting RNS system is in effect a composite of the Euler and 2"
order boundary layer equations [3]. The discrete continuity equation is
centered at (i, j-1/2). The &-momentum is centered at (i,3) and the
f-momentum equation at (i,j+1/2). Trapezoidal two point (i,jt1s2), or
three point central (i,j) differencing, 1is used for all normal
derivatives; all convective axial derivatives are upwind differenced;
the pE term in the £-momentum equation and uE term in the continuity

equation are differenced based on a pressure based form of flux vector
splitting [7] wherein the pg term is represented by
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pg = (pi - pbd)/A§i+ (1-w) (pi+1— pi)/AEl

where w = [7M§/(1 + (7-1)M2),1]min

Here, Mg is the streamwise Mach number and ¥ is the ratio of specific

heats. This reduces to a simple ’'forward’ difference for incompressible
flow, and this introduces an elliptic acoustic interaction or upstream
pressure influence through the pE = (pi+1 - pi)/(Ai)i contribution.

3) Grid Structure. In general, the Nth multigrid level consists
of several subdomains. Each multigrid level has an equal or lesser
extent than the coarser grids of the multigrid hierarchy. The first two
grid levels cover the entire computational domain. The mesh size is
initially quite coarse in all directions in which adaptivity is to be
prescribed. Each of the multigrid levels comprise several subdomains,
which derive part of its topology from the subdomaining pattern of the
coarser predecessor. Within each subdomain, of a given multigrid level
the refinement is specified independently. Thus, each subdomain of a
multigrid level can act as a parent for a subdomain or subdomains at
the next finer multigrid level. If at a given multigrid level,a
particular subdomain is refined in only one direction, e.g., m, then on
subsequent multigrid levels, further refinement within this subdomain
is performed only in the m—-direction. A similar strategy is adopted for
the £-direction. Only subdomains that result from refinement of a
parent subdomain in both the & and 7 directions require further
decomposition according to the direction selective refinement
specifications.

4) Refinement Strategy. In most adaptive gridding methods, on any
grid level, an estimate of the truncation error of the discretized
system of equations is used to identify those regions that require
finer grid resolution (Ref [1], [9]1). The overall truncation error
estimates, however, do not provide information on the specific
direction(s) that require refinement. Therefore for regions requiring
higher resolution, the grid is refined in both directions, even though
only one coordinate gradient may be significant. In order to achieve
directional refinement adaptivity it 1is necessary to monitor the
truncation error of selected gradients or derivatives. For the problems
considered herein, the truncation error for the pressure and vorticity
gradients, e.g., p“S and um’, are monitored in order to define the

regions that require refinement in, £ and 7, respectively.

The truncation error estimate is obtained from the solution on two
successive grids of the multigrid hierarchy. In order to determine the
truncation error in a € [(and/or 7) derivative, a finer grid must be
used in the € (and/or 7m) direction. Although the p5 and u"n terms are

the key derivatives for the present analysis, the truncation error of
these terms alone will not suffice to ensure that uniform accuracy is
achieved throughout the flow domain. The global truncation error for
the full discrete system of equations is monitored for this purpose.

Two types of adaptive calculations are performed for the
geomelries considered herein.

a) One  dimensional adaptive calculation {semi~coarsening
multigrid), with adaptivity in the £ direction and with a preset
stretched (adapted) 3 grid.

b) Two dimensional adaptive calculation, in which the refinement
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is automated in both directions and uniform grids are used in each
subdomain. Grid stretching is not applied, except as the grids change
discretely from subdomain to subdomain.

The wunderlying procedure 1is identical for both methods. The
solution is first obtained on a coarse grid, the coarseness being in
the direction(s) in which adaptive multigrid refinement is to be
considered. The grid is refined over the entire domain, and an improved
solution is obtained. For the one-dimensional adaptive calculation,
refinement is performed only in the £ direction. From the two full grid
solutions, the truncation error of the key derivatives and also of the
global discrete system is estimated using Richardson extrapolation. Two
types of refinement criteria are used. In one procedure, a tolerance is
set for the truncation error and, in the other, the truncation error at
all points is normalized with the maximum value; a tolerance was set
relative to this normalized value. The results obtained with the two
methods were quite similar. The regions that require refinement in the
respective direction(s) are identified.

For the one dimensional (in £) adaptive calculation only one
subdomain results. This decreases in extent as the grid level
increases. For the problems considered herein, the significant flow
gradients in £ are centered around the small region €] < Eo' For more

complicated flows, it is possible that even with a one-dimensional
adaptive calculation disjoint subdomains are necessary to significantly
improve the efficiency over a non-adaptive calculation. For the two
dimensional adaptive calculation, however, different regions will have
different refinement requirements; therefore, it is necessary to define
regions that have disparate grid regquirements. Subdomains requiring
refinement in the % direction, or the & direction, or in both (§,7)
directions, are identified. Although different grid sizes are used in
different regions, within each subdomain, uniform grids are specified.
This procedure is applied on the third and higher levels of the
multigrid hierarchy. The calculation proceeds with intergrid multigrid
transfers. On converélence, the truncation error estin}‘ation process is
repeated using the N multigrid and the stored (N-1)" multigrid level
grid solutions.

5) Multigrid Implementation. For the RNS system of equations, a
semicoarsening multigrid procedure has been presented in [4] to
accelerate the convergence of the global pressure relaxation procedure
(Ref [6]). A von Neumann analysis of the linearized form of the RNS
system shows that the rate of convergence of the global procedure is
dictated by the maximum eigenvalue as given by

: 4

A~1- cinz(Ag)“Ngfnx
where c, is a constant of O(1); NE is the number of stations in the £
direction; 0, is the normal boundary location, and A£ is the axial step

size. The convergence rate is significantly improved if the extent of
the domain in the two directions is reduced. The current multigrid
domain decompesition procedure, in effect, reduces n, whenever a fine

A£ is specified and thereby achieves comparable convergence rates even
on fine grids.

In the present application the multigrid method is implemented in
a Full Approximation Storage (FAS) mode. The global pressure relaxation
essentially reduces to a block SOR {£ = constant) procedure for the
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pressure in attached flows and for the pressure and velocities in
reversed flow regions. At each station, an implicit, fully coupled
tridiagonal system is inverted. When highly stretched grids are used to
resolve the boundary layer, a semi-coarsening mode of the multigrid
method has been shown to be more effective than the standard full
coarsening mode. In this mode, the streamwise grid alone is coarsened
when the calculation shifts te coarser grids. The same 7 grid is
retained. Significant gains in the overall effort was achieved using
this approach. It was found that a source term, Israeli source term
(IST), first introduced in [5], is required in order to achieve
satisfactory performance of the multigrid procedure. The IST acts as a
form of under-relaxation of the pressure field. This leads to much
smoother residual fields, which are essential for good representation
on coarser grids. However the IST leads to a slower asymptotic
convergence rate on a given grid. The domain decomposition procedure
reduces this effect to a certain extent. Since the truncation error in
the pE term is used to determine regions needing refinement in the §

direction, subdomains in which the grid is only refined in the 7
direction, should have a well converged pressure field. Thus it is
possible to perform the calculation without the IST in these
subdomains. In the present calculation, the one-dimensional adaptive
calculation adds an element of sub-domaining to the semi-coarsening
analysis presented in [4], so that only portions of the global domain
need fine grid resolution in the £ direction. For the two-dimensional
adaptive calculation, the multigrid algorithm is implemented in either
the standard full coarsening mode, or the semi-coarsening mode. One
fine grid work-unit 1is comprised of one sweep in each subdomain
belonging to that multigrid level. This includes the interdomain
transfer processes. The decision to move the calculation back to a
coarser grid is based on the rate of convergence on each subdomain. If
the ratio of the residual norm between two successive global
iterations, in any subdomain belonging to that multigrid level, falls
below a certain value, then the calculation is restricted to the
coarser level., The fine grid solution is not corrected until the
residuals in the coarse grid subdomains are all driven to a value one
order of magnitude lower than the maximum residual over all subdomains
in the finer level. The multigrid components are summarized as follows,
a} Relaxation : u: = Skui . where S° is the global pressure
relaxation operator and uk on convergence satisfies Lkuk = £* Here k
represents the present or finest multigrid level and n represents the

iterate. Lkuk = £* is the discrete approximation of the continuous

problem Lu = f
b) Restriction to coarse grid where the following equations are solved,
k-1_k k-1Tk-1_k

Lt I r, + L'7L7u  for points on the coarse grid
which lie within the fine grid and
L% = £%? for points on the coarse grid that lie outside the

k-1

extent of the fine grid. Here rﬁ = £* - Lkui. 1 and I:_i are fine to

coarse grid transfer operators. The full-weighting operator recommended
in [2] was used to transfer the residuals and the solution was
restiricted by using a simple Injection operator.

¢} Prolongation or Correction where the fine grid solution is corrected



ADAPTIVE MULTIGRID DOMAIN DECOMPOSITION SOLUTIONS 591

with the solution from the coarse grid modified problem.

k K k k-1 k-1 k k .

uL, =y Ik~1( - I un), where Ik_1 is a coarse to fine
interpolation operator.

It should be noted that in the present calculation, the multigrid
transfer operations play a dual role. Apart from accelerating the
convergence of the relaxation procedure, they also provide information
from finer grids to the coarser grids, and thus improve the accuracy of
the solution in regions of the coarser grids where refinement was not
required. This is because the second term in the multigrid restriction
process, acts as a truncation error injection term and improves the
discrete approximation on the coarse grid. Thus on the coarser grids,

instead of solving L*u* = f*! everywhere, we solve
¥4 = v in part of the domain, where T = Lknllz_luk
This is closer to the continuous problem Lu = f. Here L is the

continuous counterpart of the discrete operator L*? and u is the exact

solution to the continuous problem ; W™ is the exact solution to the

discrete problem and U is the improved solution due to the modified
right hand side of the discrete approximation.

6) Interdomain transfer of boundary ‘conditions and Conservation at
grid interfaces. For a given subdomain, the following boundary
conditions are to be prescribed.

u=v=0atn=0;u=1,p=0atn=nmax; p€=0at£=€mx;

u, and v = free stream values at € = 0.
If a subdomain has its outflow at some &€ < Em, then the boundary

condition on pressure changes from Neumann to Dirichlet type. Also, if
the lower boundary of a subdomain is at some 7 > 0, then non-zero
velocities have to be prescribed. In time dependent, characteristic
based, Navier Stokes computations, that use such locally embedded
grids, boundary conditions are required for all variables i.e., u, v,
and p. Special care has to be taken to ensure that mass conservation is
not violated locally or globally.

In the BNS formulation, this difficulty does not occur as the
normal velocity v in 7, or u in £, is not prescribed at the upper or
lower, or outflow boundaries. Only the tangential component u 1is
prescribed at the upper interface or interdomain boundary. The RNS
differencing allows for the calculation of the normal velocity at the
outer boundaries and pressure at the body surfaces. The normal velocity
is computed from the continuity equation and therefore mass
conservation is automatically satisfied on all levels, for all
subdomains. This eliminates the need for special interpolation formulae
to ensure conservation of mass when the boundary conditions are
prescribed from the coarse grid solution. Thus weak instabilities, that
arise when such methods are applied to Navier stokes formulations
without satisfying mass censervation, do not appear in the present
method. Direct evaluation of the pressure at inflow or lower boundariesg
also eliminates the need for special pressure boundary conditions.

The calculation is performed sequentially rather than in parallel
in the various subdomains. As such the boundary conditions at the
inflow and outflow stations for each subdomain are updated with the
latest available values. The overlap allowed in the subdomaining
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process follows the following rules.
a) The last station of any subdomain, which is at some & < gmax

coincides with the first station of the subdomain to its right, (if one
exists), where the pressure is computed.

b) Similarly, the inflow station of any subdomain, which is at some £>0
coincides with the last station on the subdomain to its left, (if one
exists), where the velocities are computed.

c) If the inflow station or the outflow station of a given subdomain
coincides with the physical boundaries of the global flow field then
the original boundary conditions of the problem are used for these
subdomains.

d) If there are no subdomains to the right for the cases in a), or if
there are no subdomains to the left for the cases in b), then these
boundaries are updated using coarse grid values during the multigrid
prolongation process.

In the vertical direction no overlap is necessary. If. a subdomain
has only one of its horizontal boundaries in common with another
subdomain, then updating the boundary conditions along this edge, after
one sweep in all subdomains, leads to an iterative divergence on this
subdomain; this influence gradually filters through to other
subdomains. If these boundaries were updated through the multigrid
transfer processes, then the calculation is convergent. This reflects
the fact that an update of just one boundary after each sweep, with the
other three updated only during the multigrid transfer process, leads
to an inconsistency. This constrains the variables from adjusting to
changes that occur dynamically, as the solution evolves in the various
subdomains. It 1is also possible to perform the calculations in
parallel, for a given multigrid level that comprises more than one
subdomain by lagging the updating process by one sweep. This approach
has not yet been implemented in the present calculations.

7) Results and Discussion. The first problem considered is the
flow past the trailing edge of a finite flat plate. Fig.1 shows the
grid obtained from the one~dimensional adaptive calculation. Note that
the finer grids zoom in around the trailing edge located at x = 1.0
{The figure is scaled in the x direction by a factor of 2). The finer
grids also reduce in extent in the 7 direction although the adaptivity
is prescribed only in the £ direction. Each multigrid level contains
only one subdomain that is further refined in the finer levels. Fig.2
shows the composite grid obtained by prescribing two dimensional
adaptivity. Note that within each subdomain uniform grids are
prescribed. Fig.2 is an overlay of seven multigrid levels, each
comprising several subdomains. In each level it was found that the
subdomain, in which refinement in both directions was performed, was
always centered around the trailing edge. This validates the refinement
strategy. Both of these computations were compared with a full
refinement calculation, which used a uniform fine grid in £ and a
stretched 5 grid. The grid stretch factor for the latter was chosen by

specifying the pinimum and maximum Ay values and the location of 'nmx

applied in the fwo dimensional adaptivity calculation. Multigrid
acceleration in a semi-coarsening mode was used for this calculation.
The same stretched 5 grid was used for the one dimensional adaptive
calculation. Fig. 3 shows the comparison of the Cp variation obtained

from the three calculations. A global truncation error tolerance of
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0.05 was specified for this computation. Note that there is good
agreement in the predicted peak pressures. Table 1 summarizes the
computer memory and CPU requirements for the adaptive calculations.
They are given as percentages of the full refinement calculation.Note
that the memory requirement for +the one and two dimensional
calculations are very close. This signifiies that the 7 stretching used
for the one dimensional calculation is nearly optimal. However it is
not always possible to prescribe an optimal stretch factor a priori.

Table 1.
Full refinement
Aspect Geometry Two ? One P with stretched
Adaptive Adaptive .
7 grid
T.E. 18.03 % 15.10 % 100.0 #%
CPU Trough (Sep) 39.80 % - 100.0 %
Trough (Unsep) 7.10 % 16.80 % 100.0 %
T.E. 12.90 % 13.22 % 100.0 %
Memory| Trough (Sep) 16.32 % - 100.0 %
Trough (Unsep) 5.10 % 63.4 % 100.0 %

The grid of Fig.2 shows that the interaction from the trailing
edge only affects a finite region around the trailing edge. From
asymptotic triple deck theory, three layers with different length
scales can be_ identified (Ref [8]), namely, a lower viscous rotational
deck of O(Re™°), a middle inviscid rotational deck of O(Re ~°) and
an upper inviscid irrotational deck of O(Re—&Q). Since the vorticity
is zero in the upper deck, and since vorticity 1is the parameter
monitored to prescribe refinement in the % direction, no 7 refinement
should be necessary in the upper deck. The grid obtained from the two
dimensional adaptive calculation displays, in each multigrid level, a
region away from the body that is only refined in the £ direction. This
region, in the finest multigrid level, will represent the order of
extent of the upper inviscid deck. Estimates for the extent of the
other iwo decks can then be obtained. In more complicated flows, e.g.,
turbulent flow past the same geometry, for which analytical methods
cannot be applied easily, such information can be very valuable in
prescribing the necessary resolution in appropriate regions. In
problems where the diffusion neglected in the RNS approximation becomes
important, these effects can be added as an explicit deferred
corrector. where they are necessary.

The second geomeiry to be considered is the flow past a trough.
Both unseparated and separated flows were computed using the two
refinement strategies. The trough geometry is specified as

y, = -D sech{4(x~x0)] , where D represents the maximum depth at
the location xG The wvalues xb=2.5 and Re = 80000 are used for the

present calculations. The grid obtained from the two dimensional
adaptive calculation, for separated (D=0.03) flow, is shown in Fig 4.
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Note that the refinement in the 7 direction extends to a much greater
than that for the finite flat plate. This is due to the fact that the
maximum.vorticity occurs near the outer edge of the separation bubble.
The reversed flow region is relatively vorticity free, but the current
refinement strategy assumes that regions needing refinement in the 7
direction will have its lower boundary as the wall, and hence does not
take this into account. Fig 5. shows the pressure variation comparison
obtained from the three calculations for unseparated flow (D=0.015).
Fig. 6 shows the skin friction variation comparison for the separated
(D=0.03) flow. Once again good agreement is obtained, with significant
gains in computer resource requirements (See Table 1). The separation
and reattachment locations computed by the two dimensional adaptive
calculation are at £=2.31 and £=2.54 respectively and that predicted by
the full refinement calculation are at &£=2.31 and £=2.53. This further
confirms the validity of the domain decomposition approach. All results
presented are in agreement with earlier results presented in [4] and
[6] for the same geometries.

8) Summary. An adaptive multigrid domain decomposition method has
been used to efficiently compute incompressible laminar flows with the
RNS asymptotic system of equations and a pressure flux-split
discretization. Significant gains in computer resources has been
achieved. Good agreement is obtained between solutions computed using
the present technique and standard non adaptive full refinement
computations and earlier results presented. Investigation for internal
geomeiries with multiple regions of flow reversal are in progress.
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