CHAPTER 16

Application of Domain Decomposition Techniques to
Modal Synthesis for Eigenvalue Problems

Frédéric Bourquin®
Frédéric ’Hennezel**

Abstract: component mode (or modal) synthesis is a Rayleigh-Ritz method that
enables computation of the normal modes of a linearly elastic structure that can
be subdivided into several substructures whose normal modes are partly known.
Information transfer between substructures is achieved by the introduction in the
Ritz procedure of mode shapes defined on the whole structure and called here
coupling modes. Three nonconventional “fixed interface” methods are presented in
a continuous framework. Once discretized, they extend more classical ones. The
definition of the coupling modes relies on the spectral properties of suitable interface
operators that naturally arise when designing iterative substructuring algorithms for
source problems. Several approximation errors will be given and different algorithms
compared.

1) Introduction to modal synthesis.

Let us consider the usual model eigenvalue problem, posed over a domain © C R,
partitioned in two nonoverlapping subregions €; and €, separated by an interface

I

find (A\,u) € R x Hy(Q) such that

(1) /ﬂwwz A /Q w Vo e HyQ)
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This so-called global problem admits a countable family of solutions (A, uk)};‘;l S
Rt x H}(Q) arranged in such a way that the eigenvalues form an increasing
sequence. The first j, eigenpairs are of interest here.

The subsequently developed theory works as well for any strongly elliptic op-
erator of any order with symmetric boundary conditions. In particular, this is the
case of the two- or three-dimensional Lamé system, the plate operator, and many
other systems of interest. The right-hand side could even be nonsymmetric, as for
instance in the neutron equation. The domain may be partitioned into p > 2
subdomains.

In a first place, for each subdomain §2;, the local problem

find (\,u) € R x HY(Q;) such that

(2)
V’u,V'l):)\/ uv Vo € H(}(Qt)9
Q; Q;

admits a family (A,-j,u,-j)}':f € R* x H}(;) of solutions such that ()\,-j);!':f forms

an increasing sequence. The functions u;; are extended onto the other subdomain
by zero. They are called “fixed interface modes”.

In a second place, we introduce an a priori arbitrary basis (ure)fS5 of the
space Hg({ %(T') = trp HY(S2), where trp denotes the trace operator on I'. Letting
R: H(}({ 2(]f‘ ) — H}(Q), v — ¥, denote the harmonic lifting operator, such that

AG=0 inQ; 1<i<2,
(3) t=v onl,
=0 ondQ,

we define the “coupling modes” iiry = Rury, and the family

(4) F= )iS v @rodes

i=1,2
that forms a basis of the space HE(Q)(cf. Bourquin [1990a,b]). This is a Riesz basis
whenever (ur,)£% forms a Riesz basis of the space Hé({z(f‘).

In a third place, once three numbers Ny, N2, and Ny are given, we define the
finite-dimensional space

(8) Viv = Span { | (uip)fs U (Gre)ls,
=1,2
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Modal synthesis consists in computing the jo first solutions (A}, ug B e R* x
Vi of the well-posed discrete variational eigenvalue problem:

find (OW¥,uN) € R x Vy such that

(6)
/VuNVvN——-)\N/quN VoV e V.
Q Q

The convergence result /\fcv — Ak, ul — ug(with an appropriate scaling) follows
from the above mentioned completeness property in addition to standard results in
eigenvalue approximation theory.

How to choose the coupling modes? In his pioneering work on modal syn-
thesis, Hurty [1965] picked out any basis and took Np = +oo in (4). In view of
(5), this choice is forbidden in a continuous framework since Vv becomes infinite-
dimensional. However, it makes sense in a finite element or any discrete setting.
If h denotes a discretization parameter, the function uf, thus coincides with the
£th shape function spanning the interfacial interpolation space, and the number
of coupling modes is equal to the number of interfacial degrees of freedom. The
coupling modes are defined as the discrete harmonic liftings 12{“5‘ = Rhugt through
discretization of problem (3).

It should be kept in mind that modal synthesis is an approximation method
rather than a domain decomposition algorithm, since the problem really solved is
not equivalent to the original one.

This method has been widely used in aerospace engineering practice during
the last three decades, because of its accuracy and suitability to the requirements
of industrial project management. More generally speaking, modal synthesis looks
quite attractive for different reasons, among which the reduction of computer mem-
ory storage requirements and amenability to coarse grain parallel computing are to
be found. Furthermore, it allows to decouple virtually every coupled mechanical
system made of heterogeneous subsystems. Last but not least, it allows for cheap
parametric studies, since recomputations due to local geometrical or mechanical
modifications can be performed locally, and also for integration of experimental
results in the Ritz procedure. The advantages of modal synthesis are discussed in
Bourquin[1991a].

There exists many variants of Hurty’s method. We refer to Craig [1985],
Gibert[1988], Imbert [1979], Jézéquel [1985], Meirovitch [1980], Morand [1977], and
Valid [1977] for detailed reviews or analyses on this topic.

Although Hurty’s method is around thirty years old, to our knowledge the
first error bounds are derived in Bourquin [1991c] and read as follows, where the
dzcretizz%dhversion of the method is considered, that leads to the approximate eigen-
values A" :

(7) W _a<om |3 1

i=1,2 Uil¥y

+ - PRyl
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if P* denotes the orthogonal projection mapping on the finite element space used,
and || ||, the energy norm. As usual, similar estimates hold regarding the eigen-
function approximation.

The stiffness matrix KV of the resulting Ritz method (5) writes

(8) KN=

| 0 A, |
0 I valivli]
2 A

Because of harmonicity of the coupling modes, the last block of K& coincides with
the Schur complement matrix associated with the interface. The mass matrix

(9) MY =

1 hoshh]
1 n“ijul"k
~hhk, h hhs k)
[/ Upe¥; ] [/ UreUrg
- Q Q _ -

exhibits a similar structure. Of course, solving problem (5) becomes expensive when
the number of degrees of freedom describing the interface increases. In particular,
this feature forbids mesh refinements in the vicinity of the interface, intricate do-
main partitions, and certain large three-dimensional computations.

In addition, Hurty’s method results from a mixture of two different discretiza-
tion processes: the first one is of physical nature since a basis of special normal
modes of vibration is truncated, and the second one is purely numerical because it
is tied to the finite element (or whatever) method used in the practical computation.

We claim that there exists a mesh-independent way to define coupling modes,
yielding an overall mesh-independent accuracy when the mesh size is sufficiently
small. The proposed strategies take advantage of recent developments in the field
of domain decomposition methods for static problems. They aim first of all to shed
light on the theory of modal synthesis, as far as the formulation and convergence
properties are concerned, and second of all to lead to new practical methods of

general use that prove accurate and robust.

2) An intrinsic choice of coupling modes based on the Poincaré-
Steklov operator.
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A quick look at the stiffness and mass matrices K and MY indicates that the
subblocks of the global stiffness matrix that correspond to internal degrees of free-
dom of each subdomain have been diagonalized. This suggests to diagonalize also
the remaining part of the overall stiffness, that is the Schur complement matrix,
and to choose the resulting eigenvectors as discrete coupling modes.

The corresponding modal synthesis algorithm bears a strong resemblance to an
iterative substructuring procedure for a source problem. As a matter of fact, both
algorithms start with the resolution of a local eigenvalue (resp., source) problem
on each subdomain with an arbitrarily prescribed Dirichlet boundary condition on
the interface. Iterative substructuring then uses the residual gap of stresses Xo
along the interface that has been computed at the first step as the source term of
the problem S*X = X,, where S* denotes the Schur complement matrix. This
problem is usually solved thanks to a preconditioned conjugate gradient procedure.
In the same way, the proposed modal synthesis method will need the computation
of the low-frequency spectrum of S*.

At the continuous level, let § : Hyl HP () — (H] ) {3(T))  denote the
Poincaré-Steklov operator associated with the operator descnbmg the mechanics
of the problem (here the Laplacian) and the domain decomposition, in such a way
that Sv = E?=1 —5?1—‘.(519'. )r » where n; denotes the unit outer normal vector along
0%;. It follows from standard compactness arguments that the problem

find (A, u) € R x H, 1/2(I‘) such that
(10)
Su = Au

admits a faxmly (Arg, ure )z_1 of solutions, arranged in such a way that the sequence
(ure) is increasing. The family (upy) forms an orthogonal basis of both spaces

HY/*(T) and L(T). Then the family

(11) Fs = U (“u);._x u ("I‘l)t—q

i=1,2

forms an orthogonal basis of the space HE({).

The coupling modes enjoy a mechanical interpretation: they coincide with the
free vibrations of the structure Q whose mass would be lumped on the interface (cf.
Bourquin and d’Hennezel [1991a]).

If VN is defined as in (4), solving problem (5) leads to a sequence of solutions
(AF,ul)i2, satisfying the following property (cf. Bourquin[1989,1991a,b]):

N 21 1
(12) AW =Me=0|3 o+

i=1 TN T Ny
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for any s < 3/2 and any a such that the solution of the Poisson-Dirichlet problem
in each subdomain with a L?(£;) source term belongs to H't*(;), ¢ = 1,2.
Lower bounds for the eigenvalues of the Poincaré-Steklov operator, in the spirit of
Weyl’s formula, can be derived and yield

2

(13) MW _=o Z—l-,—+—£7

i=1 N, ,'T NI?_—I‘
The discretized version of the method can be formulated in the same way and leads
to similar error bounds (cf. Bourquin [1991b]). The convergence speed appearing in
(12), (13) is optimal. It should be noticed that the right-hand side of those inequal-
ities do not depend, to some extent, on the regularity of the global solutions uy. A
thorough study of how these estimates behave when the number of substructures
increases is carried out in Bourquin[1991a).

One of the most striking features of the proposed method lies in the small
and mesh-independent number of coupling modes to be taken into account in
practice in order to achieve a prescribed accuracy. It is usually comparable to
the number of global modes to be computed, as demonstrated in Bourquin and
d’Hennezel [1991a,b]. For example, let us consider a three-dimensional elastic beam
made of 4 unit cubes sequentially glued to one another. The beam is clamped at
one end and free everywhere else. Then only 3 fixed interface modes per unit cube
and 3 coupling modes are sufficient to yield a .5% accuracy regarding the 3 first
global normal modes. Furthermore, the first coupling modes and corresponding
global normal modes exhibit a very similar shape. This means that an intrinsic
representation of the interface displacements corresponding to low-frequency vibra-
tions of the whole structure is provided thanks to the superposition of very few
eigenfunctions of the Poincaré-Steklov operator.

One possible algorithm to compute the coupling modes consists of a Lanczos
procedure applied to the operator $~! , or to (S*) ! for the discretized version
(see Bourquin [1991c¢] for other ideas). At each step of the latter, a source problem
of the type Su = f must be solved. But most iterative substructuring methods
aim to realize this program. Any algorithm seems a priori suitable, the faster it
is, the faster will be the resulting modal synthesis. The preconditioned conjugate
gradient algorithm designed by Bourgat et al. [1988a,b] has been chosen.

3) Other choices based on iterative substructuring preconditioners.

Of course, using the eigenfunctions of the Poincaré-Steklov operator as coupling
modes is not mandatory, except if the orthogonality of the family F is requested.

First of all, assume that the first coupling modes corresponding to problem (1)
have been computed, then it is possible to reuse them for treating the eigenvalue
problem

find (A\,u) € R x H}(Q) such that
(14)

VuVo + o Vqur—/\{/ uv-l-q/ uv} Vv € H}(Q),
Qj_ 97 91 92
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where ¢ and 7 denote two positive constants. Notice that the latter do not modify
the fixed interface modes. In general, the original family Fs is not orthogonal any
more, but it remains a Riesz basis of H1(?) and similar (nevertheless slightly worse)
error bounds as (13) can be derived (cf. Bourquin[1991a,b]): more precisely, if the
function uy satisfies ux € HITA(Q;), i = 1,2, B> 0 (such a B exists), inequalities
(12) and (13) still hold if « is replaced by §=min(a,f). From the purely numerical
standpoint, the accuracy of the modal synthesis does not deteriorate significantly.

The case of stiff eigenvalue problems should be treated in a different way,
relying on the asymptotic analysis quoted in Sanchez Hubert and Sanchez Palen-
cia [1989]. Their results seem particularly interesting in view of elastoacoustic
analysis.

Let us now return to the case where o=n=1. Based on the very promissing
accuracy of the method relying on the spectrum of the Poincaré-Steklov operator,
an idea that shows up naturally for generating coupling modes is to look for the
spectrum of an operator T that is spectrally close to S and cheap to invert. We
recognize the properties of a preconditioner.

The classical Neumann-Dirichlet preconditioner can be considered. In the case
of two subdomains, coupling modes are chosen as the eigenfunctions ur;, of one of
the two operators S; : Hg({Z(I‘) — (H;(P(I‘))' such that Siv = 32 (#g, )jr- The
resulting family '

(15) Fsi= U @mi)i3 U @i

m==1,2

forms a Riesz basis of H}(2), and error bounds analogous to (12) and (13) still
hold. They rely on the property that the coupling modes are orthogonal in H*(£;).

Of course, this preconditioner has the same spectrum as the Poincaré-Steklov
operator whenever the domain decomposition is symmetric with respect to the
interface. Nevertheless, in the case of stiff problems with subdomains of arbi-
trary shape, the operator S; corresponding to the stiffest subregion replaces the
Poincaré-Steklov operator in a first order approximation. Corrector functions of
any order may be computed very easily. This procedure appears to be justified by
the arguments developed in Sanchez Hubert and Sanchez Palencia [1989].

The same preconditioner can be used for general domain partitions whenever
a suitable ordering of the subdomains exists. In the case of tree-like partitions,
the a priori error estimates do not blow up when the number of substructures
increases. This configuration is of interest in Aerospace or Civil Engineering. Since
the coupling modes and of course the fixed interface modes are defined in a totally
local way, the effect of adding an appendage to an existing structure can be assessed
by just adding two blocks in the mass and stiffness matrices of problem (5). This
should enable for example to take care of all intermediate stages of a building
process without resorting every time to a global recomputation.

One can also think of using a generalized Neumann-Dirichlet preconditioner as
in Bourgat et al.[1988a,b]. When a complex interface I’ with cross-points has to be
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coped with, we set Vr = trr H3(2), and for each subdomain Q;, we define W; =
trag, (H'(Q:) N H}(R)). We then let P; : W; — ¥ denote a continuous extension
operator and T; : W] —s W; the Neumann-Dirichlet mapping via harmonic lifting
(also called Calderon operator). Then the operator

P
(16) T=) PT,P}:V— W

i=1

is a compact self-adjoint operator over L2(I"). The computation of its eigenfunctions

(U“)?’:f gives rise to a new Riesz basis

(17) Fr= |J wi)is v @S,
i=1,p

and to a new modal synthesis method for which we didn’t succeed so far in proving
error estimates, but that looks quite promising from the purely numerical point of
view, since the number of coupling modes @' to take into account to achieve a
prescribed accuracy is slightly greater than, but close to, the number of coupling
modes #r, (tied to the Poincaré-Steklov operator) that is necessary in view of
the same level of accuracy. This feature has been checked for the two-dimensional
Laplacian on a quare divided in four subdomains with internal vertices, and on an
L-shaped membrane subdivided in two subdomains. In the first case, the number
of coupling modes increases by less than 20%.

A Lanczos algorithm for computing the coupling modes is still chosen. How-
ever, each step is now very cheap because any one of the mentioned preconditioners
is explicitely invertable. More precisely, if N;; denotes the number of iterations
needed for solving the source problem Tu = f, each step costs approximately 2Ny,
less than the corresponding step of the algorithm proposed in §2. This property may
tremendously reduce the computer time, especially when large three-dimensional
elasticity problems are tackled, because we have noticed that N;; > 50 may occur.
For the L-shaped membrane, a time reduction factor of 7 has been observed.

A systematic theoretical and numerical study of these variants seems worth to
be undertaken.

4) Concluding remarks.

1) The choice of the Poincaré-Steklov operator as a candidate for generating coupling
modes leads to a very accurate modal synthesis method and seems locally optimal,
at least from the numerical point of view. As a matter of fact, computing a rough
approximation of the functions upy reduces the marginal CPU time but degrades
the final accuracy, in such a way that additional coupling modes are needed! In
the same way, the few numerical tests already performed indicate that the coupling
modes u'™* based on preconditioners (§3) behave slightly worse than the ones based
on the Poincaré-Steklov operator from the viewpoint of modal synthesis. Up to now,
we do not clearly understand those facts.
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ii) The various definitions of coupling modes presented here require to consider
more or less complicated eigenvalue problems posed over the interface. One could
rather think of using tabulated coupling modes or of generating them by hand. This
strategy looks attractive when a reasonably good approximation of the mode shapes
of the Poincaré-Steklov operator or of its preconditioners can be easily found. For
instance, if a software is designed to compute always the same kind of structures
made of an arbitrary number of substructures connected together in a predeter-
mined way (cf. Blanc Sommereux et al. [1989]), a modal toolbox can be developed
that comprises suitable interfacial modes computed once and for all with a general
method. Based on our experience, the low-frequency interfacial modes ur, undergo
little change when the geometry or the mechanics of one substructure changes, so
that the procedure may encompass various practical problems.

On the other hand, in very simple situations, the computation of the functions
ure can be carried out analytically (cf. Bourquin[1991b]).

However, this procedure does not extend to more realistic elliptic problems,
even to scalar ones, and it seems quite hard to figure out what analytical expressions
could be used to represent the coupling modes related to the operator of Kirchhoff
plates or of two- or three-dimensional elasticity.

In this respect, the full generality of our method should be highlighted.

iii) The modal synthesis method does not depend on the algorithm used to com-
pute the coupling modes. Therefore, current progresses in iterative substructuring
theory and practice can be taken advantage of. In particular, any enhancement of
the preconditioning techniques should provide the same enhancement of the pro-
posed modal synthesis methods as far as CPU time or approximation properties
are concerned.
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