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Domain Decomposition Algorithms of Schwarz Type,
Designed for Massively Parallel Computers™
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Abstract. We discuss implementation of additive Schwarz type algorithms on SIMD computers.
A recursive, additive algorithm is compared with a two-level scheme. These methods are based on a
subdivision of the domain into thousands of micro-patches that can reflect local properties, coupled
with a coarser, global discretization where the ‘macro’ behavior is reflected. The two-level method
shows very promising flexibility, convergence and performance properties when implemented on a
massively parallel SIMD computer.
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1. Introduction. The use of domain decomposition algorithms have been sub-
ject to active research in the last few years [10, 11, 12, 17]. A strong motivation for
this has been the increasing importance of parallel computers in scientific computing.
The theoretical foundation of these methods has been extended from the two domain
case [1, 4] to situations where the number of subdomains can be very large [8, 9, 15].
Until now, most computational experience has been obtained from using a relatively
small number of subdomains implemented on both shared and local memory MIMD
computers [2, 20]. The need for global coupling and exchange of information between
individual subdomains in every iteration, is also widely appreciated [8, 9, 15]. As
the number of subdomains increases, this issue raises a number of questions when
an efficient parallel implementation is desired {2, 20]. In this paper, we propose and
demonstrate a highly efficient algorithm designed for SIMD computers having thou-
sands of processors. The number of subdomains can easily be of the same order as
the number of processors without incurring excessive cost from the global solver.
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We first very briefly describe the fundamental ideas of domain decomposition
algorithms based on a Schwarz type iteration [23], in particular the additive version
[15]. We proceed to discuss and compare implementations of such algorithms on SIMD
computers. We conclude that a two-level algorithm combining inexact solvers on the
subdomains with an inexact multilevel iteration on the global problem, has favor-
able characteristics for massively parallel computer systems. This class of algorithms
should work well on a wide range of parallel machines. There is considerable freedom
to choose specific components in the algorithms, and to optimize performance on a
given computer architecture. In particular, these methods can be tailored to both
MIMD and SIMD machines. We focus on SIMD computers in this paper, reporting
on experiments carried out on a MasPar MP-1. We therefore give a brief description
of this machine in Section 3.

2. Global Additive Schwarz, GAS. We will in this section, give a brief de-
scription of the Global Additive Schwarz (GAS) algorithm, since this method will
serve as the basis for the algorithms to be discussed in Sections 4 and 5. For a more
detailed exposition and analysis of this method see [14, 15].

Let V be a Hilbert space, a(:,-) a symmetric, strongly elliptic bilinear form and
f a linear form. Our starting point is the variational problem:

(1) Find u € V such that: a(u,v) = f(v) Yw eV,
and its discrete approximation:
(2) Find up € V;, such that: a(us,vs) = f(vn) Yor € Vi, Vi C V.

We look for solutions of the form

N
3) up =y Ui
1=0
where

(4) a(u;,v;) = f(v;) Vo, €V, V=V, nV(Q), i = 1.

Here §; describes the ‘micro’-patches (or substructures) of our domain Q. This sub-
division can also be viewed as a coarse discretization of £ (with mesh size H equal
to the diameter of ;). We define the coarse space problem needed in (3), by

(5) a(uo, 'Uo) = f('vg) va c Vb, 1Vo = VH n V(Q).

We assume that the subdomains £; have a (possibly small) overlap with their nearest

neighbors.
Defining the projections P; : Vj ~ V;, we observe that u;, can be found by solving

N
(6) Puy = (O P)un = ga,

=0

where g, can be computed since
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) a(Paup,vh) = f(vn) Yo €V,

and each term in the sum (6) can be computed independently. We note that P is
symmetric in the inner product defined by the bilinear form a(-,-) and that forming
a product of the form wy, = Puy, requires the solution of (4) and (5).

Turning now to a description of the algorithm in matrix terms only, we character-
ize the projections introduced above. If we denote the contribution from subdomain
§%; (by subassembly) to the global stiffness matrix K by K and permute the un-
knowns appropriately, then

r(i)"]
®) y=am=(f‘0 g)m.

iFrom (8) one can also interpret the method as a preconditioner for the original
stiffness matrix K. Note in particular, that the case i = 0 corresponds precisely to
a second level substructure in the language of structural engineering, but unlike the
standard approach in today’s structures codes, we include these degrees of freedom
also in the substructure problems.

It is well known [15] that the formulation based on (6) can lead to an iteration
operator with a uniformly bounded condition number. A simple first order Richardson
iteration based on this splitting, takes the form

(9) up = uf — 7(Puf; — ga)

where 7 is a positive constant that depends on the eigenvalues of the iteration oper-
ator, the optimal value being 7 = 2/(Anin + Amaz)- In practical algorithms we often
accelerate this scheme with the conjugate gradient method. The method converges
to within a prescribed tolerance, independent of the discretization parameter h and
of the number of substructures N. We note that each iteration requires the solution
of N local problems on the substructures and the solution of the coarse problem, all
of which are independent and can be solved in parallel. Observe that we can replace
both the subdomain solution (4) and the coarse problem solution (5) with inexact
solutions without destroying the optimal rate of convergence, provided that the new
problems (replacing (4) and (5)) are spectrally equivalent to the bilinear form a(u, v)
restricted to the appropriate space V; x V..

Our concern in this paper, is to discuss efficient implementations of this algorithm
on massively parallel systems. The interaction between the local problems and the
coarse (global) problem is in this context, the critical issue.

3. A brief description of the MasPar MP-1 Computer. The MasPar MP-
1 system is a massively parallel SIMD computer system. The system consists of a
high performance UNIX workstation (FE) and a data parallel unit (DPU). The DPU
consist of at least 1024 processor elements (PEs) each with local memory and register
space. All processors execute instructions broadcast by an array control unit (ACU)
in lockstep, but each processor can disable itself based on logical expressions for
conditional execution. It should be noted that the individual processors may operate
not only on different data, but also in different memory locations, thus supporting an
indirect addressing mode.
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There are three communication mechanisms available, the Xnet, the router and
the global or-tree.

The Xnet interconnects the PEs in a 2 dimensional toroidal mesh which also al-
lows for diagonal communication. The Xnet operates in three modes, Xnet, XnetP(ipe)
and XnetC(opy). Xnet has a cost proportional to the size of the message times the
distance of transmission. XnetP and XnetC are pipelined versions with a cost that
only depends on the sum of the message length and the distance. The two last modes
are useful for regular, non-local communication, but require that the processors be-
tween any pair of communicating processors be inactive. Thus, for sending over longer
distance XnetP is much faster than basic Xnet provided that it can be used. XnetC
is similar to XnetP, leaving a copy of the transmitted variable on all the intermediate
processors. The MP-1 also supports arbitrary node to node communication through
a three-stage switch called the router. The global or-tree can move data from the
individual processors to the ACU. If many processors send data at the same time a
global reduction results.

Floating point is implemented in software. We define the average time of a
floating point instruction, @ = 3(Mult + Add). Measured in units of o, the floating
point performance of the MP-1, corresponds to a peak speed of 290 Mflops on a
machine having 8192 processors. The time ratio of nearest neighbor communication
to floating point computation defined as v = Xnet{l]/a , has v = 1/5 for 64 bit
operands.

A more detailed general description of the MasPar MP-1 computer can be found
in [6, 13, 22).

4. Recursive Global Additive Schwarz, RGAS.

4.1. Description of the method. The idea with RGAS is to solve the coarse
problem recursively using GAS. A convergence analysis of RGAS is given in [16].
In order to define a recursion, we divide the coarse problem into subdomains in the
standard fashion. Applying additive Schwarz to this problem, we can now define a
new (and smaller) coarse problem having the intersection of the boundaries of the
new subdomains as unknowns. Since the coarse problem in GAS can be solved in
parallel with all the interior subdomain solves, this strategy can potentially increase
the parallel part of the algorithm.

The approach is very similar to multigrid, and in order to appreciate this we
compare a two-level multigrid iteration (10) with the GAS algorithm (11).

i relax - - = relaz j31
ul "S55 w, = = fo— K et U =Up — U

(10) VIH 114
rg — Kyeg =71g — em

j j g i\ i N i
u, = = fr— Kpuj — (Kie, = Thlimi = Up = U, T T o€
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(11) VI T4

TH — KHC% =TrH — 6(}{

Here K, is the stiffness matrix, Ky refers to the stiffness matrix for the coarse
problem, while f and 7 are defined in (7) and (9). The restriction and interpolation
between the two levels are of the same form in the two algorithms. The multigrid re-
laxation has been replaced with subdomain solves. Knowing the purpose of multigrid
relaxation, it is no surprise that the subdomain solves in (11) should be replaced by
approximate solvers in order to minimize the computational work. A natural choice
is just to do a few Gauss-Seidel sweeps, making the actual computational procedure
look even more like multigrid. The possible advantage of the GAS algorithm with
respect to parallel execution, is that one in (11) can solve the problems on the two
levels in parallel, while the multigrid algorithm (10) is strictly sequential between
levels.

The generalization of GAS to get RGAS is straightforward from (11), just as
one can derive various multigrid iterations from (10) by recursively using the same
approach to solve the coarse problem defined by K. The structure of an L + 1 level
‘V-cycle’ version of the RGAS algorithm is shown in (12).

J — J i 8 i\ Ve g+l __ i L 7o
uy — 1o = fo— Kouhy — (Kfep=rp)ih = uf =up+7r e

LI T

(12) r — (Kiel = r{)fi‘l — g
VIE, TIE?
T - Krer =rg — e

As in multigrid methods there are many possible variants. (Different cycles, differ-
ent approximate solvers etc.) In the resulting RGAS method, one can solve all the
problems Kfiel =i i=1,2,... Ny at all levels k = 0,1,... [, simultaneously. The
size of the subproblems may change from one level to the next. Note that in (12) the
interpolation and restriction may be implemented ‘sequentially’ between successive
levels or ‘directly’ between any level and the finest level. Other combinations are
also possible and may be of interest depending on the target computer architecture.
Unfortunately, on an SIMD computer, the setup of the problems on all levels and the
interpolation and restriction must typically be implemented as sequential steps also
in the RGAS algorithm.

Assuming that the number of grid points can be chosen carefully, one can also
arrange the size of the subdomains o be almost the same on all levels in the recursion.
Therefore, in each step, we can solve many small (identical) subproblems in parallel,
which in our SIMD context, may be more attractive than first solving many small
subproblems and then one global coarse grid problem. Finally, we note (see [16]) that
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the BPX algorithm [7] may be viewed as a limiting case of (12) where the subdomains
have degenerated to the support of the individual basis functions and that similarly,
certain multigrid algorithms can be interpreted as multiplicative variants, updating
the residual at each level.

4.2. Implementation. An important motivation for RGAS is to avoid having
to solve a coarse problem of possibly much larger size than the subdomain problems.
In an SIMD implementation the main concern will always be to keep processors busy
and to minimize communication cost. The first consideration requires ideally that
all subdomains be of precisely the same size and structure. This is not possible
since the subdomains near the boundary will have a different size or different overlap
from the interior ones. Due to the lack of overlap at the exterior boundary, one can
either increase the overlap from these substructures to their interior neighbors and
thus keep the subdomain size fixed, or let these subdomains be slightly smaller in
size. This problem can be handled somewhat more easily with the use of an iterative
solver instead of a direct subdomain solver. An iterative solver also allows for inexact
subdomain solutions which as we shall see, are preferable to the exact solver. In
this report, we use a symmetric Gauss-Seidel iteration. The overlap will in all our
experiments, be just one common line of grid points, that is, as the mesh size is refined
we use a relatively smaller overlap. This choice is based on previous experience [2]
that clearly shows this to be optimal with respect to computer time. The choice also
minimizes the variation in size of the subdomains. It should be remarked that the use
of a coarse grid problem combined with relatively many subdomains are necessary
for these conclusions to hold. The Schwarz algorithm without the coarse problem is
much more sensitive to the size of the overlap [2]. Note also that even in our case, the
number of iterations required can decrease slightly with an increase in the overlap,
but this is offset by a higher computational cost per iteration.

The main advantage of RGAS is the ability to solve all the subproblems on all
levels simultaneously in an efficient SIMD fashion. Unfortunately, the method leaves
very little flexibility with respect to the size of the substructures. Also, the problem
of assigning substructures from the coarser level problems to processors in a way that
keeps both the programming simple and the communication cost low, is not easy. On
our machine with 23 processors, we have assigned half the processors to the original
substructures, using the other half to solve the subproblems arising from the coarse
problem. Thus, our processor utilization is always less than 0.75. If we have more
substructures than processors, this can be improved, but not without a considerably
more sophisticated implementation that easily could lead to loss of efficiency.

4.3. Numerical experiments with RGAS. We consider a test problem ob-
tained from (1) with
(13) a(u,v) = /Qk(m,y)Vqu o,
corresponding to the classical equation

(14) YV k(z,y)Vu = f(z,y) in
u= g(z,y) on 0%}
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defined on the unit square 2 = (0 < z,y < 1). We assume that k(z,y) is positive
and piecewise continuous, but we are interested in the case where this function has
jump discontinuities. We take V = H}() and define the discrete space V; using
uniform triangles and P; finite elements (corresponding to the 5-point stencil). The
functions f(z,y) and g(z,y) have been picked such that the exact solution of (14)
is u = 2% + y? — zexpx cosy when k(z,y) = 1. This problem was also considered
in [4, 5]. In all experiments reported in this paper, we stop the iteration when the
discrete Ly norm of the residual has been reduced by a factor 107¢.

In Table 1 we compare GAS and RGAS using an exact solver in RGAS, in order
to have a reference to the cases to be reported next, where we use a symmetric Gauss-
Seidel iteration. We used 8192 processors for the RGAS entry, storing all the fine

Mesh size || h = 1/128 || h = 1/256 | h = 1/512

Algorithm || Iterations || Iterations | Iterations

RGAS 26 20 20

GAS 13 13 14
TABLE 1

Hterations for RGAS and GAS with exact subdomain solvers.

Subdomainsize f 3x3J5x5]9x9

Restriction 0.13 || 0.09 | 0.12

Solve 0.01 0.04 | 0.20

Interpolation 0.15 || 0.12 | 0.15
TABLE 2

Comparison of the times for solve, inlerpolation and resiriction in RGAS.

Subdomain size 3x3 5x5 9x9
Mesh size Cond. | # Iter. |} Cond. { # lter. | Cond. | # Tter.
h=1/32 12.4 22 8.6 18% 7.6 16*
h=1/64 13.6 24 8.7 19 7.6 16
h=1/128 14.7 26 9.9 20* 9.6 19*
h=1/256 154 27 9.9 20 9.6 20*
h=1/512 16.1 27 10.7 | 21% 9.7 20

TABLE 3
Convergence properties of RGAS
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level subdomains in half of the machine. We observe that RGAS requires up to twice
as many iterations as GAS due to the inexact solution of the coarse problem. ;From
previous experience with GAS on MIMD machines [2], we note that the size of the
coarse problem relative to the size of the subdomain problems is important. The
solution of the coarse and the fine problems can be performed in parallel and usually
accounts for more than ninety percent of the total computing time. With RGAS, we
are able to solve all the problems in SIMD parallel fashion thus reducing this relative
time. It turns out that we need to do about three symmetric Gauss-Seidel iterations
on the subproblems in each iteration, to minimize computer time.

The disadvantage of RGAS is, besides the inflexibility described earlier, that new
‘sequential’ steps have been introduced in the algorithm. The interpolation and re-
striction operations in (12) are now more expensive than in GAS, and many processors
will be idle during this step, contributing to a lower overall processor utilization. The
work is performed in a sequential manner with respect to the levels and also involves
irregular and non-local interprocessor communication. The interpolation and restric-
tion work is insignificant in GAS, but as seen in Table 2, it is significant relative to
the work of solving the subproblems in RGAS. The entries in Table 2 are taken from
the example studied further in Table 7. The above shortcomings of RGAS outweighs
the attractive features and lead us to consider an alternative class of algorithms in
the next section.

In Table 3, we study the convergence behavior of RGAS as a function of both
subdomain size and the number of levels in the recursion. Note that we make a
distinction between our domain being divided into substructures and the size of the
subdomains which includes the unknowns in the overlap region. Thus, the size (un-
knowns) of a subdomain times the number of substructures is larger than the number
of unknowns in the original problem. If the recursion is terminated early (by solving a
‘larger’ coarse problem at the lowest level) this improves the condition number of the
iteration operator and therefore reduces the number of iterations. In the SIMD con-
text, it is of interest to carry the recarsion all the way until we have a single problem
of smaller or equal size at the final level of the algorithm. We see from the table that
the number of iterations required to solve our test problem, appears to be indepen-
dent of the number of levels. Despite this, we observe a slow increase in the estimated
condition number of the iteration operator. This estimate was computed based on the
conjugate gradient process in the usual way [18], but it was observed that up to twice
as many iterations (compared to what is given in the table for the required residual
reduction) were needed in order to get a reliable estimate for the smallest eigenvalue.
The computation confirms that the smallest eigenvalue is bounded from below [16]
and possibly even increases slightly. The largest eigenvalue accounts for the slight
increase in the condition number. We note that the finest mesh size and the smallest
subdomain in Table 3 requires 8 levels of recursion. The entries marked with a star
correspond to cases where the ‘last’ problem had a smaller size, this may account
for the slightly irregular behavior. The computation indicates that the number of
iterations needed is independent of the number of levels. With this assumption the
RGAS algorithms have optimality properties similar to those of multigrid methods.
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repeat
all update local residual-vector
all compute local oy
GLOBADD(local i) to global ax
compute Gx
all update local search-vector (p)
all compute local Kp (rhs) for the preconditioner
(GET ‘boundary’ from neighbors,
compute local Kp)
start preconditioning
all generate local node for coarse problem
(find restriction,
add up to local coarse node)
all perform Sym-GS (3) iterations on local problem
perform MG-cydles (3) on coarse problem
all add solutions from local domains
(GET overlap from neighbors,
add solutions)
all interpolate coarse grid to fine grid
end preconditioning
find global a;, (step length, as ay)
all update local solution-vector
until convergence

F1a. 1. CG-accelerated MGAS, one domain per processor

In fact, it was announced at this meeting [24] that Mr. Xuejun Zhang has proved an
upper bound independent of the number of levels, thus improving on the estimates
given in [16].

5. Multilevel Global Additive Schwarz, MGAS.

5.1. Description of the method.

Based on the experience in the previous section, we abandon the idea of solving all
RGAS subproblems in one parallel step. A more flexible algorithm can be developed
based on the original GAS algorithm in (11). We first (approximately) solve all
subproblems on the finest mesh in one parallel step. We then consider the solution
of the coarse problem separately. This can again be solved with RGAS or with
a standard multigrid algorithm. One could also consider hybrid schemes, possibly
truncated before reaching the final level of recursion. In this way, we are able to use
all processors better on the fine grid and also create a more efficient data structure
for the coarse problem as well as for the restriction and interpolation. By using
a ‘sequential’ two-level scheme, we may also consider o link the two levels using
‘multiplicative Schwarz’ [2] instead of the additive method. We know that this method
in general, has better convergence properties than the additive algorithm. Keyes and
Gropp [21] advocate a two-level algorithm in quite a different context, but some of the
underlying motivation related to simple, flexible data structures and efficient parallel
implementations, is similar.

To illustrate the method, we here report on an additive implementation where
the coarse problem is solved approximately using three multigrid V-cycles. A single
conjugate gradient iteration of MGAS is outlined in Figure 5.1. As seen from the
algorithm the parallelism is very high. We have full processor utilization in all steps
except in the computation of inner products and in the multigrid cycle.
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Subdomain size || # Sym. GS lter. | Time | Iterations ]| Exact local || Exact global
3z3 1 2.2 15 14 15
5z5 3 3.5 15 14 15
Tz7 3 6.0 17 14 17
99 3 9.9 19 15 19
11z11 3 16.0 22 17 22
13213 3 23.0 25 17 25
15215 3 34.0 28 18 28
17217 3 47.0 31 19 32
TABLE 4

Number of ilerations, inezact vs. exact solvers

5.2. Implementation. We have implemented an MGAS code on our MasPar
MP-1 using 4096 or 8192 processors !. We typically stere 1-2 local domains in each
processor and 1-2 points from the coarse problem. The code solves (14}, possibly with
discontinuous k(z,y). We remark that a code of this kind can be implemented more
efficiently if one restricts the function k(z,y) to be a constant on each subdomain.
This may be permissible in many applications as we can use thousands of subdomains.
In the results reported here, we take advantage of this option.

We have chosen to use a symmetric Gauss-Seidel iteration as our approximate
solver on the subdomains, and a fixed number of standard multigrid V-cycles for the
solution of the coarse grid problem. We have also fixed the number of relaxation
sweeps in the multigrid cycle to vy = v, = 2. In Table 4 we have given the number
of Gauss-Seidel iterations that minimizes the total elapsed time, and compared this
with the number of iterations needed for convergence using an exact solver for the
local subproblems. In the last column we list the number of iterations needed when
we keep the inexact solution of the subproblems, but solve the coarse problem with
an exact solver. The test problem is (14) with k(z,y) = 1 and the same stopping
criterion as before. We have used 4096 processors with one subdomain per processor.
We see that the optimal number of Gauss-Seidel iterations is close to three, similar to
the observation when using RGAS. We further observe the effect of using a relatively
smaller overlap when increasing the subdomain size, in the column ‘Exact local’.
The larger increase in the iteration count when using the symmetric Gauss-Seidel
iteration, reflects the poorer quality of the inexact solver as the subdomain grid is
refined. Clearly, for very large subdomains, one should replace this iteration with a
locally optimal method like a multigrid V-cycle, in order to maintain a global work
complexity proportional to the number of unknowns.

5.3. Complexity. We can estimate the total work in this MGAS algorithm as a
function of some of the parameters. Let n; be the number of Gauss-Seidel iterations,
n, the number of V-cycles, each doing v = v; + v, relaxation sweeps. If as before,
we have N subdomains on the finest grid each having m? unknowns then the leading

1 A prize winning algorithm in the Mannheim SuParCup ’91 competition 3]
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m=3 | m=5 | m=9 | m=17
Global solver 65 42 19 6
Local solver 18 28 36 40
Conjugate gradient 10 15 20 23
y= Kz 3 5 6 6
Interpolation 3 6 10 13
Restriction 1 4 9 12

TABLE 5

Estimated relative time for different parts of an MGAS algorithm.

m=3 | m=5{m=9 | m=17
pl 0.09] 0.06 0.03 0.01

TABLE 6
Estimated ratio communication to computation

term of the arithmetic work per iteration, takes the form
(15) aam®(ny + ¢3) + cana(v + c4)log, N,
while the communication behaves like

(16) csm + cgna(v + c7)log, N.

Observe, that unlike the RGAS algorithm in the previous section, we are now able to
take much better advantage of the fast, pipelined communication provided by XnetP.
This communication mechanism is very important on the coarser levels of a standard
multigrid or RGAS algorithm employed in our two level MGAS scheme. Using the
actual values of the constants in (15) and (16), and the values ny = ny = 3, v = 4,
and N = 4096, we have estimated the relative cost of the different parts of this MGAS
algorithm in Table 5. Similarly, in Table 6, we list the ratio p of communication to
arithmetic. Actual time measurements agree quite well with this model. Note in
particular, the very low communication cost that this algorithm combined with the
MP-1 achieves.

5.4. Numerical experiments with MGAS. In Table 7, we compare MGAS
using 4096 processors each having one subdomain, with RGAS running on 8192 pro-
cessors, but storing the fine grid subproblems on half the processors. The running
time has been minimized by finding the best number of Gauss-Seidel iterations for
each of the six cases. The size of the subproblems is m = 3 , 5 and m = 7, all with
k(z,y) = 1. We notice that MGAS is superior despite the use of fewer processors.

In the next table, Table 8, we investigate the robustness of MGAS when solving
(14) with discontinuous k(z,y). We solve a problem having 16384 subdomains with
four different sizes for the local subproblem. In this table, we fix the number of
inner Gauss-Seidel iterations at three, a number which is close to optimal over a
range of problems we have considered. The first problem has k = 1 for reference, the
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Mesh | h=1/128 h=1/256 h=1/512
Method | # Iter. | Time | # Iter. | Time | # Iter. | Time
RGAS 26 5.9 23 6.5 25 15.6
MGAS 15 2.2 15 3.5 19 9.9

TABLE 7
Comparing RGAS and MGAS

Mesh size h =1/256 h=1/512 h=1/1024 h =1/1408

k(z,y) # Iter. Time | # Iter. Time | # Iter. Time | #lter. Time
1 15 4.2 14 6.1 19 18.4 23 35.5
10 +y?)+.01| 15 42| 15 66 | 19 184 | 24 370
‘Greenbaum’ 15 4.2 15 6.6 19 18.4 25 38.6
Checkerboard 15 4.2 16 7.0 24 23.3 30 46.5
Random 15 4.2 16 7.0 22 21.3 27 42.0

TABLE 8

MGAS for different k(z,y) using 8192 processors and 16384 subdomains.

second entry shows a variable k(z,y) where the computation proceeds with a ‘frozen’
constant value of & within each subdomain. The error compared to the solution of
the continuous problem was less than 3 - 10~* on all grids. The third entry is taken
from [19] where the global domain is cut into four smaller squares. The SW and NE
square has k = 1, the NW has k£ = 10%, and the SE square has k = 10~*. Our next
entry is a checkerboard (with 16384 squares!) where all the ‘black’ domains have
k = 1, while the ‘white’ domains have k& = 103. In the last entry of Table 8 each of
the 16384 subdomains has been assigned a constant, but random value between 1 and
1024, for k(z,y). The results show that the algorithm is very robust and that we are
able to solve a problem with strong discontinuities, having two million unknowns, in
approximately 40 seconds of computing time.

Finally, in Table 9, we compare the performance of MGAS on the MP-1 with the
equivalent algorithm implemented on vector machines. That is, an implementation
that vectorizes across all the subproblems. We used an Alliant FX/8 with 8 vector
processors and a CRAY X-MP/2, but only using one processor. We have solved the
problem with 1024, 4096 and 16384 subdomains, each with m = 5 ( 5x5 pointsin each
subdomain). On the MP-1, we use one processor per domain except for the largest
case where we map two subdomains to each processor. Again, we take the number of
Gauss-Seidel iterations for each entry in the table that minimizes the computing time.
All machines run the same algorithm, but the differences in the iteration counts show
that the Alliant prefers fewer inner iterations. The table clearly shows how the time
scales with the problem size for the three machines. The increase for the MP-1 when
solving the largest problem, is due to the extra work of handling two subproblems on

each processor.



374 BIGRSTAD AND SKOGEN

# Subdomains 1024 4096 16384

Computer # Tter. | Time || # Iter. | Time || # Iter. | Time

MasPar MP-1 15 3.5 15 3.6 14 6.0

Alliant FX/8 16 4.9 18 19.9 18 84.3

CRAY X-MP 14 1.3 14 4.8 14 18.2
TABLE 9

SIMD machine compared to vector machines

6. Conclusions. We conclude that algorithms of the MGAS family, can be ef-
ficiently implemented on massively parallel SIMD computers. Our experiments show
that one can construct efficient domain decomposition algorithms using thousands of
subdomains, and that combined with SIMD computers, this results in a very cost
effective way of solution. The method is quite insensitive to a discontinuous k(z,y),
and therefore promising within application areas like oil reservoir simulation.

This class of algorithms should be further studied with respect to three dimen-
sional problems, more general geometries, the case of local grid refinement, and with
respect to nonsymmetric operators. The possibility of using the indirect addressing
supported on machines like the MP-1, in order to increase the generality and flexi-
bility of these algorithms on massively parallel computers should also be considered.
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