CHAPTER 11

Domain Decomposition Algorithms for the Biharmonic
Dirichlet Problem

Xuejun Zhang*

Abstract. We consider additive Schwarz methods for the biharmonic Dirichlet problem and show that
the algorithms have optimal convergence properties for some conforming finite elements. Some multilevel
methods are also discussed.

1. Introduction. We are interested in solving the following bikarmonic Dirichlet prob-
lem in a plane region

Ay = f in Q,
&) v = go on 0%,
Ju o9
m = q on .

It is convenient to work with the weak formulation: Find u € HZ(Q) such that
(2) a(uv ’U) = f(’l]), Vv e Hﬂz(ﬂ)a

where f is a bounded linear functional on HZ() and a(u,v) is a symmetric, continuous,
H-elliptic bilinear form. Two examples of such bilinear forms are

(3) a(u,v) = /ﬂAuAv dz,

and

8y 0% 2udv  H%udw
— _ _Ouw ov guov OTUOYVvwa
) a(u,v) = /Q{AUAU +(1-0)2 07,0z, 07,10z, Oxi Bzl 0230zt )} da,

where 0 < o < 1/2 is Poisson’s coefficient of the plate. The first one arises in Fluid
Dynamics, and the second provides a variational formulation of the Clamped Plate Problem.
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The rest of the paper is organized as follows. In section 2, we introduce some standard
conforming finite element approximations. In section 3, we study some additive Schwarz
algorithms and establish optimal convergence properties of the algorithms. In section 4, we
study a multilevel algorithm for the biharmonic equation. In this brief paper, we do not
provide proofs and details of the algorithms; ¢f. Zhang [11] for further discussion of the
algorithms and some numerical experiments.

2. Finite Elements for the Biharmonic Equation.

2.1. Formulation. We triangulate the domain © into non-overlapping regions called
elements, generally triangles or rectangles. Let V* be a space of piecewise polynomials with
respect to the triangulation. The finite element solution uy € V! satisfies

(5) a(un, $n) = f(#4), Vén € V™.
Let {¢;} be the nodal basis for V*. Then u; can be represented as

up = Zz,~¢,~.
i
Thus, we obtain a linear system for z, the degrees of freedom of u,
Khz = b,
‘where K* = {a(¢i, #;)} and b; = f(4:).

The stiffness matrix K* is symmetric, positive definite. After a proper scaling, its
condition number x(K"*) = O(h~%). Since the system are usually very large, and the
condition number of K* is also very large, solving the system can be very expensive. Many
preconditioners have been designed for K*. Among them, the additive Schwarz methods
studied in this paper seem to be particularly successful and promising,.

2.2. Some Conforming Elements. For biharmonic equation, the finite elements are
all relatively complicated. In this paper, we restrict ourselves to some standard conforming
elements. In particular, we consider the Argyris triangle V7, the Bell triangle VE and the
bicubic element Vé‘. These elements are complicated but among the simplest conforming
elements for the biharmonic equation; cf. Ciarlet[5].

The Argyris element consists of continuous differentiable functions, the restriction of
which to any element is in Ps. The degrees of freedom for the Argyris element in a triangle
with vertices a;,i = 1,2,3, are given by

{ geepladlol <2, 7-p(b) )

where b; is the midpoint of the edge @jar, and n; is the outward normal of @jaz. The
number of the degrees of freedom for one triangle is 21.

It is easy to see that, in general, the normal derivatives of an Argyris element is a
polynomial of degree 4. Let Py denote the subspace of P5 formed by those polynomials of
P whose normal derivatives along each side of a triangle are polynomials of degree 3in ¢, ¢
being the abscissa along an axis containing the side. We note that Py C Py C Ps. The Bell
element consists of C* functions whose restrictions to a triangle are in Pg. The degrees of
freedom for the Bell element are given by

{ 2plale <2
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If the domain is built from rectangles, then we can also use the bicubic element, known as
the Bogner-Fox-Schmit rectangle in the engineering literature. It is a space of C? functions
whose restrictions to a rectangular element are in Q3 = span{z’y?,0 < i,j < 3}. The
degrees of freedom of bicubic glement are given by

{ p(a:), 33: (a,), ( a;), 6:1: 3:1: (@) }.

3. Additive Schwarz Methods for the Biharmonic Problem. In this section, we
study the additive Schwarz method for the biharmonic problem. We consider the bicubic
element, the Argyris element and the Bell element.

The additive Schwarz schemes were designed by Dryja and Widlund [6] and Matsokin
and Nepomnyaschikh [9]. The optimal convergence properties of the algorithm were es-
tablished for second order self-adjoint elliptic problems, see Dryja and Widlund [6,7,8].
Generalizations to the nonsymmetric or indefinite cases have been made by Cai and Wid-
lund; cf. [2,3,4]. We show in this paper that the condition number of certain additive
Schwarz methods for the biharmonic equation is uniformly bounded.

Suppose that the finite element space V can be written as a sum of subspaces,
V=V+Vi+ .-+ Vn.

Instead of solving the original finite element equation, in the additive Schwarz scheme, we
solve

Puy, = (PVO+PV1 +"'+PVN)’u,h =g
for some g;,. Here Py, : V — V;, is a projection defined by
(6) a(Pyu,4) = a(u,¢), Vo€ Vi

The natural question is how to find decompositions of V*, and what properties of the
decomposition give optimal algorithms.

As for the second order cases, a coarse problem is crucial in the algorithms. In the
second order case, an obvious candidate for the coarse subspace is the space VH associated
with a coarse triangulation 79, However, for the biharmonic case, when the Argyris and
Bell elements are used, the coarse finite element space VA (V}?) is not a subspace of V4
(V}). Therefore, we cannot use V& or VI as our coarse subspaces and a new coarse
subspace has to be found.

In the case of the iterative substructuring methods, the situation is even worse. We
recall that these are domain decomposition algorithms which use nonoverlapping subregions;
cf. Widlund [7]. When we use the bicubic element and thus Vg C Vé‘ can be used as
coarse subspace, the direct generalization of certain algorithms designed for second order
problems results in algorithms with condition numbers which grow at least like 1/H?. Better
algorithms are obtained by adding certain vertex spaces to the space-decomposition. We
will not discuss the iterative substructuring method further in this paper.

The difficulty of proving the optimality of the algorithms are due to the presence of the
high order derivatives in the elements. The tools that work for second order equations and
linear element cannot be used here,
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3.1. The bicubic Element. We first triangulate the domain {} into nonoverlapping
rectangles Q;,i = 1,---,N, to obtain a coarse triangulation 7# = {Q;}). Then each
rectangle Q; is further divided into smaller rectangles 7; to obtain the fine triangulation
Th = {r;}.

We assume that Q can be decomposed into overlapping subdomains @ = UY,{; and
the decomposition satisfies

AssuMPTION 3.1. The decomposition @ = UL, Q; satisfies

o 38 aligns with the boundaries of fine elements, i.e. Q; is the union of some ele-
ments 7;

o {0}V, forms a finite covering of Q with a covering constant N, i.e. we can color
{Q}X, using at most N, colors in such way that the subdomains of the same color
are disjoint.

o There exists a partition of unity {0;} salisfying

3°6; =1, with §; € C°($:),0 < 8; < 1 and | V| < C/H.

One way of constructing {;} satisfying the above assumption is described in Dryja and
Widlund [6]. We extend each Q; to alarger region Q) so that Gy H; < dist(8;, ;) < C H;.
We cut off the part of ; that is outside Q. Another way of constructing {{};} is described
in section 4.

Let Vp = VCJ;I and Vé‘ be the bicubic elements associated with the triangulations 79
and T", respectively. Let V; = V() = V& n H3(), and Py, : HE(Q) — Vi, be the
orthogonal projection, and let

N
P= Z Py,.
=0
We have the following additive Schwarz algorithm
ALGORITEM 3.1. Find up € V* such that

(7 Puy, = g,
with gr, = 3_; i, where g; is given by the solutions for the following finite elemnent problems

(8 a(g;, 1) = a(Py;u, 1) = f(dr), Veén € Vi

To find uy, we first find the right hand side g5, by solving (8) and we then use the conjugate
gradient method to solve the system. In each iteration, we need to compute Pyy, for some
element v, € V*. This is done in the following steps

o Compute Py, by solving the finite element problems K¥z = b in subspace Vg .
Here K is the stiffness matrix and dim(V}’) = 4N, where N is the number of
interior coarse grid points.

e Compute P;vy, for each subdomain §; by solving the finite element problems K by =
b in the subdomain €};. Here K} is the stiffness matrix and dim(V;) = 4n;, where
n; is the number of fine grid points inside ;.

THEOREM 3.1. The iteration operator P of the additive Schwarz scheme satisfies

Cra(u, u) < a{ Pu,u) < Cra(u,u), Vu€ Vg.
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It is of course desirable to reduce the work in each iteration without decreasing the rate
of convergence. Let A*(D) and A¥(D) be the sets of fine and coarse gnd points in the set
D, respectively. Let ¢f and ®¢ be the nodal basis functions of Vc’)‘ and VQ , respectively. To
descrlbe an alternative a,lgonthm, we also need fo introduce the following new subspaces.

o The vertex space V, = span{¢;’(z)}, for each vertex zz. For ¢ € V,, 7(zx) =
supp(¢) is a polygon of diameter O(h). We note that dim(V;,) = 1.

o V; = span{¢g(z),|a] < 1,2; € ARD:)}. Vi is a subspace of V; consisting of
functions with vanishing second derivative (a =55 ) at all the vertices of the elements.

The stiffness matrix for V; is a principal minor of the stiffness matrix for V; and
dim(V;) = 3dim(V;).

* Vg = span{®?, || < 1,i € AH}. VH is a subspace of Véf consisting of functions

with vanishing second derivative (away at all the vertices of the substructures.

The stiffness matrix for VQ is a principal minor of the stiffness matrix for Vg and
' dim(VE) = $dim(V§).
Using these subspaces, we have

ALGORITHM 3.2. Find u; € V§ by solving

(9) P(z)’U«h = (P‘-,Q + ZP‘.’.' + Z PVz,, )uh = gp
: kear

with the appropriate right hand side gp,.
THEOREM 3.2. The ileration operator P for Algorithm 8.2 satisfies

Cia(u,u) < a( PPu,u) < Cra(u,u), Yue V)

3.2. Argyris and Bell Elements. As in the bicubic element case, we define two
triangulations, the coarse triangulation 7# = {Q;} and the fine triangulation 7% = {r;},
using triangular elements. The subregions ); are defined similarly. We assume that all the
substructures and elements are shape regular in the usual sense. We present our algorithms
for the Bell element. The algorithms for the Argyris element are similar.

Let V} and VH be the space of Bell elements with respect to 7% and TH, respectively.
V} and VH are snmlarly defined.

In general the second derivatives of @ € V& at the edge nodes z; have two values
except at the vertices of the substructures. Therefore, V4 ¢ V. Thus, a new coarse space
has to be found. An easy way of modlfymg VH to achieve tlus goal is by replacing the
basis functions of V. Note that, in a substructure Q;, a basis function @ of VA can be
represented by the basis of Vj:

2a)=Y 3 Fals)f@+ Y Y (w)i(z) s€%;
lel<2z:€A2(0Q5) jol<2 2;€A(29;)

which is now replaced by

Uz)=3 Y S+ Y D Bal(z)i(2)

o2 m€AR(82;) lej<2 icaR{aQ;)
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Note that the second derivatives of ¥ vanish at the nodes on 9;. We define the coarse
space UH as

UH = span{¥2,]a| < 2, i € AT},

It is easy to see that we have the inclusion UF C VE. Let Vo = UE, V; = V& n H3(S%;) and
we obtain a space decomposition

N
Vi = Z Vi
1==0
and
ALGoRrITEM 3.3. Find up € V} such that
(10) Pup = (Py, + Py, + -+ + Py )up = g

with an appropriate gy.
THEOREM 3.3. The iteration operator P for Algorithm 8.8 satisfies

Cra(u,u) < a(PPu,u) < Cra(u,u), Yue V)

REMARK 3.1. In computing Pyvy, we need to solve the coarse problem Kvga: = b,
where Kyg = {a(¥;,¥;)} and ¥;, ¥; the modified basis functions. Thus, we need to
compute the matrix Kyy = {a(¥;,9;)}. A standard way is to use numerical integration.
An alternative way is to replace K vE by K vE This is equivalent to using an inexact

solver P} to replace Py. It can be shown that {a(®;,®;)} and {a(¥;,¥;)} are spectrally
equivalent. Thus we still have an algorithm with uniformly bounded condition number.

There are also simplified algorithms for the Argyris and Bell elements which are quite
similar to those for the bicubic element.

4. Multilevel Methods for the Biharmonic Problem. In this section, we consider
multilevel additive Schwarz methods for the biharmonic equation. Although all the two
level algorithms in this paper can be generalized to more than two levels, we only consider
a special case, which in matrix form corresponds to a multilevel block diagonal scaling
{MBDS). For simplicity, we use the bicubic elements.

We define a sequence of nested rectangular triangulations {7'}.,. We start with
a coarse triangulation 71 = {71} where 7} represents an individual rectangle. The
successively finer triangulations 77 = {r}}f;‘l are defined by dividing the rectangles of the
triangulation 77! into four rectangles. Let h} = diameter(r}), i = max; k!, and h = hy.
The level  grid points are denoted by A', and the basis functions by ¢} ,,i € AL, Here a
represents the order of derivatives.

Let Vi= Vé“ be the bicubic elements associated with 77, Let Q! = supp{¢} ,} be the
support of an individual basis function, and let V} = span{¢} .} be the span of the level I
basis functions at the grid point z;. We note that for the bicubic element dim{V{} = 4. On
each level, we have an overlapping decomposition of the domain

0 =yl
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This decomposition satisfies Assumption 3.1. We have the space decomposition

L N
VE=vE=VH 53 VL

I=1 §=1

The operator of the L-level additive Schwarz algorithm is given by

LI ger
P=3 SRS g,

I=11i=1 =1 i=1

where Py is the a(-,-)-orthogonal projection from V* onto V7.
ALGORITHM 4.1 (MBDS ALGORITEM). Find uy, € VL by solving

(11) Puh = gn

with an appropriate right hand side gy.
In the matrix form, equation (11) can be written as:

B 'Kiz =B '

where B~! = Dy' + Iy Dy} 14 | +--- 4 I, K70S. Here K is the stiffness matrix
associated with 7! and D; = diag{K;}, I; a prolongation operator, and II{ a restriction
operator. The MBDS algorithm is a natural generalization of a block diagonal scaling
method.

THEOREM 4.1. The multilevel additive Schwarz operator P satisfies
Ci1L'a(u, ) < a( Pu,v) < CLa(u,u).
Thus
k(B7'K)< CL?

REMARK 4.1. For second order problems, the corresponding algorithm is a multilevel
diagonal scaling, which is equivalent to the BPX algorithm of Bramble, Pasciak and Xu [1}.
We note that in the second order case, we have that the operator P has a constaut upper
bound; cf. Zhang [10]. It is also possible to strengthen the result in theorem 4.1.
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