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Abstract. Flow situations involving localized phenomena and 3D, complex geometries
are very important and are offen encountered in engineering applications in the aerospace,
chemical and petroleum industries. Such geometries defy attempts to lay a single grid over
the entire domain, for numerical solution of the problem using finite-difference methods.
In a Composite Grid method, the domain is decomposed into overlapping regions which
communicate at their boundaries. Fach of these is individually transformed to a discrete,
orthogonal parallelepiped grid. The transformed flow equations are then solved on these
grids, in conjunction with the other grids which communicate with them, by using any of
the wide variety of solvers including adaptive, multigrid versions. In this paper, we will
describe the grid generation procedure, the data structure used to create the composite
grid and some communication and other design issues.

1 Introduction. Numerical simulation of a flow problem using finite-difference meth-
ods is most convenient to implement if the flow domain is rectilinear. For domains which are
not rectilinear, a boundary-fitted curvilinear grid, consisting of nearly orthogonal gridline
families, is desired for accurate application of the boundary conditions. A rectilinear grid in
the computational space is then mapped to this curvilinear grid in the physical space using
a coordinate transformation. However, it is often not possible to overlay the entire domain
with a single grid since we would like to avoid

¢ nonuniform density of gridlines.

o degeneracies in the transformation, when grid lines belonging to supposedly near-
orthogonal families are nearly parallel.

s singularities in the Jacobian of the transformation caused for example, in 2D, by
the mapping of a rectangular region in the computational space to a region with a
different number of corners in the physical space.
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These problems can be overcome by decomposing the domain in the physical space
into multiple, overlapping regions exchanging information at the boundaries. Curvilinear
parallelepiped' grids are then formed in the physical space by mapping an orthogonal par-
allelepiped grid in the computational space onto each of these regions. The result of this
tessellation of the physical domain is called a Composite Grid. The flow equations are also
correspondingly mapped using the metrics of the transformation. They are then solved to
the desired accuracy on the grids in the computational space, by using any of the dedicated,
fast solvers which take advantage of the grids’ regular structure. Boundary information is
swapped by overlapping grids in the region of overlap, during the global iteration.

This Domain Decompositionis therefore necessitated due to the geometrical complex-
ity of the original domain as opposed to the other well-known reasons, such as achieving
computational speed-up by use of parallel processors or dividing the domain into zones
based on the physical nature of the flow. Of course, it doesn’t preclude further subdivisions
for computational reasons and the use of parallel processors to obtain speed-up.

Composite Grids were used by Atta and Vadyak[ATT83] to solve the full-potential
equation using a composite-adaptive grid approach on a set of overlapping grids. Rai et
al. describe a composite grid method for unsteady Euler equations using touching grids in
[HES86] and for compressible Navier-Stokes equations using overlapping grids in [RAI87).
In incompressible flows, because of the nonconservative form of the countinuity equation,
conservative exchange of information in the region of overlap becomes difficul{{MEAS6].
Henshaw[HENS85] describes a Composite Grid method for a time-dependent, two dimen-
sional oceanographic problem. Wijngaart[WIJ89] describes a composite grid method for
incompressible flows in two dimensions. This work is an extension to three dimensions of
Wijngaart’s method.

We will first describe the various constructs that are created in our Composite Grid
system to convey the geometric and the boundary description of the flow problem into the
system and to enable the grid generation. We will then discuss some related issues that
arise due to our use of the multiple grids. Finally, we will briefly describe some associated
work in progress at Stanford aimed at tackling the visual editing, and language, needs of a
Composite Grid system.

2 Data Structures for the creation of the Composite Grid. Given a 3D, com-
plex domain in the physical space and the flow problem described therein, the grid genera-
tion procedure counsists of the following steps:

s incorporating the geometric data, which constitutes the domain deseription, into
the Composite Grid system

¢ specifying the various boundary conditions which are applied to the equations that
describe the flow problem

e generating the set of discrete grids along with all the associated metrics as well as
the boundary information.

2.1 Surfaces. The regions into which the domain in the physical space is divided
are called volumes. These volumes are defined by their bounding surfaces, each of which
is a curvilinear quadrilateral. These surfaces in turn are defined either by their bounding
curves or by a more direct description. A curve is any segment of the boundary contour
of the domain, which is parameterized by a single parameter. Thus, a curve is strictly a
geometric feature. When a surface is defined by the specification of its bounding curves,
a trapsfinite interpolation of these bounding curves results in a definition of the interior of
the surface. Thus knowing the parametric definition of each of the bounding curves (which

A cnrvil?nea.r parallelepiped is defined as a polyhedral volume with six curvilinear quadrilateral faces,
not necessarily lying in parallel planes. The faces don’t need to be planar either.
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establishes the relation between the curve’s parameter and the physical coordinates at every
point along the curve) as well as the transfinite interpolation from the boundaries into the
interior of the surface, one can establish the relation between the parametric coordinates
and the physical coordinates at any point on the surface. However, a surface with important
interior features may also be more directly defined, e.g., as a bicubic B-Spline surface. This
definition also establishes the same relation as above.

2.2 Curves. From the above description, it is evident that the types of constructs
allowed for the definition of the curve determine to a large measure the range of applicability
of the Composite Grid system to practical domains. We chose to allow the Bézier family
of curves, such as Bézier curves, B-Spline curves and NURBS (Non Uniform Rational B-
Splines), as the primary means of representation of curves in our system. We will now
briefly describe the properties of these curves and the reasons for our choice[FAR90].

» A Bézier curve is defined by the following?
de Casteljau algorithm:
Given: bg,bq,...,by € Edandte R,
set

r=1,...,n

bI(t) = (1 — t)bi~(t) + tb;;}(t){ Zoe,

and bY(¢) = b;. Then b(¢) is the point with parameter value t on the Bézier curve
b™.
The polygon P formed by by,...,b, is called the Bézier polygon or the control
polygon of the curve b, and the polygon vertices b; are called the Bézier points.
By virtue of the convex barycentric combinations (all weights are non-negative and
sum to one) that the de Casteljau algorithm is solely composed of, a Bézier curve
possesses the following properties:

1. convex hull property - the curve lies within the convex hull of the control
points.

2. affine invariance - the curve is invariant under an affine transformation (in-
volving just translation, rotation, stretching and shear). This feature allows
us to avoid redundant specification of curves in the system, since we can use
affine transformations of existing curves instead.

3. symmetry - replacing ¢ by (1 — %) has no effect on the curve.

4, pseudo-local control - when one of the control vertices is moved, though the
whole curve changes, but it is mostly affected locally.

o modeling a curve of a complex shape by use of a single Bézier curve requires a
representation of high degree, which is undesirable from a computational stand-
point. In such cases, we use spline curves which are piecewise polynomial curves. In
particular, a spline curve composed of Bézier curve segments which is specified by
using a minimal information set and incorporates the continuity conditions ai the
junction points is called a B-Spline. The B-Spline possesses all of the advantages of
the Bézier curve and, in addition, has more localized control along with the ability
to represent more complex shapes.

o however, a B-Spline still cannot represent conics, which are a very popular design
{ool in industry. To represent these and other rational curves, we use NURBS which
are built upon the fact that a conic section in E2 can be defined as the projection

2EM i5 the n-dimensional Euclidean (or point) space and R™ is the m-dimensional linear {or vector}) space
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Figure 1: A simple, hypothetical 3D back-step flow domain for concept illustration.
Physical Problem - Geometry and Boundary Data

of a parabola in E3 into a plane. Since a NURB is defined in 3D as the projection
through the origin of a 4D nonrational B-spline curve into the hyperplane w = 1,
it has the ability to represent conics. It also has all the aforementioned properties
of Bézier curves in addition to greater localized control.

o The Bézier constructs appear to be a natural choice since these are the representa-
tions that are most often used in the CAD indusiry to design the domains on which
we solve our flow problems. However, in addition to the above constructs, we also
provide for the non-Bézier parametric polynomial representations of curves, to be
used where convenient.

2.3 Subsurfaces. So far, we have only described the means by which geometric
domain data is input into the system. The connection to the flow problem is established
via the concept of subsurfaces. A surface is composed of a tessellation of one or more
subsurfaces, each of which has exactly one physical role to play in the flow problem. For
example, one part of a surface might be a physical boundary, while another part could be a
periodic boundary. Those surfaces, or parts thereof, which are artificially introduced during
the division of the domain into volumes, and are not part of the domain boundaries, are
given the role of an auziliary boundary.

Thus, a subsurface is defined in terms of its parent surface, the parametric intervals it
occupies within the parent surface and its physical role. Associated with each of these roles
is a means of describing and enforcing the problem boundary conditions in terms of the
variables of the flow problem. The specification of the surfaces and subsurfaces completes
the description of the flow problem in the physical space. We now move on to generate the
grids replete with the requisite information.

2.4 Faces. The domain in the discrete space is described in terms of grids. The
grids are defined in terms of their bounding faces, each of which is a quadrilateral region,
curvilinear in the physical space and rectilinear in the computational space. A grid face
is defined as a tessellation of subsurfaces with one continuous parameterization in terms
of the parameters of the face. This parameterization is defined by a linear rescaling of
the parameterization of the component subsurfaces in terms of the corresponding parent
surfaces. The boundaries of the grid face are first parameterized using the parameterization
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Figure 2: Numerical Problem - Geometry and Boundary Data

of the surfaces on which these boundaries lie. Transfinite interpolation is then employed to
first obtain a parameterization of the interior of each face from its boundaries and then of the
interior of the grid from its bounding faces. This establishes the coordinate transformation
from an orthogonal parallelepiped grid in the computational coordinates (u,w,w) to the
curvilinear parallelepiped grid in the physical coordinates (z,y,2). The metrics of the the

transformation are also easily computed.
The subsurfaces that comprise a face need not necessarily be from the same surface;

they just need to be contiguous in the physical space. Also, a subsurface can be a component

T
A
=4

Figure 3: Composite Grid - only gridlines on faces shown
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of more than one face, as in the overlap region between two grids. Thus, a subsurface,
which imparts the flow boundary information to that geometric entity called the surface,
also provides the geometric description of the face. This duality acts as the conduit of
information from the physical problem to the numerical problem in the computational space.

2.5 Subfaces. So far, we have only provided a means to transfer the geometrical
description from the physical space to the computational space. We now introduce the
concept of subfaces to facilitate the transfer of the flow boundary information to the com-
putational space. The subfaces are contiguous parts of a face, each with exactly one role:
physical boundary, periodic boundary, interpolation boundary etc.

Thus, if contiguous subsurfaces comprising a face (but from different surfaces) have
the same boundary role, they would together form a single subface with that role and the
associated means of enforcing that boundary condition, be it applying a physical boundary
condition or getting the necessary information from a donor grid. Analogous to a subsurface,
a subface is defined in terms of its parent face, the parametric interval it occupies in the
parent face and the role it plays. For every grid, we also specify the number of grid cells in
each coordinate direction.

2.6 Summary of grid generation constructs. To summarize:
e curves and surfaces are purely geometric features employed to input into the system
the geometric description of the domain.
o subsurfaces serve to provide the flow boundary information of the physical problem
and the geometrical information to the numerical problem.
¢ subfaces provide the flow boundary information to the numerical problem.

physical problem | numerical problem
geometrical info | surfaces subsurfaces
boundary info subsurfaces subfaces

Table 1: Functions of the constructs used in grid generation

8 Other issues related to a Composite Grid. We will now briefly discuss some
related aspects that arise from the use of Composite Grids such as specification of the bound-
ary conditions, computing the solution on Composite Grids with commugnication between
grids, specification of the order of traversal of grids, etc.

3.1 Boundary Conditions. As mentioned before, the subsurfaces serve as the ve-
hicle for the description of the boundary conditions. We use sirongly functionally consistent
boundary conditions[W1J89] to ensure convergence both in the classical and the iterative
sense. This implies that we apply the physical boundary conditions at all grid points that
lie on the physical boundary of the domain. Thus, for every point on a grid face that lies
on a subsurface whose role is that of a physical boundary, we use the relationship between
the parameterizations of the face and the surface (to which that subsurface belongs) and
obtain the proper boundary condition.

When the boundary condition is periodic, we will need to specify where in space
the linear boundary condition operator is to be evaluated. This involves the definition
of an affine transformation linking the target and donor points. We can then obtain the
boundary conditions at the target point by evaluating the boundary condition operator
at the donor point. If the target point is contained in more than one component grid,
then additional information is required to choose the appropriate donor grid. Interpolation
boundary conditions are enforced in a manner similar to periodic boundary conditions,
except that the communication is always between different grids.
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3.2 Communication between Grids. To compute the solution on the Composite
Grids, we use the traditional technique of Schwartz Alternating Procedure[SCH69]. The
Schwartz algorithm applied to two overlapping domains §}; and €3 consists of

e assuming the boundary values on the edge of {; in the overlap region (thus decou-
pling the problem),
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Figure 4: Hierarchical description of a Composite Grid

e computing the solution in the interior of &,
e obtaining boundary values on the edge of Q; in the overlap region from the interior
of Uy,

» computing the solution in the interior of {y,

e using this interior solution to determine the boundary values on the edge of @y,

e repeating the cycle ill convergence.
We note that no special routines are needed to solve the interface equations, since boundary
values are interpolated directly between grids. The convergence of this algorithm has been
analyzed by many researchers. Oliger et al.JOLIS6] found that the strong dependence of the
convergence of the algorithm on the amount of overlap can be reduced for elliptic problems
using an overrelaxation technique for the boundary values.
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3.8 Global Iteration. The order in which the various component grids are traversed
in a global iteration depends upon the direction of information exchange between the grids
and thus on the physics of the problem. If the specification of this ordering is manual, an
explicit listing of the order is provided. Otherwise, a traversal algorithm is supplied. The
ordering also has an effect on the suitability of the whole solution procedure for parallel
processing. [OLI86] Oliger et al. also introduce a Black-Red scheme that is well-suited for
multi-processor machines.

4 Associated Work under progress. We will now briefly describe two of the tools,
associated with an Adaptive Composite Grid System, that are currently under development
at Stanford.

4.1 VOUS. VOUS[OLI89] is an interactive, object-oriented, graphical editing sys-
tem that is being developed to provide a tool for the user to input, edit, visualize and
manipulate the domain data. The user will be able to input the curves and surfaces nec-
essary for the geometric description, perform any necessary curvefitting to geometric data
available, zoom in/out of regions of interest and perform various other manipulations. The
hierarchical nature of the composite grids as described above, lends itself to an easy and
natural translation to LISP s-ezpressions[PIC90]. The domain can be specified as a hierar-
chical list where the first atom in each list specifies the object to be described in its sublist.
Thus, we have a powerful means of representation of the entire domain for future manip-
ulations. These are the data structures used by VOUS to transfer the domain description
that were input by the user during a session to the grid generation package M x E xS+ H,
which will then generate the various grids.

4.2 VORPAL. VORPAL[SUH91], a programming language designed primarily for
scientific applications which require interaction and high-level data structures, is being
implemented as a precompiler to C. It provides standard data types and operations including
essentially all FORTRAN data types as well as several other predefined types, some of
which are related to communication and program structure. VORPAL programmers can
also define their own data types. Storage management for most types is automatic. Most
data structures can be printed or read as a unit either in a textual form which can be
incorporated directly into a program source file, in the form of LISP s-expressions, or in
a binary form. Since VORPAL produces C code as an intermediate language, compatibly
written C procedures as well as FORTRAN programs can be used with little redesign.

5 Conclusions. We have motivated the use of Composite Grids in situations where
a single boundary-fitted grid cannot overlay the entire flow domain. We then described
the various constructs devised to structure the geometric and boundary data that together
describe the domain and the flow - the physical problem - and also the constructs used to
transfer this information to the computational space, where the transformed flow equations
are solved on regular grids - the numerical problem. Along the way, we motivated the
choice of the Bézier family of curves as our representation of choice in the grid generation
procedure. We then discussed some of the related issues raised by the use of multiple
grids and the communication between them. Finally, we described some of the associated
tools under development at Stanford to tackle the visual editing and language needs of the
Composite Grid system.
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