CHAPTER 1

Additive Schwarz Methods for Elliptic Finite Element
Problems in Three Dimensions

Maksymilian Dryja*
Olof B. Widlundt

Abstract. Many domain decomposition algorithms and certain multigrid meth-
ods can be described and analyzed as additive Schwarz methods. When designing
and analyzing domain decomposition methods, we encounter special difficulties in
the case of three dimensions and if the coefficients are discontinuous and vary over a
large range. In this paper, we first introduce a general framework for Schwarz meth-
ods. Three classes of applications are then considered: certain wire basket based
iterative substructuring methods, Neumann-Neumann algorithms with low dimen-
sional, global subspaces and a modified form of a multilevel algorithm introduced
by Bramble, Pasciak and Xu.

Introduction. In this paper, we discuss additive Schwarz methods for solving sys-
tems of linear algebraic equations, which result from finite element approximations
of second order, elliptic problems in three dimensional, bounded regions. A general
framework is presented which is quite useful in the design and analysis of a variety
of domain decomposition and some multigrid methods. Three methods are then
described and analyzed. They are extensions of methods previously considered in
the literature for solving the systems of algebraic equations which correspond to the
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interfaces between the substructures. We also consider problems with discontinuous
coefficients with a great variation in the values.

The first method considered is an iterative substructuring algorithm recently
developed by B. Smith [9], [10]. The second is a domain decomposition method
developed by R. Glowinski, P. Le Tallec, Y.-H. De Roeck et al., see [1], [3]. Finally,
we consider a variant of a multigrid-like method discovered by J. H. Bramble, J. E.
Pasciak and J. Xu [2].

The paper is organized as follows. In Section 2 a finite element approximation
of second order, elliptic problems is considered. A system of algebraic equations
corresponding to the discrete problem is reduced to a system defined on the inter-
faces of the substructures after eliminating the interior variables associated with
the interior nodal points of each substructure. This reduced system with the Schur
complement matrix can be solved by a variety of iterative methods.

In Section 3, a general abstract framework for additive Schwarz methods is
introduced, see also [5], [6]. In Sections 4, 5 and 6 the three algorithms mentioned
above are described and analyzed inside this framework. In particular, we discuss
problems with discontinuous coefficients and show that the rate of convergence of
certain variants of the methods can be made independent of the variation of the
coefficients.

The results of Section 4 of this paper have been obtained jointly with Barry
Smith; see further [4].

2. Differential and finite element model problems. To simplify the presenta-
tion, we discuss only two model problems, a standard Poisson equation and a special
second order problem with discontinuous, piecewise constant coefficients. We call

them model problem I and II, respectively. The continuous model problem I is of
the form:

Find u € H}(Q) such that

(2.1) a(w,v) = f(v), ve Hy(Q)
where
(2.2) au,v) = fﬂ Vu-Vods, f(v)= fg fodz

For simplicity, we let  be a bounded polyhedral region in three dimensions. A
coarse triangulation of Q is introduced by dividing the region into nonoverlapping
simplices Q;, 7 = 1,..., N, which are also called substructures. The substructures
§); are further divided into elements ¢;. We associate parameters H and k with
the coarse and fine triangulations and assume that these triangulations are shape
regular in the sense common to finite element theory.

Let V*{Q) be the finite element space of continuous, piecewise linear functions

defined on the fine triangulation and which vanish on 8, the boundary of . The
discrete model problem 1 is of the form:

Find up € V" such that
(2'3) (Z(ll-h, Uk) = f(vh) y h € Vh
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or alternatively, find the vector z of nodal values such that
(2.4) Kr=1b

Here K is the stiffness matrix, = is the vector of nodal values and b the load vector.

Our goal is to describe and analyze iterative methods for solving (2.2) which
can be regarded as additive Schwarz methods.

All our results can be extended to general conforming finite element approxi-
mations of any self-adjoint, second order, elliptic problem. This includes the case
when there is a great variation in the values of the coefficients. Here we consider
only the case when

(2.5) a(u,v) = /Qp(:c) Vu - Vvdz

where p(z) > 0 is a piecewise constant function. Equation (2.1) with the bilinear
form (2.5) is called model problem II. We assume that the jumps of p(z) occur only
at substructure boundaries. Thus, p(z) = p; = constant > 0 on the substructure ;.
The methods discussed can be generalized to the case when p(z) varies continuously
in each subregion.

Let K be the stiffness matrix given by the bilinear form (2.2) or (2.5). In the
first step of many iterative substructuring methods, the unknowns in the interior
of the substructures are eliminated. This reduces the system (2.4) to a system of
linear algebraic equations associated with the interfaces only. We now describe this
procedure.

Let K be the stiffness matrix of the bilinear ag,(ux, vy) which represents the
contribution of the substructure Q; to the integral ag(up,vs) = a(us,vr). Let z
and y be the vectors of nodal values that correspond to the finite element functions
uy, and vy, respectively. Then the stiffness matrix K of the entire problem can be
obtained by using the method of subassembly,

(2.6) TRy =3 W KOy

Here 2 is the subvector of nodal parameters associated with €, the closure of Q;.
We represent K) as

Ky K )
2.7 [ 1
=0 (i
dividing the subvector () into two, xf,i) and mg), corresponding to the variables
which are interior to the substructure and those which are shared with other sub-
structure, i.e. they are associated with the nodal points of 8Q;. Since the interior
variables are associated with only one of the substructures, they can be eliminated
locally and in parallel. The resulting reduced matrix is a Schur complement and is

of the form

(2.8) 5O = kG —- KOTKOKE)
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From this it follows that the Schur complement corresponding to the global stiffness
matrixz K is given by S where

(2.9) 25 Sys = 3 a7 SOyP)

If the local problems are solved exactly what remains is to find a sufficiently accurate
approximation of solution of the linear system

(2.10) Szp =gp

Note that the elimination of the interior variables of a substructure can be viewed in
terms of an orthogonal projection, with respect to the bilinear form, of the solution
uy, of (2.3) onto the subspace HL(2;) N V*. It is easy to show that these subspaces
are orthogonal, in the sense of a(u,v), to the piecewise discrete harmonic functions
given by

(2.11) a(up,op) =0, v, € Hy(Q)NV", i=1,...,N
or alternatively by
(2.12) K929 + kB0 =0

It is convenient to rewrite (2.10) in variational form. Let s;(u,v) and s(u,v)
denote the forms defined by (2.9), i.e.

(2.13) si(u,v) = a:g)S(i)yg) and  s(u,v) = 25Syp

Equation (2.10) can then be rewritten as

(2.14) s(u,v) = (¢,v)2r) , v € VHT)

Here u is the discrete harmonic part of the solution and V*(I') ¢ HYX(T) the

restriction of V*(Q) to I.

Problem (2.14) can be solved by different iterative methods of additive Schwarz
type.

3. An abstract additive Schwarz method. We now describe and analyze
the convergence of abstract additive Schwarz methods. We note that the theory
presented here is a modified version of the theory developed in our previous papers,

see [5], [6], [7]. The difference is that we now include the effects of inexact solvers
from the very beginning.

Let V be a finite dimensional space with the scalar product a(u,v). We consider
the abstract problem

(3.1) a(u,v) = f(v), veEV

Let
V=V+Vi+--+VW
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and let the b;(u,v) be symmetric, positive definite bilinear forms on V; x V;. We
introduce operators T;: V — V;, by

(3.2) bi(Tiu,v) = a(u,v) , veV;
and put

T=To+Ti+-+ Ty
We replace (3.1) by

Tu=g, g=Y9, g=Tu
2

Theorem 3.1. Let
(i) there exist a constant Co such that for allu € V there exists a decomposition

U= ;Ui U; €V, such that

N
> bi(wi, ui) < Cla(u,u)

i=0
(ii) there exist a constant w such that fori =0,...,N,
a(u,u) < wb;(u,u), ueV;
(iii) there ezist constants €;, for i, = 1,..., N, such that
a(ui, u;) < ealui,w)? a(uj,u))?, w€Vi, u;eV;

Then
Cya(u,u) < a(Tu,u) < (p(e) + w alu,u) , ueV
where p(e) is the spectral radius of the matriz e = {e;}N;_;.

A proof of this theorem can be found in [8].

4. A wirebasket based method. In this section, we describe and analyze an
iterative substructuring method, recently developed by B. Smith, see [9], [10]. For
the description and analysis, we use the general framework of Section 3. Here

V = V*{T) and
(4.1) a(u,v) = s(u,v)

4.1. A method without a vertex space. To describe the method, we need
some notations. Let J;;, be the open faces and let W; be the wirebasket of the
substructure §;. F;; is the closure of the face common to the substructures €; and
;. The wirebasket is the union of the closures of the edges of ;. Let Wi, and
OF;;» denote the set of nodal points belonging to W; and 0F;;, the boundary of F;,
respectively. Let

(4.2) ;= L > u(z), Uy = n—l‘ > u(z)

t z€Win Y 2€8Fijn
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where n; and n;; are the number of nodal points on W; and 9F;;, respectively. We
can now introduce the representation

(4.3) VHT) = Vo(T) + 2 V(D)

if

Here Vi;(T") is the space of functions v € V*(T') which vanish at all nodal points
not on F;;. The space Vp is defined in a special way. It is a space of continuous,
piecewise linear functions defined, on 9);, by its values given on the wirebasket W;
and by constant values at the nodal points of each face F;;. The constant associated
with Fi; is the average of the nodal values on 0F;;. The basis functions of ¥} are
of the form

(4.4) #9(2) = @) + —b(z) on  Fy

Here ¢i(z) is the standard nodal basis function for z; € W; and 6;;(z) € V* is given
by

6:i(c) = 1 at the nodal points z € F;;
v 0 at the nodal points z € 8F;;

It is also possible to consider the coarse space V, as the range of an interpolation
operator defined on F;; by

(4.5) Lu= Y ulz)du(2) + aisii(z)

=, €0F 5

We now define the quadratic forms corresponding to the different subspaces. Let
bo(u,v): Vg
X Vo — R, be of the form

H
(4.6a) bo(u,v) = (1 +log —}—L-) z; erMh h(u(z) — ;) (v(z) — 3;)
and

(46)  hfuo)=(1+log ) T T Au(e) - ) (ola) — )
] €W

T

for model problems I and II, respectively. To define bij(u,v): Vij x Vi — R, let

Qi = U Q; UF; and introduce the discrete harmonic extension operator H;;
from Fi; to Q;; by

(4‘7) ag,, (’ngu, v) =0, v E Vh(Q,') U Vh(Qj)
Hiu =u on Fy, Hiyu=0on o%;

Here V*(Q;) = V*(Q)n H (%) and Hiju € V*(;). We define the bilinear form as
(4.8) bij(u,v) = a(Hiju, Hjv)
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We have now defined all our subspaces and the associated bilinear forms. As in the
abstract theory, we define the operators by

(4.90) bo(Tou,v) = s(u,v) , veW
and
(4.9b) bi;(Tiu,v) = s(u,v) , v €V
and let

T=T+3 T

i

Theorem 4.1. For all u € V*(T), with Ty and T}; defined by (4.9), we have

(4.10) To(1 +log =)~ s(ut,u) < s(Tu,u) < 7 (ot )

Here o and v; are constants independent of H and h and the jumps of the coeffi-
cients.

To prove this theorem, we use Theorem 3.1; cf. Dryja, Smith and Widlund [4].
For an alternative proof, see Smith [9], [10].

We now briefly discuss how the method can be implemented. Problem (2.14)
has been replaced by

(4.11) Tu=yg

where g = go + 3 gij, 9o = Tous, and gi; = Tijup.

To solve (4.11), we can use the conjugate gradient method since T is symmetric,
positive definite and well conditioned. For simplicity, we only consider the first
Richardson method. Thus

H
u™tt =" — (W™ — ), 7=2/(y0(1 4+ log-i)'2 +71)

Let r* = T(u" — u) = r§ + ¥y;75, where 1§ = To(u" — u) and rf; = T;;(u™ ~ u). To

find r§ and rl%, we solve

(4.12a) bo(rg,v) = s(u™,v) — (g,v) = F(v), vEW
and
(4.120) bij(r7,v) = F(v), veV;

To compute s(u™, v), we solve the Dirichlet problems
(4.13) a(Heu™,v) =0, v€ Hy(U)NVHQ)

with ™ given on 9. Hyu™ is the discrete harmonic extension of u™ from 9 to .
The problem (4.12a) reduces to a system with a sparse matrix and block Gaussian
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elimination is used to find r%(z) at the nodal points of 2 € Wi; cf. Dryja, Smith
and Widlund [4]. To find rj};, we solve a problem similar to (4.7), after replacing €2
with Q,'j.

4.2. The method with vertex spaces. In this subsection, we discuss a variant
of a method discussed in Chapter 4 of Smith [9]. The estimate in Theorem 4.1
contains two log factors. We can remove one of them for model problem I by
adding vertez spaces to the representation (4.3) of V#(T'); we call this a wirebasket
based method with vertex spaces. For each substructure vertex zp, we define a
space Vi(T") as follows. Let Fj be the intersection of the faces, which have the
vertex Ty in common, with a neighborhood of ;. We assume that dist(zy,8F;) is
on the order of H. The space Vi(I') is the subspace of functions belonging of V*(I")
which vanish at the nodal points not in F%. Clearly

VA =Vo+ D Vet XV
k

(5

Let Hyu be the~extension of u from Fp to O where I is a neighborhood of zg
which contains F. Let

(4.14) bi(u,v) = a(Hpw, Haw) ,  u,v € Vi(T)
where a(u,v) is given by (2.2). Let T} be given by
(4.15) bi(Thu,v) = s(u,v) , v € V()
and let
(4.16) T=T0+zk:Tk+ZTij

ij

Theorem 4.2. For allu € V¥(T), with Ty, Tj; and Ty defined by (4.9) and (4.15)
and for model problem I,

H
Yo(1 + log 7;)”1 s(u,u) < s(Tu,u) < 18(u,u)

where o and 4, are constants independent of H, h.

A proof of this theorem is based on Theorem 3.1 of Section 3; cf. Dryja, Smith
and Widlund [4].

5. The Neumann-Neumann method. In this section, we give a description of
a method, introduced by R. Glowinski, P. Le Tallec, Y.-H. De Roeck et al., see [1],
[3], as an additive Schwarz method. We then extend the method to the case of a
large number of substructures introducing a coarse space Vj, which is similar but

not identical to that of Section 4. We also modify this method to handle problems
with discontinuous coefficients. '

§.1. The method without a coarse space. We first consider model problem I,
ie. when s(u,v) corresponds to the bilinear form a(u,v) given by (2.2). Let V{(T)
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be the subspace of functions v € V*(I") which vanish at all nodal points on T'\ ;.
It is easy to verify that

(5.1) VHT) = VA(T) +--- + Vn(T)
Let s;(u,v) be the bilinear form on V; x V; defined in Section 2, i.e.
(5.2) si(u,v) = g7 50,0

For the method considered, using the notations from Section 3, V = V*T), V; =
ViT), ¢ =1,...,N, and a(u,v) = s(u,v). There is no coarse space V,. To define
bi(u,v): Vi(T)x Vi(T') — R, we introduce a counting function «; € V*(T), associated
with €.

2 z€Fi
ai(m) = nz(x) T € Wi,h
0 all other nodal points on I" .
Here n;(z) is the number of substructures which have the nodal point z € W; in

common. Let
(5.3) bi(u,v) = s;(Li(aiw) , In(av)), u,v € VHT)

Here I, is the linear interpolation operator on the fine triangulation. We note that
bi(u,v) is symmetric and positive definite on V; x V,.
We introduce an operator Ti: V* — V;, by

(5.4) bi(Tiu,v) = s(u,v) , veV

and put
T=T+ - +1Ty

Theorem 5.1. For allu € V*(T'), with T; defined by (5.4) and for model problem
I

(1 +log H/R)?
N4

D s(u,u)

(5.5) Yos(u,u) < s(Tu,u) £

where vo and v, are constants independent of H and h.

This result is proved in [3] using other tools. We believe that our proof, which
is based on Theorem 3.1, is simpler; cf. [8]. We note that an estimate such as (5.5)
but with four log factors was given already in [4]. For the case when there is a
red-black ordering of the substructures, we also showed that three log factors are
enough and we also derived similar estimates for algorithms with coarse spaces.

5.2. A method with a coarse space. We now describe the Neumann-Neumann
method with a coarse space V5. The factor 1/H? can now be removed from the
estimate (5.5). A function v € V, is a continuous, piecewise linear function defined
by the nodal values on the wirebasket W; and it is constant on the faces F;; with
different constants on different faces. This space is different from the coarse space
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used in Section 4. The basis functions of ¥; are of the following form. For a nodal
point z € W;, we use a standard nodal basis function ¢x(z) and for a face F;;
the function 6;;(z) defined in Section 4. V; can be regarded as the range of an
interpolation operator defined on 0€; by

(5.6) Tu= Y w@)ee(@)+ 3 uli)6i(2)

zE€Wip, Fij COQ

on 9Q;. Here Z;; is a fixed nodal point on F;;, and the summation in the second
term is taken over the faces F;;. The spaces Vi(T'), i =1,..., N, are defined by

(5.7) Vi={veVHD): v(z)=0, zeT\09 , 3¢ =0}

Here 4 is a weighted discrete average of u on Wy, i.e.

i = Y ailz)u(z)

i
L zEW;
It is easy to verify that
(5.8) VED) =Vo+ Vit -+ Vn

We now introduce bilinear forms b;(u,v): V; x V; —» R. For i = 1,..., N, they are
defined as in (5.4). For ¢ = 0, we use

(5.9) bo(u,v) = (14 log £)! 5 {h Toem, (ulz) — @) (v(z) — )
+ X con H(u(Zi;) — 6:) (v(Z5) — )}

Here ; is the discrete average of u on Wiy introduced in (4.2). Let
T=0%+T1+ - +1Tn

where

(5.10) bi(Tiu,v) = s(u,v) , veV;, i1=10,...,N

Theorem 5.2. For all u € V), with T; defined by (5.10) and for model
problem I :

(5.11) Tos(u,u) £ s(Tu,u) < (1l + Iog-ll-f-)zs(u,u)

where v and v, are constants independent of H and h.

A proof of this theorem is given in [8].

5.3. A method with a coarse space for model problem II. In this subsection,
we describe a Neumann-Neumann method for model problem II. The bilinear form
is now given by

(5.12) a(u,v) = /ﬂ p(z)Vu - Vo ds
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where p(z) = p; = constant > 0 on substructure Q;. Let V;,i = 1,..., N, associated
with 99;, be a space of functions v € Vh(I‘) which vanish on the wirebasket W; of
2; and at all nodal points on I" which are not on 8%;. The space Vj is the same as
in Section 4, i.e. it is the range of the interpolation operator Iy; cf. (4.5). We have

(5.13) VML) =Vo+ Va4 -+ Wy

To define b;(u,v): V; x V; — R, ¢ = 1,..., N, we introduce a piecewise constant
function p;, defined on 9, which is equal to (p; + p;)*/? on the face F;; common
to Q; and Q;. Let

(5.14) bi(u,v) = s;(In(piu), In(piv) ) , w,w €V

where s;(u,v) corresponds to the form a(u,v) = (Vu, Vv)r2(q); cf. (2.2) and (2.13).
Fori=0

(5.15) bo(w,0) =X p Y h(u(e) - 5) (o() - )

i z€EW;ip
where #; is defined in (4.2). Note that for u € Vi, I(p;u) is defined uniquely on the
wirebasket W; since u = 0 there. Let Ti: V*(T') — V;, be an operator defined by

(5.16) b;(Tiu,v) = s(u,v) , veV,, 1=0,1,...,N

and let
T=T+T+ --+Tn

Theorem 5.3. For all u € VA(T), with the T; defined by (5.16), and for model
problem IT

H
(5.17) Yo(1 + log %)‘%(u, u) < 5(Tu,u) < 71(1 + log —}T)Zs(u,u)

Here 7o and v are constants independent of H and h and the jumps of p(z).

A proof of this theorem is given in [8].

6. A multilevel method. In this section, we discuss a modification of the
multilevel method suggested in J. Bramble et al. [2] for the problem (2.14) in terms
of the additive Schwarz method described in Section 3. We first consider model
problem I and then model problem II. We note that we have previously described
this multilevel method as an additive Schwarz method for the original problem (2.3);
cf. Dryja and Widlund [7].

6.1. The method for model problem I. We discuss problem (2.3) with the
bilinear form given by (2.2) defined on a triangulation of {2 obtained by successive
refinements. We consider (£ + 1) levels of triangulations of (2, associated with pa-
rameters hy, which satisfy V*-1(Q) ¢ V"*(Q). Here the V**(Q) are standard finite
element spaces with V() and V() the coarsest and finest spaces, respectively.
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Vh(T) is the restriction of V**(Q) to T'. The problem considered, (2. 3), is defined
in Vh(T). As a representation of V* = V¢, we take

(6.1) VE=Vo+ Vit Ve, V=V
We introduce, for k > 1, bp(u,v): Vi x Vi — R, by

(6.2) be(u,v) = Y hpu(z)v(z)

€Ny

Here N is the set of nodal points of the level k triangulation on I'. We introduce
Ti: VE = Vi, by

(6.3a) s(Tou,v) = s(u,v) , vEW,
(6.3b) bi(Tru,v) = s(u,v) , v€eEV,, k=1,...,N
and put

T=T+NT+ - +1T,

Theorem 6.1. Let hy/hyyq be uniformly bounded. Then for allu € VA(T'), with
T; defined by (6.3), and for model problem I

(6.4) Yol 4+ 1) s(u, u) < s(Tu,u) < 71(€ + 1)s(u,u)
If Q is convez then
(6.5) Yos(u,u) < s(Tu,u) < v3(€ + 1)s(u,u)

Here v, 1 =0,...,3, are constants independent of ho, ..., hy.

Proof: The proof uses Theorem 3.1 of Section 3.

Assumption (i): Let Hu be the discrete harmonic extension in the sense of
a(u,v) of u from 8Q; to Q;, for all ;. We use the partitioning

u= Euk, uolr = QoHulr € Vo(T), uilr = (Qr — Qu—1)Hulp € Vi(T), k=1,...,£

k=0
Here Q is the Ly-projection from V*(Q) — Vi(Q), i.e.,
(@, V)20 = (0, v)r2i0), vEV:, k=0,...,¢

It is well known that

(6.6) |Qiulm ) < Clulmyay

and

(6.7) e — Qiullzagay < hilulme)
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Using (6.6), we have
s(uo, Uo) S CIQQHUI%ﬂ(Q) S CIHUI%{:(Q) S CS(’U,, u)
For k = 1,...,¢, we obtain, by using an elementary inequality and (6.7),

be(up, ur) < Chl?luuk”%zm < Ch? | QuHu — Qr-1Hul[3a(g
< Chi{|[Hu — QuHullFz(q) + IHu — Qr-1Hu||2(0)}
< CIHUI?JI(Q) < Cs(u,u)

Thus .
s(uo, uo) + D bi(us, ui) < C(€+ 1) s(u, u)
i=1
which proves Assumption (i).

For a convex region 2, we can instead use up = PyHu and u; = (P} — P._1)Hu,
where Py is the H'-projection and use the fact that the resulting u; are H'-
orthogonal; cf. Dryja and Widlund [5]. For more details see below.

Assumption (ii) follows from the inverse inequality.

Assumption (iii) is proved by using standard arguments.

6.2. A new method for model problem II. We now discuss a new method for
model problem II, i.e. when the bilinear form is given by

a(u,v‘) = /Q p(z)Vu.Vuvdz ,

where p(z) = p; = constant > 0 on §;. The decomposition of V*(I') is now of the
form

(6.8) VHI) = Va(T) + (T) + - - + VKT)

Here Vj is the space from Section 4, i.e. the range of the interpolation operator Ij;
cf. (4.5).

We let Vi, k = 1,...,¢, be the space of functions in V**(T') which vanish at the
nodal points of the wirebasket of 9Q;. It is easy to verify that the representation
(6.8) of V* holds.

We introduce bg(u,v): Vi(T") x Vi(T') — R, by

(610)  bo(u,0) = (1 +1og )T > hi(u(e) - w)(o(e) ),
cf. (4.6), and for k= 1,...,¢,

(6.11) bi(u,v) = Y hip(z)u(z)v(z) , u,v € Vi(T)

a:ENk
Here j(z) is piecewise constant and equal to (p; + p;)/2 on the face F;; which is
common to the substructures {; and ;. Note that for u € V;, g(z)u(z) =0 on W;
since u(z) = 0 there.
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We now introduce Ti: VA(T') — Vi, by

(6.12) bi(Teu,v) = s(u,v) , veEV, k=0,...,¢
and put
(6.13) T=T+Ti+-+T

Theorem 6.2. Let hy/hyyy be uniformly bounded. Then for allu € VH(T), with
T; defined by (6.12), and for model problem II

(6.14) Yo(€ + 1) 2s(u, u) < s(Tu,u) < 7€+ 1) 5(u, u)

where v, and 7y, are constants independent of ho, ha, ..., he and the jumps of p(z).
Proof: We again use Theorem 3.1.

Assumption (i): Let up = Iyu where I u is defined in (4.5). It can be estab-
lished that

(6.15) bo(uo, ug) < C(£ +1)2s(u, )

see Dryja, Smith and Widlund [4] and Smith [9]. We now define u;. Let w = u—uo
and note that it vanishes on the wirebasket W;. The function w, given on Fjj, the

face common to Q; and £, is extended to ; as a discrete harmonic function wij,
ie.

(6.16) (Vwi;, Vo)aey =0,  ve VHQ)

wij =w on Fj; and w; =0 on 4\ F;

Let V™(;),k = 0,---,¢, be the subspace of V4 (£2;), (the restriction of ¥ to ;)
of functions which vanish on 9Q; \ F;;. We note that w;; € V"‘(Qg). This function
is represented as

(6.17) wij = Pyjawi; + (Pij2 — Pij)wij + -« 4 (Pije — Pijeo1)wij
where P;;; is the H'-projection: VA((;) — V() i.e.
(VPyso, Vé)aoy = (Vo,V)iry » ¢ € V()

It is known that, since §; is convex,
(6.18) e — Pijaullza) < Mhalulaqy
On F;; we define uy, as the traces of the functions defined in (6.17)

= Pijawi; , up = (Pyp — Pje-t)wi;,  k=2,...,2
It is easy to see that P;;, — Pij4_y is an orthogonal projection from V*(£);) into

Vh"(ﬂi) = Range(P;jr — Pijp1) C Vi (€%:). We now show that

(6.19) i br(u, ui) < C(£+1)*s(u, u)

k=1
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for the u; defined above. We obtain, by using the definition of j(z),

(620)  Bluu)= ¥ mi@u@) =35 mY T pule)
€N} i J «€Ngx
where N;;; is the set of nodal points of the k-level triangulation of F;; and the
summation with respect to j is over the different faces of 9€);. For one face, we
obtain
(6.21)
hi Ycen;, piui(z) < Chy 2Pi”uk”?:2(n,~) = Chi2pill(Pijpe — Pz'j,k—l)ulc”%z(m)
< Chi?pi{ | P — wallZagayy + [ Pisk-1us — willaay }
S Cpi}ukhqu(ge)

Adding these inequalities with respect to k, we obtain

Pi Zi:l hy, ZEGN;,‘,k ulzc(m) < Cpl Ei:l (VUk, vuk)Lz(Qi)
= Cpi{(VPywij, Vwij)rz ) + Teea(V(Pijk — Pijr-1)wij, Vwij )12 (00}
= Cpi( VP, awij, Vwij)iz@i) = Cpil| Vwijlliz (.

< Cpidlapis,) < CE+ 1si(u,u)

For the last inequality, see for example Dryja and Widlund [6]. Combining this
inequality with (6.20), we obtain

¢
37 be(ug, ur) < C(L+ 1) s(u,u) .
k=1
Together with (6.15), this provides the bound for Assumption (i).
Assumption (ii): It is known that for u € Vg

a(u,u) < Cho(u,u) ,
of. [4). Fork=1,...,%,
a(u,u) < Cb(u,u) , u€ Vi

follows from an inverse inequality.
Assumption (iii) is proved by using standard arguments.
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